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Introduction

Breast cancer is a major health concern, wherein approximately 
one in eight women will be diagnosed with the disease in their 
lifetime.1 Unlike the majority of cancers, the prognosis and treat-
ment of breast cancer is significantly informed by biomarkers.2,3 
For example, estrogen receptor alpha (ER)-positive breast can-
cer, which makes up approximately 70% of cases, has a gener-
ally more favorable prognosis and can be successfully treated 
with endocrine therapy.2 In contrast, ER-negative cancers are 
generally more aggressive and treatment options are more lim-
ited.3,4 The use of biomarkers for patient stratification has been 
immensely helpful in directing appropriate therapy to millions 
of women. Unfortunately, significant shortcomings remain in 
the capacity to optimally target therapeutic interventions. For 
example, although suppression of ER activity is the goal for both 
aromatase inhibitors (e.g., letrazole) and selective ER antagonists  
(e.g., tamoxifen), a significant number of ER-positive tumors will 
fail primary endocrine therapy.2 As such, significant effort has 
been directed at defining those pathways which contribute to the 
resistance to endocrine therapy and means to identify and treat 
such patients more effectively.

In breast cancer, inactivation of the RB tumor suppressor gene is believed to occur via multiple mechanisms to facilitate 
tumorigenesis. However, the prognostic and predictive value of RB status in disease-specific clinical outcomes has 
remained uncertain. We investigated RB pathway deregulation in the context of both ER-positive and ER-negative 
disease using combined microarray datasets encompassing over 900 breast cancer patient samples. Disease-specific 
characteristics of RB pathway deregulation were investigated in this dataset by evaluating correlation among pathway 
genes as well as differential expression across patient tumor populations defined by ER status. Survival analysis among 
these breast cancer samples demonstrates that the RB-loss signature is associated with poor disease outcome within 
several independent cohorts. Within the ER-negative subpopulation, the RB-loss signature is associated with improved 
response to chemotherapy and longer relapse-free survival. Additionally, while individual genes in the RB target signature 
closely reproduce its prognostic value, they also serve to predict and monitor response to therapeutic compounds, such 
as the cytostatic agent PD-0332991. These results indicate that the RB-loss signature expression is associated with poor 
outcome in breast cancer, but predicts improved response to chemotherapy based on data in ER-negative populations. 
While the RB-loss signature, as a whole, demonstrates prognostic and predictive utility, a small subset of markers could 
be sufficient to stratify patients based on RB function and inform the selection of appropriate therapeutic regimens.
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Extensive analyses have demonstrated that a multitude of 
oncogenic lesions observed in breast cancer can contribute to the 
bypass of endocrine therapy in ER-positive disease.2 For example, 
deregulation of ERBB2, EGFR, PTEN/AKT and MAPK/ERK 
pathways can all lead to the bypass of endocrine therapy in pre-
clinical models.5-8 Correspondingly, such lesions in mitogenic sig-
naling are associated with poor disease outcome when analyzed 
directly in clinical specimens. Importantly, mitogenic signaling 
pathways generally coalesce to impact the cell cycle machinery, 
and thus influence both the proliferative state of tumors and the 
cytostatic impact of endocrine therapy.2 Specifically, such path-
ways have been shown to converge on the retinoblastoma tumor 
suppressor (RB) and related proteins that regulate the G

1
-S cell 

cycle transition.
The retinoblastoma tumor suppressor (RB) was first defined 

based on biallelic inactivation in retinoblastoma, but is inacti-
vated in a host of solid adult cancers by multiple distinct mech-
anisms.9,10 In normal quiescent tissues, RB is active and can 
directly mediate the repression of a well-defined program of genes 
that are regulated by the E2F-family of transcription factors.9,11 
Mitogenic or oncogenic signaling molecules impinge on RB 
by inducing the expression of D-type cyclins and consequently 
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majority of RB-loss signature genes in the human datasets are 
positively correlated. This finding indicates that the RB-loss sig-
nature as defined in simple model systems is largely maintained 
in the context of human tumor specimens. Third, these analyses 
revealed that the RB-loss signature expression in tumor samples 
is elevated relative to normal controls. However, there exists sig-
nificant heterogeneity in both ER-positive and ER-negative dis-
ease, wherein a fraction of tumor samples exhibit levels consistent 
with normal tissue. Combined, these findings provided substan-
tial opportunity to define those molecular factors and clinical 
outcomes that are specifically associated with deregulation of the 
RB-gene expression program.

Initially, we utilized gene expression data to determine how 
the RB target signature related to the expression level of primary 
members of the RB-pathway (e.g., RB1, CCND1 and CDKN2A), 
which would be expected to directly contribute to pathological 
deregulation of gene expression in breast cancer. Correlation 
between these pathway members was initially compared in sim-
plified subsets of all normal breast samples and all tumor samples 
(Fig. 1A and B). In this context, moderate correlation between 
the RB-signature and the RB1 and CDKN2A genes was observed 
in both healthy and tumor samples, whereas moderate correlation 
was seen with CCND1 in healthy samples but not in tumor sam-
ples. To determine if this paradoxical association was a manifesta-
tion of the heterogeneity in breast cancer specimens, we analyzed 
these relationships in ER-positive and ER-negative breast cancer 
subsets (Fig. 1C–H). Results indicate that CCND1 transcript, 
but not CDKN2A, is modestly correlated with the RB-signature 
in ER-positive disease (Fig. 1C). Differential expression analyses 
revealed that in ER-positive breast cancer, CCND1 levels were 
generally higher than in ER-negative disease (Fig. 1E), but the 
opposite is seen for CDKN2A (Fig. 1F). The levels of RB transcript 
generally changed little between the tumors (Fig. 1G), although 
in ER-positive disease RB transcript actually correlated with an 
elevated RB-loss signature. This finding is generally consistent 
with the concept that RB is only infrequently lost in ER-positive 
breast cancer, and that the transcript is positively regulated with 
deregulation of E2F activity.24 In contrast, in ER-negative can-
cers there was no correlation between CCND1 or RB1 transcripts 
with the RB-loss signature, rather elevated CDKN2A transcript 
correlated with elevated RB-loss signature (Fig. 1D). This find-
ing suggests that ER-negative tumors harbor genetic lesions that 
enable the deregulation of RB-mediated transcription in the 
presence of high CDKN2A expression. Such a finding is consis-
tent with histological assessment, wherein RB-negative tumors 
exhibit elevated p16ink4a expression.17

To determine if the association between core RB pathway 
transcripts and distinct forms of breast cancer were representative 

increasing CDK activity.12,13 These kinase complexes phos-
phorylate the RB protein, and thereby relieve RB-mediated 
transcriptional repression.14 As a consequence, the expression 
of genes involved in DNA-replication, mitosis and cytokinesis 
are induced.15 Thus, RB plays a critical role in coordinating the 
expression of genes that are required for cell cycle progression and 
cellular proliferation.

In breast cancer, the RB-pathway is believed to be inactivated 
via several mutually exclusive mechanisms. Foremost, overexpres-
sion or amplification of the cyclin D1 gene (CCND1) is observed 
in as many as 50% of breast cancers, wherein it is believed to drive 
aberrant phosphorylation/inactivation of RB protein.16 Similarly, 
inactivation of the CDK-inhibitor p16ink4a (CDKN2A) contrib-
utes to the deregulation of RB phosphorylation and is silenced in 
a fraction of breast cancer cases.17-19 Lastly, loss of heterozygosity 
at the RB gene (RB1) locus has been defined in 20–30% of breast 
cancer and histological loss of RB protein has been documented 
with varying frequency.10,20 In spite of these analyses, studies have 
yet to generate a consistent portrait of the impact of RB-pathway 
dysregulation in breast cancer.

Results

To define the impact of RB-pathway dysregulation in breast can-
cer, the behavior and impact of the gene expression program coor-
dinated by RB was investigated in a large and diverse cohort of 
breast cancer cases (Sup. Table 1). The RB-signature consists of 
159 genes (Sup. Table 2) that were identified in common among 
at least two of the following three model systems: upregulated by 
RB deletion in fibroblastic models,15 repressed by the activation 
of RB,21 or upregulated with acute RB deletion in the murine liver 
(Bourgo et al. in preparation). This gene expression program is 
highly consistent with E2F-regulated gene sets, including factors 
involved in DNA replication, mitosis and cytokinesis.

To analyze the regulation and impact of this gene expression 
program in the context of breast cancer, a cohort of 2,254 breast 
cancer cases was compiled from public microarray databases. Of 
these, 1,740 were identified as ER-positive and 514 were identi-
fied as ER-negative. Relapse-free survival data was available for 
936 unique samples, of which 790 were identified as ER-positive 
and 146 were identified as ER-negative. Analyses of the RB-loss 
signature among these samples produced three important find-
ings. First, ER-negative tumors generally exhibited the highest 
expression values within the RB-loss signature (Sup. Fig. 1). 
These findings suggest that the most profound disruption of RB 
functions is occurring in ER-negative disease, which is consis-
tent with studies demonstrating that histological RB loss is con-
siderably more prevalent in ER-negative tumors.19,22,23 Second, a 

Figure 1 (See opposite page). Relative expression of the RB target signature and correlated genes in normal and tumor samples. Correlation 
between genes in the RB/CCND1 pathway and the RB-loss signature magnitude are shown along side their expression level heat maps in (A) normal 
breast, (B) all tumor samples and subsets for (C) ER-positive and (D) ER-negative samples. Boxplots show the (E–H) relative transcript expression levels 
of RB target signature and RB/CCND1 pathway genes. (I) ER-positive and ER-negative human breast cancer cell lysates were subjected to immunoblot-
ting with the indicated antibodies for RB pathway members. (J) AQUA immunohistochemical co-staining of tumor specimens for indicated proteins. 
Cytokeratin (green) was used to detect epithelial cells. Dapi (blue) staining was utilized to detect all nuclei in the section. Target proteins are stained 
in red. (K–M) relative protein levels of the RB target signature and RB/CCND1 pathway genes for healthy breast, all tumor samples and tumor samples 
stratified by ER status.
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sets of genes. In spite of this finding, the average gene expression 
signatures were virtually identical across normal breast tissue and 
breast cancer cases irrespective of ER-status (Fig. 2B–E). Thus, 
although the specific genes are largely disparate and the proxi-
mal mechanism of cell cycle deregulation is most likely distinct 
in ER-positive and ER-negative breast cancers, there is extensive 
commonality in proliferative programs engaged.

To determine the pathogenic impact of RB, the association 
of the RB-loss signature with disease outcome was evaluated. 
Across our entire cohort of tumor specimens, deregulation of the 
RB pathway evident in high RB-loss signature expression was 
associated with poor disease prognosis (Fig. 3A). Analyses of 
ER-positive versus ER-negative cases revealed a strikingly discor-
dant impact of RB-pathway deregulation. In ER-positive disease 
there was a highly significant association between high RB-loss 
signature expression and poor disease outcome (Fig. 3B), while 
in ER-negative disease the opposite trend was evident (Fig. 3C 
and D). These findings demonstrate that RB-pathway deregula-
tion is not universally associated with poor disease outcome, and 
is potentially modified within disease sub-types.

Given the apparent differences in RB-pathway behavior in 
ER-positive versus ER-negative disease, these disparities could be 
reflective of distinct treatment regimens used among these sub-
populations. Among the ER-positive patients, the relationship 
between RB-loss signature regulation and response to surgery 
alone or surgery with adjuvant tamoxifen therapy was evalu-
ated. Among ER-positive patients treated with surgery in the 
absence of adjuvant therapy, the RB-loss signature was prognos-
tic of unfavorable disease outcome (Fig. 4A). This finding points 
towards greater metastatic potential in tumors with RB loss, and 
is supported by evidence that clinical tumor samples exhibiting 

of altered protein expression, the protein levels of RB, cyclin D1 
and p16ink4a were initially evaluated in cell culture model systems 
(Fig. 1I). These data revealed that high levels of p16ink4a were asso-
ciated with undetectable levels of RB protein. Protein analysis was 
also performed on an independent tumor collection comprising 
120 human breast cancer samples. Specifically, fluorescence-based 
AQUA immunostaining was employed to quantitatively determine 
the levels of Ki67, Cyclin D1, p16ink4a and RB protein in breast 
cancer specimens. AQUA immunohistochemical staining was 
reviewed for representative tumor cases (Fig. 1J) and protein levels 
were compared among normal breast, all tumors and ER-positive 
and ER-negative subgroups (Fig. 1K–M). These data revealed that 
the relationships observed at the RNA level were, in fact, recapitu-
lated by alterations in protein expression in clinical samples.

Functional enrichment analysis was used to identify biological 
functions that are coregulated with RB target genes by evaluating 
sets of genes that strongly correlated either positively or negatively 
with the RB-loss signature (Sup. Tables 3 and 4). Biological pro-
cesses that were negatively correlated with the RB-loss signature 
included cell communication and signal transduction. Terms 
associated with positively correlated genes revealed proliferation 
as a dominant theme, including the GO biological processes for 
cell division and DNA replication. In addition to the RB-loss 
signature, there are a number of gene signatures that are associ-
ated with proliferation and poor prognosis in cancer. These gene 
sets that have been employed in previous breast cancer studies 
include the “proliferation signature” and “genomic grade index.” 
Interestingly, although each set is highly enriched for cell cycle 
regulated genes, only 32 genes are in common between the three 
gene lists (Fig. 2A). This finding indicates that distinct experi-
mental approaches define functionally similar yet largely unique 

Figure 2. Correlation between the RB target signature and signatures representing cell proliferation and histological tumor grade. (A) A Venn diagram 
representing overlap between the RB target signature, the proliferation signature and GGI signature. (B–E) The expression of RB-loss, proliferation and 
GGI signatures is highly correlated.
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ER-negative chemotherapy treatment populations do not include 
the low RB expression signature group due to an insufficient num-
ber of samples with known chemotherapy status for this group 
(which include only three recurrence events). The survival curves 
with respect to chemotherapy in ER-negative disease are therefore 
limited to samples with high RB-loss signature. In general, high 
RB-loss signature expression among ER-negative samples appears 
to have a better outcome than high RB-loss signature expression 
in the ER-positive samples (Fig. 5A). However, once patients 
receiving chemotherapy are removed from the comparison, the 
ER-negative patients with high RB-loss signature expression 
have a 50% survival rate at five years, similar to the ER-positive 
population (Fig. 5B). Additionally, there is little apparent dif-
ference between the survival profiles for low versus high RB-loss 
signature expression in the ER-negative patients receiving no 
chemotherapy (Fig. 5B). While the number of ER-negative cases 

overexpression of the RB-signature in ER-positive cases were 
significantly associated with distant metastasis events (p = 8.6 
x 10-4). Analyses of ER-positive patients treated with tamoxifen 
revealed that the high RB-loss signature expression among these 
cases was associated with poor response to therapy, while patients 
with low RB-loss signature expression generally had good prog-
nosis if treated with tamoxifen (Fig. 4B). Among several indepen-
dent patient cohorts, survival analysis of the surgery-only patient 
groups and groups receiving adjuvant tamoxifen therapy demon-
strate prognosis that is inversely associated with the RB-loss sig-
nature magnitude (Sup. Fig. 2). These findings indicate that RB 
function is a general indicator of high-risk aggressive ER-positive 
breast cancer with a propensity for post-surgical recurrence.

The impact of high RB-loss signature in ER-negative cases 
was subsequently explored among patients with known chemo-
therapy treatment status. Survival analyses performed among 

Figure 3. Relapse-free survival in subpopulations defined by RB-loss signature expression. Survival curves are shown for low, intermediate and high 
RB-loss signature magnitude for (A) all tumor samples, (B) the ER-positive subset and (C) the ER-negative subset. A comparison of ER-positive and ER-
negative survival curves is shown in (D), using cut offs established in the ER-negative population.
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was effective at growth suppression there was a significant 
attenuation of gene products associated with RB-signature. For 
example, EZH2, Thymidylate Synthetase and Topo IIα were all 
suppressed in the context of PD-0332991 in cell lines retaining 
functional RB (Fig. 6B). Thus, not only could the steady state 
levels of such markers be important for predicting therapeu-
tic response, but could be employed as bio-monitors for thera-
peutic response. The potential of these individual genes in the 
RB-signature to predict disease outcomes was also evaluated in 
microarray dataset (Fig. 6C). Interestingly, the expression pro-
files for EZH2, TYMS and TOP2A are effective at predicting 
disease outcome. Additionally, several prototypical genes such as 
MKI67, CCNB1, TOP2A, BIRC5 and FOXM1 demonstrated sig-
nificant prognostic value among ER-positive samples, and were 
statistically significant across multiple independent patient popu-
lations (Sup. Figs. 3 and 4). Thus, a small subset of genes can 
provide highly significant predictive power as surrogates for RB/
E2F pathway deregulation in ER-positive breast cancers.

Discussion

The RB pathway is frequently disrupted in cancer, where it is 
believed to play an inherent role in disease progression.20 However, 
the predictive and prognostic significance of RB function in rela-
tion to breast cancer management has remained obscure. Here we 
demonstrate that there is intrinsic heterogeneity in RB-pathway 
regulation in breast cancer, and this heterogeneity is both associ-
ated with significant molecular aberrations and overall alterations 
in disease pathogenesis.

Prior studies have interrogated lesions in the RB-pathway by 
histological analyses. These studies have given rise to highly dis-
cordant data regarding the frequency of RB alterations in breast 
cancer and the relative impact on disease outcome. Here we 
took advantage of gene expression profiling approaches to inves-
tigate the down-stream influence of RB-pathway deregulation. 

with known chemotherapy treatment is limited and provides low 
power in this dataset, there is a notable improvement in relapse-
free survival when high RB expression patients are treated with 
the chemotherapy regimen of doxorubicin and cyclophospha-
mide (AC) (Fig. 5C). To expand on this finding, we evaluated 
the response to chemotherapy for high versus low RB-loss signa-
ture in additional samples using pathological response as measure 
of disease outcome. In a patient group receiving doxorubicin in 
combination with fluorouracil and cyclophosphamide (FAC), 
the percentage of patients with pathological complete response 
(pCR) was found to increase in the high RB-loss signature group 
for both ER-positive and ER-negative disease (Fig. 5D and E). In 
ER-negative patients, a majority of those with high RB-loss sig-
nature expression experienced pCR, whereas progressive disease 
(PD) occurred in a majority of the low RB-loss signature expres-
sion group. This result supports the concept that high RB-loss 
signature expression is associated with better outcome in response 
to chemotherapy. In an ER-negative patient cohort receiving 
cisplatin treatment, however, the response in the high RB-loss 
signature group was heterogeneous while all patients in the low 
RB-loss signature group achieved pCR (Fig. 5F). Consistency 
between the findings from the AC and FAC-treated cohorts indi-
cate that while the high degree of proliferation associated with 
RB loss is associated with poor outcome in the ER-positive cases, 
the high RB-loss signature in ER-negative cases is associated with 
response to a subset of chemotherapy regimens.

Since the findings herein suggest that regulation of gene 
expression via the RB pathway could be important for cytostatic 
therapeutic responses, the efficacy of the CDK4/6 inhibitor 
PD-0332991 was evaluated in the context of breast cancer cell 
lines. This agent acts through the RB-pathway and has been pos-
tulated to have efficacy in the context of breast cancer specimens. 
In keeping with these findings, PD-0332991 treatment had a 
profound cytostatic effect on MCF-7 and MD-MB-231 cells, but 
not BT-549 (Fig. 6A). In those instances, wherein PD-0332991 

Figure 4. Relapse-free survival in the ER-positive population, stratified by treatment status and RB-loss signature. (A) In ER-positive samples with sur-
gery alone, poor outcome is associated with high RB-loss signature [51% 10 yr relapse-free survival (rfs)] versus low RB-loss signature (95% 10 yr rfs). (B) 
In ER-positive patients treated with Tamoxifen, outcome in high RB-loss signature samples is improved (66% 10 yr rfs) relative to low RB-loss signature 
samples (92% 10 yr rfs).
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are highly correlated in breast cancer cases irrespective of dis-
ease sub-type. However, the magnitude of RB target gene 
deregulation varies among breast cancer sub-types. Specifically, 

Model systems of RB loss or E2F deregulation have given rise 
to a highly reproducible spectrum of genes that are downstream 
from RB.10,15,21,25-27 The expression profiles of these target genes 

Figure 5. Disease outcomes related to the RB-loss signature and treatment regimens in the ER-negative population. (A) High RB-loss signature ex-
pression is associated with different outcomes in ER-positive vs. ER-negative. (B) High RB-loss signature expression is associated with similar survival 
profiles between ER-positive and untreated ER-negative samples. (C) Chemotherapy is associated with better outcome in ER-negative samples with 
high RB-loss signature expression. (D) The proportion of pCR and PD in high versus low RB-loss signature groups of ER-positive patients receiving FAC 
therapy. (E) The proportion of pCR and PD in high versus low RB-loss signature groups of ER-negative patients receiving FAC therapy. (F) The propor-
tion of pCR, pPR and PD in high versus low RB-loss signature groups of ER-negative patients receiving cisplatin therapy.
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categories of cell communication and signal transduction. While 
it remains unclear what drives the functional inactivation of RB 
in the disease state, the associated consequences of increased pro-
liferation and decreased signal transduction are hallmarks of can-
cer progression.

In general, it has been hypothesized that deregulation of RB 
pathway function would be associated with fast growing tumors 
that would have an intrinsically poor prognosis. Surprisingly, this 
is not uniformly the case. In ER-negative disease there was little 
impact of RB-functional status on disease outcome in patients 
receiving no chemotherapy. In ER-negative patients receiving 
chemotherapy, however, the loss of RB-functional status was 
associated with longer relapse-free survival, consistent with pre-
vious findings that RB loss can increase sensitivity to conven-
tional chemotherapy that is widely utilized in the treatment of 
ER-negative disease.10,20,22,23,30-32 In ER-positive disease disruption 
of the RB-pathway was associated with a poor disease outcome 
in all patients. This was reflective of a particularly poor prog-
nosis in the context of solely surgical intervention. Presumably, 
such an effect on survival could be due to the presence of micro-
metastasis that escape surgical interventions. In keeping with 
this concept, RB-deficiency was associated with a significantly 
increased risk for metastasis in the patient samples analyzed. 
Since most ER-positive disease is now treated with endocrine 
therapy, we evaluated how RB function associated with durable 
therapeutic response. These findings indicated that RB-pathway 

in ER-negative breast cancer cases, the maximal deregulation 
of RB target gene expression is observed. This finding suggests 
that direct aberrations in RB function are occurring in this form 
of breast cancer. Interestingly, in ER-negative disease there is an 
upregulation of CDKN2A that correlates with the RB-signature. 
CDKN2A/p16ink4a is upregulated in concert with complete inac-
tivation of the RB gene as occurs either through gene deletion 
or silencing with viral oncoproteins.17,28,29 Thus, these com-
bined findings suggest that in ER-negative disease the mecha-
nisms underlying compromised RB function are analogous to 
RB gene deletion. Surprisingly, while LOH and histological 
loss of RB are frequently observed in ER-negative disease,22,30 
there was only a marginal decrease of RB transcript expression 
in these tumors. This finding suggests that either RB dysregu-
lation is due to mutations or to post-translational mechanisms 
that are not interrogated in our data sets. In contrast with the 
observations in ER-negative disease, the molecular underpin-
nings of RB-deregulation in ER-positive disease are more con-
sistent with the aberrant mitogenic signaling. Specifically, there 
is a positive relationship with cyclin D1, but not CDKN2A. 
Correspondingly, histological loss of RB is relatively uncommon 
in ER-positive disease.22 By investigating positively correlated/
anti-correlated genes we sought to define pathways that could 
be driving RB-inactivation in ER-positive disease. Interestingly, 
the only positively correlating genes were additional proliferation 
associated genes, whilst the negatively correlated genes were in 

Figure 6. Candidate markers for targeted therapy. (A) Human breast cancer cell lines were treated with 500 nM PD-0332991 or DMSO control for  
24 hours. Percentage BrdU positive (of total) is shown. (B) Human breast cancer cell lines were treated with 500 nM PD-0332991 or DMSO control for  
24 hours. Cell lysates were subjected to immunoblot analysis for indicated proteins. (C) Relapse-free survival curves for breast cancer populations 
stratified by individual gene transcript levels.
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symbol. Multiple probesets that mapped to a common gene were 
consolidated by averaging their rows together and scaling by the 
probeset with the largest standard deviation.

Predicting ER status. Clinical ER status was available from 
68% of the samples used for survival analysis in our combined 
microarray dataset. We evaluated transcript expression for the ER 
gene (ESR1) as a surrogate for clinical ER status in order to maxi-
mize the number of usable samples in our dataset. High correla-
tion between ESR1 transcript levels and clinical status observed 
through immunohistochemical staining has been demonstrated 
previously.39 We observed that the ESR1 transcript levels had a 
bimodal expression in the breast cancer datasets and fit a two-
component normal mixture to the data and identified a high/low 
expression cutoff at the RMA expression value of 7.5. Samples 
were classified into ER-positive and ER-negative based on this 
expression cutoff, and predicted ER status was verified against the 
available clinical data, which demonstrated 91% accuracy. The 
predicted ER status based on ESR1 transcript expression thresh-
old was used to represent ER status for the complete dataset.

The RB-loss signature. The RB-loss signature was defined 
using genes that appeared in any two out of the following three 
gene sets identified in model systems: genes upreregulated by 
RB deletion in fibrobablastic models,15 genes repressed by the 
activation of RB,21 or genes upregulated with acute RB deletion 
in the murine liver (Bourgo et al. in preparation). The result-
ing RB-loss signature comprising 159 genes was mapped to the 
HGU133 platform by gene symbol, with 138 genes represented 
among the 22,768 common probesets on the array. The average 
RB-loss signature magnitude was computed by median centering 
expression profiles for each gene and then averaging over all 138 
genes in the signature.

Clustering and correlation analysis. The Pearson correla-
tion between the average RB-loss signature and each gene on the 
HGU133 array was computed across all breast tissue samples and 
within healthy and tumor subsets. The Pearson correlation coef-
ficient, R, was used to define four gene sets: genes with R ≥ 0.75 
in tumor, genes with R ≤ -0.5 in tumor, genes with R ≥ 0.75 in 
healthy breast and genes with R ≤ -0.5 in healthy breast. Each of 
these gene sets was evaluated for overrepresented Gene Ontology 
(GO)40 biological processes using the online Database for 
Annotation, Visualization and Integrated Discovery (DAVID).41

Cell culture and PD-0332991 treatment. All cell lines used 
in this study were obtained from the American Type Culture 
Collection (ATCC, Manassas, VA). MCF10A cells were cultured 
in DMEM/F12 media with 5% horse serum, supplemented with 
20 ng/mL EGF, 0.5 mg/mL hydrocortisone, 10 μg/mL insulin, 
100 U/mL penicillin/streptomycin and 2 mM L-glutamine. 
BT-549 cells were propagated in RPMI 1640 containing 10% 
fetal bovine serum, 100 U/mL penicillin/streptomycin and  
2 mM L-glutamine. All other breast cancer cells lines were main-
tained in DMEM containing 10% fetal bovine serum, 100 U/mL  
penicillin/streptomycin and 2 mM L-glutamine. All cells were 
cultured at 37°C and 5% CO

2
. All cells were counted for experi-

mental seeding using trypan blue exclusion. For all treatment 
experiments, cells were seeded at a density of 5 x 105 into 10 cm 
dishes and allowed to adhere overnight. PD-0332991 treatments 

dysregulation is strongly associated with poor response to 
tamoxifen therapy, though patients with high RB-loss expres-
sion appear to benefit from tamoxifen therapy with 66% ten-year 
survival compared to 52% ten-year survival with surgery alone 
(p = 0.064). Even so, those tumors harboring such dysregulation 
could benefit from more aggressive therapeutic interventions. Of 
course, such rational decision making would be dependent on 
the ability to prospectively monitor RB-pathway deregulation. 
Specifically, in cases with high RB-loss signature where func-
tional RB protein is retained (as might be expected for ER-positive 
breast cancers), compounds such as PD-0332991 may prove to be 
an effective intervention. In breast cancer cell lines treated with 
PD-0332991, reduced expression of RB targets is associated with 
the compound’s cytostatic effect, demonstrating that the RB-loss 
signature may serve as a marker for therapeutic response.33 These 
results demonstrate that while the RB-loss signature expression 
is associated with poor outcome in breast cancer, it denotes a 
favorable response to chemotherapy and may provide readout of 
the response to cytostatic treatment. An important caveat for the 
RB-loss signature to be applied in a clinical setting is that a small 
subset of RB target genes would provide a more practical clini-
cal assay. As shown here, single genes harbored relatively strong 
predictive power which suggests that utilizing a relatively small 
panel of markers could be sufficient to stratify patients based on 
the RB-pathway and inform therapeutic utilization.

Together, these findings underscore the importance of the 
RB-pathway in the pathogenesis of breast cancer and as a criti-
cal determinant of therapeutic response. Furthermore, the strong 
predictive power of single gene profiles in the RB-loss signature 
suggests that predictive tests based on a small panel of RB pathway 
genes could be of high-significance in directing the care of breast 
cancer with both current and developing therapeutic strategies.

Materials and Methods

Microarray dataset selection and normalization. Breast can-
cer microarray datasets with clinical disease-free survival data 
were downloaded from the Gene Expression Omnibus (GEO, 
www.ncbi.nlm.nih.gov/geo/)34 and ArrayExpress (www.ebi.
ac.uk/microarray-as/aer/).35 A complete list of publically avail-
able microarray datasets and samples used for analysis is pro-
vided in Supplemental Table 1. Microarray sample CEL 
files from the Affymetrix U133A, U133Av2, U133plus2 and 
U133plus2HT GeneChips normalized in Matlab version 2009b 
(The MathWorks, Natick, MA) using the procedures applied in36 
and were merged into a combined dataset using the 22,768 probe 
sets in common among all of these platforms. The normalization 
process used is a modified Robust Multichip Average (RMA), 
which applies background adjustment to each CEL file and then 
applies quantile normalization and summarization using pre-
computed quantiles and row effects, respectively, from a large 
training set.37,38 Annotations for the 22,768 probesets in the 
normalized dataset were obtained from the HGU133A annota-
tions file version na29, dated July 6th, 2009, downloaded from 
the Affymetrix website (www.affymetrix.com/). 13,004 unique 
genes were identified among the 22,768 probesets, based on gene 
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been described using the Genomic Grade Index (GGI) and also 
demonstrate prognostic significance.47 Overlap among the three 
signatures was identified based on gene symbol. Pearson’s cor-
relation coefficient was computed for the proliferation and GGI 
expression signatures versus the RB-loss signature within healthy 
breast samples and all tumor samples in addition to ER-positive 
and ER-negative subsets. To further establish the proliferative 
capacity of the RB-loss signature, the proportion of metastasis 
events among samples having high RB-loss signature expression 
was tested for significance using Pearson’s chi-square test.

Survival analysis. Survival analysis was performed using 
Kaplan-Meier curves for relapse-free survival among all tumor 
samples, as well as ER-positive and ER-negative subsets. X-Tile 
software48 was used to define optimal cut points for low, inter-
mediate and high expression based on ten year relapse-free sur-
vival within each subset. Log-rank test p-values were generated 
based on ten year survival data. Comparisons between Kaplan-
Meier survival curves for ER-positive and ER-negative disease 
were performed by comparing subpopulations based on the low 
and high cut points defined in the ER-negative analysis, where 
samples below 0.25 expression cut point were classified as low 
and samples above the expression cut point of 0.73 were classi-
fied as high. Survival analysis was also performed on subpopula-
tions with known treatment regimens. Within the ER-positive 
samples, Kaplan-Meier curves were used to evaluate response 
to endocrine (tamoxifen) therapy in subpopulations with high 
RB-loss signature expression versus subpopulations with low 
RB-loss signature expression. Within the ER-negative samples, 
Kaplan-Meier curves were used to evaluate survival dependent 
on the RB-loss signature in subpopulations with and with-
out chemotherapy. Recurrence intervals were available for only 
one ER-negative cohort (ArrayExpress accession E-TABM-158) 
among the unified microarray datasets. Due to this limited num-
ber of ER-negative samples with available treatment data, the low 
RB-loss signature expression population was expanded to include 
samples below the 0.73 expression cut point, while samples above 
that cut point were still considered as high RB-loss signature 
expression. Survival analysis among these subpopulations was 
used to evaluate the outcome in untreated patients and response 
to chemotherapy dependent on the RB-loss signature. To provide 
additional strength to the analysis of the RB-loss signature in 
ER-negative samples, two independent cohort datasets, identi-
fied with accession numbers MDA133,49 and GSE18864,50 that 
included pathological response for ER-negative patients treated 
with chemotherapy were analyzed separately. These two datasets 
were used to evaluate the degree of pathological response in high 
RB-loss versus low RB-loss signature patients. Within each of 
these datasets, the average RB-loss signature was used to group 
patients into the lower quartile, interquartile and upper quartile 
ranges. The proportion of patients showing pathological com-
plete response (pCR), pathological partial response (pPR) and 
recurrent or progressive disease (PD) was compared between 
the upper quartile and lower quartile expression groups. The 
p values for the observed differences between upper and lower 
quartile groups were computed using a Pearson’s chi-square  
test.

were performed at 500 nM concentrations, reconstituted in 
DMSO, for 24 hours. Equal volumes of DMSO were used as 
treatment controls.

BrdU incorporation and FLOW cytometric analysis. Cells 
were pulse-labeled with BrdU for one-hour prior to harvest. Cells 
were harvested and fixed in 70% EtOH overnight at 4°C. Cells 
were prepared for flow cytometry as previously described.42 BrdU 
data is represented as a percentage of total population. All experi-
ments were performed in triplicate from a minimum of two inde-
pendent experiments.

Immunoblot analysis. Cell lysates were resolved by SDS-
PAGE and transferred to Immobilon-P membranes. Antibodies 
were used to detect the following proteins: Lamin B (Santa 
Cruz; M-20), Cyclin A (Santa Cruz; H-432), p16ink4a (Santa 
Cruz; H-156), Beta-tubulin (Santa Cruz; D-10), topoisomer-
ase II-alpha (Santa Cruz; S-18), RB (Becton-Dickson; G3-245), 
Cyclin D1 (Neomarkers; Ab-3); EZH2 (Invitrogen; 49–1,043), 
Thymidylate Synthase (Abcam; TS-106).

RB protein expression. A separate 180-sample breast can-
cer dataset was used to evaluate the expression of RB pathway 
proteins in breast cancer versus healthy tissue. This 180-sample 
dataset contains 40 healthy, 20 DCIS, 100 IDC and 20 meta-
static samples.43 Immunohistochemical labels were used to stain 
for proteins including ER (Dako; 1D5), p16 (mtm laborato-
ries; E6H4TM), cyclin-D1a (NeoMarkers; Ab-3), Ki67 (Dako; 
MIB1) and RB (Labvision; 1F8). The AQUA/PM2000 platform 
(HistoRx, New Haven, CT) was used to image the fluorescence-
based immunostaining and generate intensity scores for each 
target protein. Missing values were imputed using the average 
value from the ten nearest-neighboring samples. Within the IDC 
and metastatic samples, ER AQUA scores were used to define 
ER-positive samples above the 30th percentile and ER-negative 
samples below the 30th percentile, based on the estimation that 
30% of breast cancer cases are ER-negative.

Comparisons between the RB-loss signature and function-
ally related genes. The RB-loss signature was evaluated against 
key members of the RB/p16/cyclin-D1 pathway, including p16 
(CDKN2A), cyclin-D1 (CCND1), Ki67 (MKI67) and RB (RB1). 
The Pearson correlation coefficient for each of these genes rela-
tive to the RB-loss signature was computed within normal tissue, 
tumor tissue and ER-positive and negative subsets. ANOVA was 
used to test the RB-loss signature and these key pathway genes 
for differential expression in comparisons of tumor versus nor-
mal and for ER-negative versus ER-positive breast cancers. An 
additional dataset of 180 breast cancer samples was used to com-
pare key members of the RB RB/p16/cyclin-D1 pathway at the 
protein level. ANOVA was used to test for differential expression 
of cyclin-D1, p16, Ki67 and RB proteins, based on log

2
 AQUA 

scores, in comparisons of tumor versus normal and ER-negative 
versus ER-positive breast cancer.

The RB-loss signature was compared against gene signatures 
representative of tumor proliferation and differentiation to iden-
tify similarities among their gene composition and expression 
profiles. A set of proliferation genes was compiled from multiple 
studies30,44-46 and includes genes of prognostic significance. Genes 
representative of tumor differentiation and histological grade have 



www.landesbioscience.com	 Cell Cycle	 4163

Note

Supplementary materials can be found at:
www.landesbioscience.com/supplement/ErtelCC9-20-Sup.pdf
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