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Expression of Osteopontin in Calcified Coronary Atherosclerotic

Plaques

Advanced atherosclerosis is often associated with dystrophic calcification and
remodeling of extracellular matrix of vascular wall. Recently many studies have
documented a general relationship between calcification and severity of coronary
disease, and discussed the feasibility of electron beam computed tomography
for detecting and quantifying the coronary artery calcification in the patients.
The present study investigated the expression and the localization of osteo-
pontin, one of noncollagenous bone matrix protein, within the calcified coronary
arteries. Autopsy-derived coronary artery specimens were scanned and recon-
structed to visualize the pattern of coronary calcification using a novel micro-
scopic computed tomography technique. The localization of the osteopontin
were evaluated by immunohistochemial stain with LF7. The present study
showed that the pattern of coronary calcification is variable and the expression
of osteopontin is localized mainly to calcified lesion. The smooth musdle cells
in addition to macrophage expressed osteopontin protein in human coronary
atherosclerotic plagues. Soluble osteopontin released near to the sites of vas-
cular calcification may represent an adaptive mechanism aimed at regulating
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the process of vascular calcification.
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INTRODUCTION

Undl recently, atherosclerosis had been regarded as a
degenerative process, but extensive research has demon-
strated its active regulation of cellular and extracellular
elements in, for example, the vascular calcification. O’Brien
et al. provided evidence that valvular as well as vascular
calcification ate an active, tegulated processes with sim-
ilarities to bone formation and remodeling (1, 2).

New imaging techniques made it clear that coronaty
calcification is neither rare nor a final stage, occurring
in 90% of all patients with coronaty disease (3), and that
the vast majority of significant coronaty stenosis ate
calcified (4). Recent histopathologic analysis of human
carotid artetial atherosclerosis has shown that intraplaque
hemotthage-thrombosis might contribute to attetial cal-
cification as a source of bone matrix proteins and that
apolipoproteins, fibrin and matrix metalloproteinases
might intetact in the formation and progression of dys-
trophic calcification (5). Coronary calcification is also
associated with atherosclerotic lesions increasing cardio-
vascular risk (6-10).

In coronary artery specimens Fitzpatrick et al. (11)
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identified mRNA of matrix proteins associated with
mineralization. Specifically they identified a cell attach-
ment protein (osteopontin) and a y-catboxylated protein
that regulates mineralization (osteocalcin). Osteopontin
(OPN) is an acidic, phosphotylated glycoprotein, which
is regulated by local cytokines and is known as inhibitor
of bone formation and calcification. OPN was named for
its function as a bridge between cells and mineral. Form-
ing a proteinaceous coating over the solid crystal surface,
OPN mediates attachment of both osteoblasts and osteo-
clasts to bone mineral through interaction of its highly
conserved GRGDS sequence with intergrins (12, 13).
OPN is abundant at sites of calcification in human ather-
osclerotic plaques and in calcified aottic valves, and OPN
mRNA appears to be expressed predominantly in lesion
monocyte/mactophages but also in vascular smooth mus-
cle cells (1, 2, 14-18).

Although a prominent component of the extracellular
matrix of bone, the function of OPN in hard tissue for-
mation, minetalization, and turnover is not yet clear.
Several studies have suggested that osteopontin may be
an impottant regulator of vascular calcification (13, 19-
23) and also a chemoattractant factor released by acti-
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vated vascular smooth muscle cells to guide the migra-
tion of fibroblasts (24). Recently, Wada et al. (23) dem-
onstrated that soluble OPN released near to the sites of
vascular calcification may tepresent an adaptive mech-
anism aimed at preventing vascular calcification. Para-
doxically, bone matrix proteins that inhibit apatite for-
mation are found at increased levels in calcified human
atherosclerotic plaque and in culture (17, 23, 25).

Priot pathologic (26, 27), angiographic (28, 29) and
intravascular ultrasound studies (30) have not specifically
examined the pattern of vascular calcification and the
characterization of calcific tissues. A growing number of
investigations (3, 31, 32) has demonstrated the feasibility
of using electron beam computed tomography (EBCT)
scanning for detecting and quantifying the coronary
artery calcification in vivo. In the present study, Micto-
scopic computerized tomography (Micro-CT) allowed the
assessment of the three-dimensional pattern of vascular
sttuctute in vitto and provided a useful means for the
study of the spatial distribution of calcification within the
vessel wall (33-37).

The purpose of the present study was to evaluate the
characterization of calcific tissue within the vessel wall
and the expression of OPN in autopsy-detived coronary
artery specimens of non-cardiac deaths.

MATERIALS AND METHODS

Study population

Human coronaty samples were collected from autop-
sies within 24 hr postmottem (two men, aged 71 and
69 years; two women, aged 58 and 65 years). Of the
four individuals, 2 died from metastatic catcinoma, 1
from tenal failure, and 1 from sepsis. Two patients with
diabetes, one patient with hypetcholesterolemia, and
three patients with hypettension were documented in this
series of patients. Two patients were smokers at the time

of death.

Tissue preparation and polymer injection

Following removal of the heart, glass cannulae were
tied at the left coronaty orifices and injected with 500
mL of hepatinized saline (0.9% sodium chlotide with
5,000 units of heparin) at a pressure of 70 mmHg to
clear the coronary network of remaining blood. A spe-
clally prepatred, low viscosity, radio-opaque liquid poly-
mer compound (MV-122, Canton Biomedical Products,
Boulder, CO, U.S.A.) was then injected through the can-
nulae. The heart was then immetsed in 10% buffered
formalin and placed under reftigeration at 4°C overnight
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to allow polymetization of the plastic compound. On the
following day, the coronaty artetial segments (about 2
cm in the length) were removed from the heatt by careful
dissection, and the luminal polymer was removed to
differentiate vascular calcification from radio-opaque
polymer. The coronaty segments were placed in 70%
ethanol and dehydrated through increasing alcohol con-
centrations. At successive 24-hr intervals, glycerin con-
centration was raised from 30 to 50, 75 and finally 100%
glycerin in otder to completely dehydrate the coronaty
segments. The specimens were then rinsed in acetone,
and left in open air for 24 hr. Finally, the coronary seg-
ments were embedded in wax for scanning and three-
dimensional (3D) reconsttuction. After micto-CT tecon-
sttuction and analysis, cotonaty specimens were im-
mersed for 4 hr in water at 40C to gently melt the wax
embedding, wete removed from the plastic mold, and
were cut at 3 mm intervals along the entire length of
all arteries for histopathologic studies.

Right coronary arteties were not injected with radio-
opaque polymer and the coronary arterial segments
(about 2 cm in the length) were removed from the heart
for immunochemistry.

Microscopic three-dimensional CT reconstruction and
ultrastructural imaging

Micto-CT' was utilized for ultrastructural visualization
of the plaque calcification. Specimens wete scanned by
a micro-CT' system consisting of a spectroscopy X-tay
tube, a fluotescent crystal plate, a microscopic objective
and a charge coupled device camera (CCD) (33-37). The
charge in each pixel was digitized and stoted in a com-
puter as an array of 500-1000 projections of the speci-
men in 360-degtee rotations.

Three-dimensional (3D) images were reconstructed
using a modified Feldhaup cone beam filtered back pro-
jection algotithm and the resulting 3D images were dis-
played using the Mayo Analyze software (Version 7.3,
Biomedical Imaging Resoutce, Mayo Foundation). Vol-
ume tendering provided a variety of display tepresenta-
tions of 3D image data sets. Volume tendered transmis-
sion displays, cross-sectional, maximum intensity ptojec-
tion (gray scalefinverted gray scale) and cutved sectional
images wete displayed at vatious angles and threshold
values of voxels. Average voxel size was 21-28 mm, and
images of up to 800 slices were rendered for each arterial
specimen (each with a matrix of 10-20 mm cubic voxels
X 16 bits of gray scale).

The cross-sectional images wete analyzed at every 3
mm of each specimen first at the pixel size of 28 um
and then at higher resolution using 21 pm voxel size.
The cross-sectional and curved sectional micro-CT images
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were captured and digitized in the computer and an
intensity histogram was made to display the distribution
of gray levels (from black to white) within the image.
Calcific areas were differentiated against the black back-
ground by setting the upper and the lower threshold val-
ues for an intensity range of interest (IROI) that yielded
the best identification of calcific regions as judged by the
operatot.

Immunohistochemistry

Immunohistochemistry was petformed with LE7, which
is a rabbit polyclonal anti-osteopontin antiserum raised
against human bone-derived osteopontin (NIH, Bethesda,
MD, US.A) and was previously used for immunochisto-
chemistry on human atterial tissue, was used at a titer
of 1:1,000 to localize the osteopontin protein. Peroxidase-
conjugated secondary antibodies were used with the pri-
mary antibody.

Paraffin sections (5 ym) were made and transferred to
glass slides. The paraffin sections were deparaffinized and
rehydrated through xylene for three times and for 3 min
each, and through setial concentrations of 100, 95, 80,
and 75% ethanol for 3 min each. The sections were
boiled with citric acid for 5 min to supptess nonspecific
binding of the antibodies and to inctease the exposute
of antigens, and wete cooled at room temperatute for 20
min. The sections were then treated with 0.3% H,O,
for 5 min to supptess the endogenous peroxidase activity.
After treatment with TBS (pH=7.2-7.4), the sections
wete incubated in moist chamber for 1 hr with ptimary
antibodies. The sections wete then processed by the
streptavidin-biotin-peroxidase complex method by use of
the LSAB plus kit (DAKO Inc., Carpenteria, CA, US.A.)
and stable DAB solution (Research Genetics Inc., Hunts-
ville, AL, U.S.A.) to produce a brown color at the site
of reactivity. The sections were then counterstained with
methylene blue.

Fig. 1. High-resolution micro-CT and histologic (H&E, X 10) cross-sectional images from discrete (A and B, Case 1) to heavy
calcification (asterisk) including the intima, media and elastic lamina (C and D, Case 2) of human coronary arteries (voxel size
21 mm). Calcified elastic lamina (arrow in C) is located between calcified plaque and medial calcification (D). Maximum intensity
projection, inverted gray scale (E, Case 3) and gray scale (F, Case 3) demonstrat that preserved vessel lumen is accompanied
with increasing thickness of the calcific wall and neovascularized vasa (long arrow) in the outer region of the vessel wall in human
calcific coronary artery (bar=2.0 mm).
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RESULTS

Cross-sectional images demonstrated that the patterns
of cotonary calcification associated with atherosclerosis
wete vatiable, being discrete or focal (Fig. 1A, 1B) and
lineatr or circumferential. The circumferential or linear
structures (Fig. 1C, 1D) were identified as elastic lamellae
and medial calcification. The medial calcification was also
observed in H&E stained sections of the cotonary arteries
(Fig. 1D), which revealed calcification underlying the
intimal hypetplasia. These findings demonstrated that in
the presenting cases of musculat arteries, deep calcifica-
tion might be associated with elastic lamella. Maximum
intensity projection and inverted gray scale/gray scale
(Fig. 1E, 1F) demonstrated that the presetved vessel
lumen accompanied calcific walls of increasing thickness
and neovasculatized vasa vasorum within plaque itself in
human calcific coronary artery.

Compating with the cortesponding sections in Fig. 1C,
extensive calcium is deposited relatively uniformly along
the non-critical stenosis of plaque, as shown by max-
imum intensity projection and by cutved sectional images
(Fig. 2A, 2B). These findings may be due to vascular
remodeling, whete arteries inctease in size to compensate
for the atherosclerotic plaque growth and thus to pre-
setve lumen size. In contrast, a large plaque with critical
stenosis shows the neovascularization within vessel wall
and plaque itself by micro-CT (Fig. 2C, 2D). Longitu-
dinal sections of cotonaty atteties contained radio-opaque
regions of calcification that wete intetvening between the
non-calcified plaque as a focal pattern or linear structute
along the intima and media (Fig. 2C, 2D).
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Much of OPN protein was expressed in the cytoplasm
of macrophages and smooth muscle cells in plaques and
in extracellular areas along the calcification front (Fig.
3A, 3B). The calcification front ot the fibrotic portion of
the lesions in a granular pattern was composed of macto-
phages/foam cells, smooth muscle cells and cholesterol
crystals (Fig. 3B). However, despite the higher exptession
of OPN in the front of calcification, especially in plaque
itself and mediointimal junction, a subset of vascular
smooth muscle cells in the outer media demonstrated the
lower expression of OPN (Fig. 3A, 3B). Non-calcified
atherosclerotic lesions revealed little OPN immunoteac-
tivity in intimal smooth muscle cells and infiltrated
inflammatoty cells (Fig. 3C). Comparing with non-calci-
fied lesion, calcified atherosclerotic plaque demonstrated
marked incteases in OPN immunoteactivity. A higher-
magnification view of the front area of calcification in this
lesion showed cytoplasmic localization of OPN in macto-
phages/foam cells and smooth muscle cells (Fig. 3D-F).

DISCUSSION

The results from the present study suggest the follow-
ing conclusions regarding the coronary attery calcification
and the exptession of bone matrix protein OPN. Micto-
CT is a novel and powetful in vitro technique that pet-
mits the assessment of the three-dimensional pattern of
vascular structure and provides a useful mean for the
study of the spatial distribution of calcification within the
atherosclerotic plaque. OPN is abundant at sites of cal-
cification in human atherosclerotic plaques and it appeats

Galcified
plaque L

Fig. 2. Photomicrographs of calcified human coronary arteries. A and B (Case 2). Extensive calcium (asterisk) is deposited relatively
uniformly along the non-critical plaque, as shown by maximum intensity projection (A, voxel size 21 mm) and by curved sectional
image (B, L. lumen, P: plaque). C and D (Case 3). In contrast, a large plaque with near-total luminal occlusion shows the
neovascularization within vessel wall (arrow) and plaque itself and a rim of microfocal mineralization by micro-CT (bar=2.0 mm).
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Fig. 3. Advanced atherosclerotic coronary section (A, Case 3, X40) shows that severe calcified and total occluded lesion is
associated with macrophages and cholesterol crystals. Osteopontin is expressed along the calcification front (B, Case 3, x100).
Comparing with calcified lesion, non-calcified atherosclerotic lesions reveal little osteopontin immunoreactivity in intimal smooth
muscle cells (C, Case 4, x100). Osteopontin is cytoplasmic in macrophages/foam cells (arrow) and vascular smooth cells (small

arrow) in the intima and neointima (D-F, Case 1 and 3, X400 and X1,000).

to be found predominantly in lesion macrophages/foam
cells but also in vascular smooth muscle cells. As shown
in the present study, OPN might have a regulatoty role
in the vascular calcification by remodeling of extracellular
matrix. Non-calcified plaques intetvening calcified coro-
nary segments had abundant vasa vasorum within plaque
itself, which might induce plaque tupture-hemorrhage
with increasing cardiovascular events.

Occlusive cotonaty artery disease (CAD) is a major
cause of death (38). It is well known that atherosclerosis
begins eatly in life and typically progresses silently until
the clinical symptoms occur late in the disease (39). Eatly
detection of asymptomatic cotonary atherosclerosis has
been hindered by the lack of sensitive and specific diag-
nostic tests (40, 41). The vast majotity of significant cot-
onary stenosis are calcified (4, 42), and a high degree of
cotrelation exists between severity of CAD and calcifica-
tion of the vessel wall (43-47). Atherosclerotic calcifica-
tion is an organized, regulated process similar to bone
formation that occuts only when other factors of ather-
osclerosis are also present. Although the process of cal-
cification is not completely undetstood (48), calcified

lesions found in coronary atteties have been considered
for many yeats to be the matkers of advanced athetroscle-
rotic disease (42). Howevet, several studies (2, 11, 15)
have tecently shown that intramural calcum deposition
may occur eatly in atherosclerosis, after which it proceeds
together with atherosclerotic plaque development.
Recent studies have shown that pathological calcifi-
cation of blood vessels shares features with normal miner-
alization of bone and cartilage tissue. Matrix vesicles,
postulated nucleation sites for formation of apatite min-
eral in cartilage and bone, have been detected in calcified
atherosclerotic lesions (49). In atheroscletosis, intimal
macrophages and vascular smooth muscle cells express
both collagenous (collagen types I and IV) and noncol-
lagenous bone matrix proteins (matrix gamma catboxy-
glutamate protein, OPN, osteonectin, osteoglycin, and
bone motphogenic protein). The association of intimal
calcification with lipid, apoptotic cells, and matrix ves-
icles suggests that the intimal calcification is an active
rather than a degenerative process (50-55). Although the
biochemical sequence of events leading to atherosclerotic
calcification is not well understood, recent attention has
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been given to a unique class of proteins known as matrix
gamma carboxyglutamate protein (MGP), which has a
very high affinity for hydroxyapatite and is actively in-
volved in the transport of calcium out of vessel wall, and
the localization in advanced atheroscletotic lesions (17,
56-60). When gamma-catboxylation of glutamic acid
residues induces by vitamin K-dependent carboxylase,
osteocalcin binds avidly to bone mineral (1, 18, 21). A
related protein, MGP is also believed to inhibit mineral-
ization (61, 62). Atherosclerotic processes inhibit the syn-
thesis and/or activity of gamma-glutamate carboxylase,
thus pethaps explaining why atherosclerotic atteries con-
tain only about 30% of the catboxylase activity found
in normal arterial segments (63).

OPN was identified as one of the matrix proteins asso-
clated with mineralization in atherosclerotic coronaty
artery specimens and was named for its function as a
bridge between cells and mineral (1-2, 11, 14). Forming
a proteinaceous coating over the solid crystal surface,
OPN mediates the attachment of both osteoblasts and
osteoclasts to bone minetal through interaction of its
highly conserved GRGDS sequence with intetgrins (12-
13, 19). The major soutce of OPN protein in both lesions
is infiltrating mactophages that are intimately associated
with the calcified deposits, although smooth muscle and
endothelial cells also synthesize OPN (1, 2, 11, 14-18).
As the association with smooth muscle cells mediated
vascular calcification, vascular smooth muscle cells ex-
ptessed the smooth muscle-specific gene SM22¢ and
high levels of MGP but little OPN mRNA (23, 25).
These studies suggested that calcifying vascular cells,
which may differentiate into osteoblastic cells via several
factors, and soluble OPN released near sites of vascular
calcification may represent an adaptive mechanism aimed
at preventing vascular calcification (23).

Clinically, supplement of vitamin D and calcum is
widely used for the treatment of osteoporosis, especially
in the eldetly. However, pharmacological doses of 1,25
(OHY:D; may stimulate vascular calcification through a
direct action on vascular smooth muscle cells and the
expression of OPN gene, and also decreased secretion of
parathyroid hormone-related peptide (64). Furthermote,
local production of 1,25(OH),D; by la-hydroxylase ex-
pressed in mactophages accumulated in atherosclerotic
lesions and is also well known to be a potent stimulator
of osteoblastic differentiation of vascular cells (65). As
desctibed above, the synergy between watfarin and vita-
min D is probably explained by hypothesis that watfarin
inhibits the activity of MGP as a calcification inhibitor
(61, 62). It is important to determine whether long-term
supplementation of vitamin D for osteoporosis adjunction
with vitamin K-dependent anticoagulant exacerbates vas-
cular calcification and to further clarify the precise roles
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of noncollagenous bone matrix protein and vascular cal-
cification in otder to prevent vascular calcification and
other events involved.

Priot pathologic, angiographic and intravascular ultra-
sound studies have not specifically examined calcium and
quantitative definition of disease in the identical arterial
segments (26-30). A growing number of investigations
(3, 31, 32) has shown the feasibility of using EBCT scan-
ning for detecting and quantifying the coronary artery
calcification in in vivo studies. While these studies sug-
gest a general relationship between calcification and the
severity of angiographic disease, the interpretation of
these scans in predicting luminal narrowing remains
unclear (28, 66, 67). The lack of good predictive value
between calcification and angiography may be due to
vascular remodeling, where arteries increase in size to
compensate for the atherosclerotic plaque growth and to
preserve the lumen size (68). Micro-CT is a novel and
powetful technique that permits the assessment of the
three-dimensional pattern of vascular structute and pro-
vides a useful means for the study of the spatial dis-
tribution of calcification within the vessel wall, such as
geometric charactetization between calcfic and non-
calcific segments with intimal neovascularization (33-37,
69-71). This information will give the pathophysiologic
understandings of vascular events in the patients with
calcified coronary artery disease (71).

As shown in the ptesent study, OPN might have a
regulatory role in vascular calcification with extracellular
matrix remodeling that may suggest mote plaque com-
plication and vascular events.
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