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A wave-vector-frequency-domain method is presented to describe one-directional forward or back-

ward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-

domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for

the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more

suitable for numerical implementation, is used. An error study is carried out to test the efficiency of

the model by comparing the results with the Fubini solution. It is shown that the error grows as the

propagation distance and step-size increase. However, for the specific case tested, even at a step size

as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dim-

ensional steered transducer problem is explored to verify the nonlinear acoustic field directional inde-

pendence of the model. A three-dimensional single-element transducer problem is solved to verify the

forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-

projection behavior is examined. The sound field over a plane in an absorptive medium is backward

projected to the source and compared with the initial field, where good agreement is observed.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3504705]
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I. INTRODUCTION

Planar-projection methods calculate an acoustic field at

arbitrary points in space or time, given the field distribution

at some initial plane.1,2 Such methods use a transfer func-

tion, or a series of transfer functions, that operate in Fourier

space. These approaches are computationally advantageous

compared to space–time methods,3 as they represent the

wave equation in the form of an ordinary differential equa-

tion (ODE) as opposed to its partial differential (PDE) form

in space–time. If the medium is linear and homogeneous, the

ODE will have a known solution,1 and a projection to any

new plane requires only a single operation. In heterogeneous

media, an exact solution cannot be described. However, the

reduction of the wave equation from a PDE to an ODE still

represents a significant numeric simplification as well as rel-

atively straightforward implementation.4 For instance, planar

projection has been applied to multi-layer media and is able

to account for refraction and single reflections.5

While most planar approaches are linear, nonlinear tech-

niques have been investigated and utilized. Christopher

and Parker5 performed projections by a modified angular

spectrum approach (ASA) using applications of Burgers equa-

tion in the time domain. Subsequently, a variety of Burgers

equation-modified ASA simulations have been reported.4,6

ASA solutions of the Westervelt equation7,8 have also been

studied.9 While commonly used modeling approaches apply

the KZK (Khokhlov–Zabolotskaya–Kuznetsov) equation10,11

to solve for the nonlinear sound field, the Westervelt equation

can potentially be more accurate in determining the field,

since it does not rely on a parabolic approximation.12,13 In

general, ASA-based approaches solving the Westervelt equa-

tion can be computationally appealing especially when para-

bolic approximation breaks, and the frequency and angular

spectrums are narrow. For example, in weakly nonlinear con-

tinuous wave cases, frequency space can be reduced to as little

as the fundamental frequency and the second harmonic, and

they are projected separately.14,15 Additionally, pre-selection

of a reduced region of k-space can allow a specific portion

of a propagating field—typically the forward propagating

wave—to be studied.

While most available forward nonlinear wave approaches

assume the main nonlinear distortion in the direction normal

to the source plane,5,6 only a few works in the literature have

proposed methods that are “omni-directional” in terms of the

nonlinear acoustic field.16 This ability to consider nonlinear

distortion in a direction other than normal to the source plane

is especially advantageous when a strongly focused or steered

transducer is to be modeled. The approach introduced in this
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paper embraces this ability as it essentially avoids using a

plane-wave solution. More importantly, it will be demon-

strated that in the frequency-domain representation of the

Westervelt equation, convolutions in the vector space emerge.

This is essential, as it automatically considers the interaction

of all waves propagating in every direction, which is a novel

point in this paper. This may prove particularly useful for

strongly focused sources or sources with sharp edges, i.e.,

with broadband spatial spectrum.

The frequency-domain formulation also allows straight-

forward treatment of general dispersion cases,17,18 which can

have complicated representation in the space–time do-

main.19–21 Variations in the time-domain approach center on

efficient methods to model the solutions.22–25 On the other

hand, the general case of anomalous dispersion can be

handled with relative ease in wave-vector space.26 A rele-

vant medical example of anomalous dispersion is trabecular

bone. In contrast to most biologic tissues, phase velocity in

trabecular bone tends to decrease with frequency.27 The

present work indicates how the nonlinear frequency-domain

wave equation can be further transformed into the wave-

vector-frequency domain, where it has a known solution. It

will be shown that this solution can be used for planar pro-

jection and is valid under arbitrary dispersion conditions.

The present study also considers yet another potential

advantage of the method: The ability to propagate a nonlin-

ear signal backward toward the source in absorptive media.

In this manner a field measured away from a transducer

could be used to predict field behavior closer to the radiator.

Alternatively, a desired field could be synthetically gener-

ated and then projected backward to provide information on

the requirement of the radiational and dimensional require-

ments of the source. The process requires the time history of

a sound field over a given spatial plane as well the acoustic

properties of the propagation medium. Successfully imple-

mented, this approach could provide data to predict the

acoustic field, including harmonic and low frequency por-

tions of the signal at any point in space.

To demonstrate the approach, we develop a general

algorithm, which is then used to model the specific case of

the Westervelt equation. This algorithm is first verified by

comparing results with analytic solutions for a plane wave.

Meanwhile, a method for more efficient implementation is

considered by maximizing the algorithm step size. We test

whether propagation steps in the order of the fundamental

wavelength are possible, as opposed to the 10–20 steps per

wavelength required in finite-difference time-domain or

finite element methods.3 The optimal step size for a given

problem is found by a study that measures error as a function

of step size and propagation distance. A two-dimensional

(2-D) steered transducer is then studied to demonstrate the

directional independence of this approach when calculating

the nonlinear acoustic field. Furthermore, a three-dimen-

sional (3-D) focused transducer problem is studied for verifi-

cation of the forward model. The present method is

compared with an existing nonlinear angular spectrum wave

propagation code28 for the case of a Gaussian-modulated si-

nusoidal pulse. Finally, the accuracy of the algorithm is

tested by implementing the backward model in absorptive

media, and it is shown that the backward projected field

agrees well with the initial signal.

II. THEORY

Field calculations will be performed using a propagation

algorithm that operates in both the temporal and spatial fre-

quency domains. Although a number of temporal frequency-

domain nonlinear algorithms have been reported,17,18 the

present approach is unique in that it also solves the nonlinear

term in the spatial frequency domain. In this way, the inter-

action of waves in all directions (all wave vectors) are

included automatically in the solution, not only in one direc-

tion of propagation kz as in previously used KZK or one-

direction Westervelt equation models,5,6 which is expected

to be advantageous for strongly focused transducers or sour-

ces with broadband spatial spectra.

Although the frequency-domain equation is more gen-

eral, it is instructive to start with the time-domain Westervelt

equation in a homogeneous medium for the purpose of com-

parison. The equation assumes a thermo-viscous medium

and is given by

r2pðr; tÞ � 1

c2
0

@2

@t2
pðr; tÞ þ d

c4
0

@3

@t3
pðr; tÞ

þ b
q0c4

0

@2

@t2
p2ðr; tÞ ¼ 0; (1)

where p is the sound pressure, c0 is the sound speed, d is the

sound diffusivity, b is the nonlinearity coefficient, and q0 is

the ambient density. We note that the solution to the Wester-

velt equation describes an approximation of quasi-plane

waves, and is valid for directional sound beams once the prop-

agation distance becomes much larger than a wavelength.11

By Fourier solution of the temporal dimension, as well

as the Cartesian x- and y-dimensions, Eq. (1) is transformed

from a PDE to an ODE,29

@2

@z2
Pðkx; ky; z;xÞ þ K2Pðkx; ky; z;xÞ

� bx2

q0c4
0

Pðkx; ky; z;xÞ � Pðkx; ky; z;xÞ ¼ 0; (2)

where

Pðkx;ky; z;xÞ ¼
ð1
�1

ð1
�1

ð1
�1

pðr; tÞe�iðkxxþkyy�xtÞdxdydt;

(3)

Pðkx; ky; z;xÞ � Pðkx; ky; z;xÞ

¼
ð1
�1

ð1
�1

ð1
�1

Pðk0x; k0y; z;x0Þ

� Pðkx � k0x; ky � k0y; z;x� x0Þdk0xdk0ydx0; (4)

K2 ¼ x2

c2
0

� k2
x � k2

y � i
dx3

c4
0

; (5)
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and x is the angular frequency, kx and ky are the wave num-

bers, and the convolution in Eq. (2) is with respect to kx, ky,

and x. K is defined as K ¼ þ
ffiffiffiffiffiffiffiffiffiffi
ðK2Þ

p
for x < 0 and

K ¼ �
ffiffiffiffiffiffiffiffiffiffi
ðK2Þ

p
for x > 0. As noted above, although Eq. (2)

was derived from the Westervelt equation, in fact it is much

more general, since the dispersion relation, i.e., Eq. (5), can

readily be replaced by an arbitrary relation. The 3-D auto-con-

volution resulting from the nonlinear term in Eq. (1) serves

the role of temporal frequency mixing, transferring energy

both into and out of the higher components of the frequency

spectrum. It also transfers energy between spatial frequencies,

so that the interaction between wave propagation in different

directions is accounted. Although calculation of this convolu-

tion is the most computationally demanding part of the pres-

ent algorithm, it nevertheless could be made relatively

efficient using fast Fourier transforms in combination with an

optimization strategy.16 Presently, however, only the fast Fou-

rier transforms are used to accelerate the convolution.

The solution of Eq. (2) can be derived by using the one-

dimensional (1-D) Green’s function30 and is written as (deri-

vations can be found in Appendix A)

PðzÞ¼Pð0ÞeiKzþMe�iKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þ

�MeiKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þdz0

þMeiKz

2iK

ðz

0

e�iKz0F Pðz0Þð Þdz0 �
ðz

0

eiKz0F Pðz0Þð Þdz0
� �

;

(6)

where

M ¼ bx2

q0c4
0

and F Pðz0Þð Þ ¼ Pðkx; ky; z
0;xÞ � Pðkx; ky; z

0;xÞ:

This solution is implicit because of the unknown function

F inside the integral. It is also not suitable for numerical imple-

mentation because of the integral from z to þ1. However, it

will be shown below that, at least for a weakly nonlinear case,

Me�iKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þ �MeiKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þdz0
����

�MeiKz

2iK

ðz

0

eiKz0F Pðz0Þð Þdz0
����

� MeiKz

2iK

ðz

0

e�iKz0F Pðz0Þð Þdz0
����

����; (7)

so that Eq. (6) can be simplified to

PðzÞ ¼ Pð0ÞeiKz þMeiKz

2iK

ðz

0

e�iKz0F Pðz0Þð Þdz0: (8)

This approximated solution, i.e., Eq. (8), will be used

throughout the paper. Numerical results presented below

will demonstrate that this approximation is valid even in

strongly nonlinear cases.

To further simplify the problem, validation is performed

for a continuous wave, which can more readily be verified

against other methods. However, this procedure generalizes to

transient cases. Moreover, though only results at the second

harmonic are shown here, similar equations can be derived for

any harmonic. A third harmonic example is shown in Appen-

dix B. The advantage of considering a weakly nonlinear case

is that it allows P(z0) at the fundamental frequency to be sub-

stituted by its linear representation P(0)exp(iKz0), while intro-

ducing only negligible errors. To proceed, it is assumed that

the attenuation is larger than zero [im(K) > 0, so the integra-

tion to þ1 converges] but is sufficiently small so that it can

be neglected in the derivation below for simplification. For

the second harmonics, the left hand side of Eq. (7) reads

M2e�iK2z

2iK2

ðþ1
z

eiK2z0F Pðz0Þð Þdz0 �M2eiK2z

2iK2

ðþ1
z

eiK2z0F Pðz0Þð Þdz0

�M2eiK2z

2iK2

ðz

0

eiK2z0F Pðz0Þð Þdz0

�M2ðe�iK2z�eiK2zÞ
2iK2

ð
Pð0; ~K0ÞPð0;K0 � ~K0Þ

�
ðþ1

z

eiðKaþKbþK2Þz0dz0d ~K0

�M2eiK2z

2iK2

ð
Pð0; ~K0ÞPð0;K0 � ~K0Þ

ðz

0

eiðKaþKbþK2Þz0dz0d ~K0

¼M2eiK2z

2K2

ð
eiðKaþKb�K2Þz�1

KaþKbþK2

Pð0; ~K0ÞPð0;K0 � ~K0Þd ~K0; (9)

where

Ka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

c0

� �2

� ~K0
�� ��2

s
; Kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

c0

� �2

� K0 � ~K0
�� ��2

s
;

K2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c0

� �2

� K0j j2
s

; M2 ¼
bx2

2

q0c4
0

; (10)

and x1 and x2 are the negative angular frequencies for the

fundamental and second harmonics, respectively. Similarly,

the right hand side of Eq. (7) yields

M2eiK2z

2iK2

ðz

0

e�iK2z0F Pðz0Þð Þdz0
� �

��M2eiK2z

2K2

ð
eiðKaþKb�K2Þz�1

ðKaþKb�K2Þ
Pð0; ~K0ÞPð0;K0 � ~K0Þd ~K0:

(11)

The total solution for the second harmonic [Eq. (9) þ Eq.

(11)] is

PðzÞ ¼ 4bk2
1

q0c2
0

ð
eiðKaþKbÞz� eiK2z

K2
2 � ðKaþKbÞ2

Pð0; ~K0ÞPð0;K0 � ~K0Þd ~K0;

(12)

where k1 ¼ x1=c0:
It is noted that this solution differs from the solution in

Ref. 14 by a factor of 1
2
. This is because presently both
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negative and positive frequencies are used, so the energy is

split into half to both frequencies, and this factor of 1
2

produces a factor of 1
4

inside the integral of Eq. (12), i.e.,

Pð0; ~K0ÞPð0;K0 � ~K0Þ: In addition, the above section only

discusses the case where the angular frequency is x2. For the

total solution, which includes the amplitude at �x2, the

solution has to be multiplied by 2. This results in a final cor-

rection factor of 1
4
� 2 ¼ 1

2
, and Eq. (12) recovers the solu-

tion in Ref. 14.

Considering a 1-D case, it is more straightforward to

see that Eq. (7) holds, because Eq. (9) reduces to 0 while

Eq. (11) does not. This 1-D case is in fact a good approxima-

tion to a highly directional 3-D case. For a more general 3-D

problem, the validity of Eq. (7) is not as obvious, but it can

be recognized that the difference between Eqs. (9) and (11)

comes primarily from (Ka þ Kb þ K2) and (Ka þ Kb � K2)

in the denominators. For cases tested in this study, the for-

mer is typically much larger than the latter in directions

where the wave energy is significant, making Eq. (7) a good

approximation. That is, since the energy in the direction of

K2 � 0, i.e., parallel to the source plane, is negligible, the

error introduce by this approximation is reasonably small.

However, the validity of Eq. (7) becomes questionable when

the energy along a direction nearly parallel to the source

plane is not weak, e.g., a point source.

A 2-D example was first implemented to verify that

under a more general situation Eq. (7) still holds. Details of

the algorithm will be discussed in Sec. III. A strongly

focused transducer with a size of 20 mm and a focus length

of 5 mm was considered. The fundamental frequency was

1 MHz. The signal source amplitude was 100 kPa. Attenua-

tion was assumed negligible. Sound speed in the medium

was 1500 m/s, the density was 1000 kg/m3, and the non-

linearity coefficient was 3.5. Figure 1(a) shows the results

along the axis for Eqs. (11) and (12), where the whole solu-

tion denotes Eq. (12) [the sum of Eqs. (11) and (9)] and the

partial solution denotes Eq. (11). Figure 1(b) shows the

results along the lateral dimension at a distance of 1.9 cm

from the source. Equation (8) was also implemented and can

be found in Fig. 1 shown as the present solution. Good

agreement found between the whole solution and the partial

solution indicates the validity of Eq. (7). Closer scrutiniza-

tion reveals that the error decreases exponentially with dis-

tance z. These comparisons also verify the present method

for a strongly focused transducer which might be incorrectly

analyzed by a method that does not consider the interaction

between waves in different angles and presumes nonlinear

distortion mainly in the z axis.

For more strongly nonlinear cases, the situation be-

comes considerably more complex. It is expected by consid-

ering higher order approximation using the perturbation

method, explicit format can be obtained for the function F,

and Eq. (7) can be evaluated. A systematic study is not pur-

sued here but is expected to be reported in a future paper.

Nevertheless, a simple example will be demonstrated in this

paper.

A moderately nonlinear 1-D problem is now considered,

where the continuous wave is again used for excitation. For

a 1-D case, attenuation must be taken into account as it

restricts the harmonic components reasonably small so that

the moderate nonlinearity assumption is valid. For the funda-

mental frequency, the right hand side of Eq. (7) becomes

MeiKz

2iK

ðz

0

e�iKz0F Pðz0Þð Þdz0

¼ eik1z 2M1

2ik1

ðz

0

e�ik1z0Pðz0;�x1ÞPðz0;x2Þdz0; (13)

where

M1 ¼
bx2

1

q0c4
0

:

Substituting the weak nonlinear approximation for the

second harmonics, which can be easily obtained following

the above procedure,

Pðz0;x2Þ ¼
4bk2

1

q0c2
0

e2ik0
1
z0 � eik0

2
z0

k
02
2 � 4k

02
1

P2ð0;x1Þ; (14)

FIG. 1. The sound pressure amplitude of the second harmonic (a) along the

axis for different solutions and (b) along the lateral dimension for different

solutions.
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where

k01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

c0

� �2

� i
dx3

1

c4
0

s
; k02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c0

� �2

� i
dx3

2

c4
0

s
;

into Eq. (13) will only result in a higher order error [linear

projection for the fundamental frequency is also used to rep-

resent P(z0,�x1)] and leads to

4bk2
1M1

q0c2
0k01

ðk01 � k001Þeiðk0
2
�k1Þz � ðk02 � k01 � k001Þeið2k0

1
�k00

1
Þz � ð2k01 � k02Þeik0

1
z

ðk01 � k001Þðk02 � k01 � k001Þðk
02
2 � 4k

02
1 Þ

P3ð0;x1Þ; (15)

where k
0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1=c0ð Þ2þiðdx3

1=c4
0Þ

q
:

On the other hand, in the same fashion, the left hand side of Eq. (7) reduces to

Me�iKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þdz0 �MeiKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þdz0 �MeiKz

2iK

ðz

0

eiKz0F Pðz0Þð Þdz0

¼ � 4bk2
1M1

q0c2
0k01

ð3k01 � k001Þeiðk0
2
�k00

1
Þz � ðk02 þ k01 � k001Þeið2k0

1
�k00

1
Þz � ð2k01 � k02Þeik0

1
z

ð3k01 � k001Þðk02 þ k01 � k001Þðk
02
2 � 4k

02
1 Þ

P3ð0;x1Þ: (16)

Although not presented here, straightforward numerical verification shows that the absolute value of Eq. (15) rapidly

becomes much larger than Eq. (16) as z increases, again confirming the validity of Eq. (7).

The total solution for the fundamental frequency can be then written as

Pð0;x1Þeik0
1
z þ 4bk2

1M1

q0c2
0k01

ðk01 � k001Þeiðk0
2
�k00

1
Þz � ðk02 � k01 � k001Þeið2k0

1
�k00

1
Þz � ð2k01 � k02Þeik0

1
z

ðk01 � k001Þðk02 � k01 � k001Þðk
02
2 � 4k

02
1 Þ

P3ð0;x1Þ; (17)

which has been compared with the numerical solution of the

Burgers equation11 with an error less than 1% for a moder-

ately nonlinear case, considering a plane wave generated by a

mono-frequency source with a frequency of 5 MHz and peak

amplitude of 6.4 MPa, propagating in a medium with a speed

of sound 1500 m/s, nonlinearity coefficient 3.5, diffusivity

8 � 10�4. This represents a moderately nonlinear problem,

where the shock-formation distance is slightly smaller than

the absorption length (2c0
3/dx2). Comparing Eq. (17) with its

weakly nonlinear approximation Pð0;x1Þeik0
1
z; the maximum

error has been found to be around þ10% (“þ” indicates the

weakly nonlinear approximation overestimates the value, vice
versa for “�”) across z ¼ 0 to 1. This error actually con-

verges at a certain distance, as the second harmonic again

becomes much smaller than the fundamental once again mak-

ing the weakly nonlinear approximation valid. Substituting

Eq. (17) into Eq. (6) leads to the solution at the second har-

monic for a moderately nonlinear problem. Numerically eval-

uating the right hand side of Eq. (7) reveals that the weakly

nonlinear approximation gives a maximum error of about

þ23% while also þ23% for the left hand side. These two

errors also grow at a similar rate and eventually converge at a

certain distance, indicating that the error of evaluating their

quotient will be smaller than þ23%. In this specific case, the

maximum error is �8%.

Next, a 3-D moderately nonlinear problem is consid-

ered. Although the final solution will be different, it is

assumed that the error of evaluating the quotient on the left

and right hand sides of Eq. (7) using the weakly nonlinear

approximation is also in the order of 610%. It has already

been shown that Eq. (7) is valid using the weakly nonlinear

approximation, therefore, the left hand side of Eq. (7) should

still be much smaller than the right hand side even consider-

ing the error of this magnitude.

Considering a potential physical explanation of why

Me�iKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þ �MeiKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þdz0
����

����
� MeiKz

2iK

ðz

0

e�iKz0F Pðz0Þð Þdz0
����

����; (18)

it is noted that the integrals represent contributions from the

inhomogeneous term in Eq. (2), which can also be viewed as

contributions from virtual sources.11 Since only the forward

wave propagation is considered, the virtual sources exist be-

tween 0 and z. Therefore, the integrals from z to þ1 should

be zero, or at least negligible. The integral

����MeiKz

2iK

ðz

0

eiKz0F Pðz0Þð Þdz0
����

is also very small compared with
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����MeiKz

2iK

ðz

0

e�iKz0F Pðz0Þð Þdz0
����:

For all the simulations carried out in this study, keeping the

integral

MeiKz

2iK

ðz

0

eiKz0F Pðz0Þð Þdz0

in the solution introduces negligible differences. This

becomes more clear considering a 1-D propagation problem:

Suppose a wave is projected in a lossless medium for a small

distance dz, so that the linear projection is still valid, we have

ðdz

0

eiKz0F Pðz0Þð Þdz0

�
ðdz

0

eiKz0
ð

Pðx� x0; 0ÞeiðK�K0Þz0Pðx0; 0ÞeiK0z0dx0dz0

¼ eiKdzdz
sinðKdzÞ

Kdz

ð
Pðx� x0; 0ÞPðx0; 0Þdx0; (19)

where K0 ¼ x0/c.

In a similar fashion, we have

ðdz

0

e�iKz0F Pðz0Þð Þdz0 ¼ dz

ð
Pðx� x0; 0ÞPðx0; 0Þdx0:

(20)

The absolute values of Eqs. (19) and (20) differ by a factor

of sin(Kdz)/Kdz. Although the decay rate is slower than ex-

ponential, this sinc function decays from 1 to an infinitesimal

number with increasing Kdz. For very small distances z,

jsin(Kdz)/Kdzj is close to 1; however, previous derivations

suggest that

Me�iKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þ �MeiKz

2iK

ðþ1
z

eiKz0FðPðz0ÞÞ dz0

and

�MeiKz

2iK

ðz

0

eiKz0F Pðz0Þð Þdz0

approximately cancel for small z, again resulting in a small

value.

After finding the approximated solution in Eq. (8), the

transform of the pressure can then be solved numerically in

increments of Dz, to form the field over space. For example,

we have31

ðDz

0

eiKzF PðzÞð Þdz�F Pð0Þð Þ�Dz;

ð2Dz

0

eiKzF PðzÞð Þdz�F Pð0Þð Þ�Dzþ eiKDzF PðDzÞð Þ�Dz

:::: (21)

The integral is approximated by the Riemann sum. Although

this approximation has a relatively large truncation error

compared with higher order integrals, it is very robust and is

expected to work well with a large step size for weakly non-

linear problems. This approximation, which evaluates inte-

grals by the left-hand point rule for Riemann sums, in fact

greatly resembles a first-order version of the impulse method

for stiff ODEs.32 In both our methods and the impulse

method, the propagator of the linear part of the differential

equation is used to evolve both the nonlinear term and the

initial condition over a large step. This algorithm can be con-

trasted with the first-order forward Euler, first-order sym-

plectic Euler (leapfrog), second-order velocity verlet, and

fourth-order Runge–Kutta explicit scheme for this type of

ODE,31 where the step size usually has to be extremely small

(in the order of 1/K) for stable integrations.

Since the implicit analytic solution for the frequency-

domain Westervelt equation is available [i.e., Eq. (8)], it is

now possible to also backward propagate waves by simply

replacing z by �z in Eq. (8),2

Pðkx; ky;�z;xÞ ¼ Pðkx; ky; 0;xÞe�iKz

� bx2

2iq0c4
0K

e�iKz

ðz

0

eiKz0F Pð�z0Þð Þdz0;

(22)

as Eq. (2) is invariant with respect to the spatial dimension

[i.e., if P(kx, ky, z, x) is a solution to Eq. (2), P(kx, ky,�z, x)

is also a solution]. In contrast, it is noted that the frequency

dimension is not invariant, which is a sufficient condition to

indicate that the equation is not time invariant. We note that

the acoustic time-reversal method is essentially based on the

fact that the lossless acoustic wave equation is time invari-

ant,33–35 i.e., if p(r, t) is a solution to the wave equation, then

p(r,�t) is also a solution. This fundamental property does

not hold in lossy media, resulting mathematically from the

fact that the attenuation term is not an even-order derivative.

On the other hand, in Eq. (2), space reversal is valid in the

dimension z, even though time reversal does not hold. Appli-

cation of the time-reversal method and the present back-

ward-projection method are quite different, however, as time

reversal is generally realized by temporal phase conjugation

of a received signal followed by retransmission, whereas the

present method sends the signal back to the source numeri-

cally using Eq. (22). It is possible, however, to numerically

implement time reversal in a lossy medium by reversing the

absorption coefficient.36 In this case, the present algorithm

still has advantage over the time-reversal method in terms of

sound field reconstruction in a nonlinear medium. Basically,

the backward-projection algorithm has all the advantages of

the forward model. For example, the backward projection

can be easily implemented for arbitrary dispersions. The step

size can be relatively large for weakly nonlinear problems.

The backward projection also considers interaction of waves

in different directions, which is not possible in most time-do-

main methods. An additional advantage of working in the

frequency domain becomes apparent for cases involving a

J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011 Jing et al.: Nonlinear wave propagation 37



highly absorptive medium: While numerical noise tends

to build up exponentially during backward projection, the

algorithm can be easily combined with a frequency-domain

filter to eliminate or reduce such noise, whereas in the time-

domain, filtering is typically more complex and time-

consuming.

III. NUMERICAL SIMULATIONS

A. Algorithm

An algorithm was developed to perform the discrete

approximation of Eq. (8), using the approximation given by

Eq. (21). An initial dataset p(x, y, z0, t) was provided, repre-

senting the signal time history over the x-y plane at z ¼ z0

in front of the source. Values were expressed as a grid of

nx � ny � nt points, representing the two spatial planes and

time, respectively. The values of nx and ny were set to be odd

numbers so that the center point is in the middle. The dis-

crete spatial coordinates were

x ¼ m� dx;m ¼ �nx=2þ 1=2; :::; nx=2� 1=2;

y ¼ n� dy; n ¼ �ny=2þ 1=2; :::; ny=2� 1=2: (23)

The numbers nx, ny, and nt were determined on a case-by-

case basis. Since a Fourier summation results in a periodic

function, spectral methods inherently have a wrap-around

problem (an outgoing wave enters one boundary and exits

from the opposite boundary).37 Therefore, nx and ny must be

sufficiently large especially in the far field, where more of

the wave spreads into boundary. To minimize this effect, sol-

utions near the boundary could be tapered to zero, but was

not done in this study. In the present study, the maximum nx

and ny used was 121. The number nt was chosen to be

slightly larger than T/dt, where T is the time length of the ex-

citation signal.

Temporal resolution was set by the Nyquist rate

Dt ¼ 1
2fmax

, where the maximum frequency was set at the

highest harmonic to be tracked plus the bandwidth of the ini-

tial signal. Spatial resolution requirements were set by the

spatial cutoff, giving Dx ¼ Dy ¼ c0

2fmax
. However, spatial re-

solution can be decreased without losing too much accuracy

under special cases where pressure is concentrated in direc-

tions along the axis of propagation and the nonlinearity

involved is not very strong. In this study, a spatial resolution

of Dx ¼ Dy ¼ c0

2fc
¼ k=2 was used for the 3-D problem,

where fc is the fundamental frequency and k is the wave-

length at the fundamental frequency.

A potential disadvantage of the frequency-domain

approach is the need to calculate the convolution integral at

each iteration of the algorithm, thus offsetting some of the

computational advantage of the method. This operation

becomes more time intensive as the relevant bandwidth

increases. To reduce processing time, selective sampling of

k-space can be incorporated. If the signal is propagating

approximately along the spatial z axis, the filter generally

will be a low pass filter. In this study, the selective sampling

of k-space is, however, not applied, as the computational

times involved for all the case tested are reasonably short.

Nevertheless, a low pass filter applied the constraint that spa-

tial frequencies must be <x2=c2
0; i.e., evanescent waves

were neglected. In addition, this filter served the purpose of

eliminating numeric explosion from exponentially increasing

round-off error during back-projection.

B. Verification

1. Error study

This section concentrates on error introduced as a

function of the projection step size Dz, as formulated by

Eq. (21).

One motivation for developing the method was its

potential ability to take relatively large steps between the

projection planes, Dz. It was expected that for weakly non-

linear cases, large steps relative to a wavelength could be

used without producing large error in the calculation. To

test the tradeoffs between step size and accuracy, we per-

formed a series of simulations to look at error as a function

of propagation distance and step size. We incrementally

changed the propagation distance measured in the shock-

formation distance r (0.88r, 0.44r, … , 0.0138r) and dz
(r/256, r/128, … , r/16) independently, while dt was kept

with 32 harmonics being considered. The temporal resolu-

tion was chosen to be relatively high because the under-

sampling of time-domain should be eliminated as it might

influence the accuracy of the solution when changing the

step-size dz.

Since an analytic solution for plane nonlinear wave

propagation is available, it was chosen for this error study.

To propagate a plane wave, the sound pressure distribution

on the whole initial surface was uniform, and a sinusoidal

burst of ten circles was used as the initial signal. For the ex-

citation, the frequency was 5 MHz and the initial pressure

amplitude was 5 MPa. For the medium, the nonlinearity

coefficient was 3.5 and the speed of sound was 1500 m/s.

The Fubini solution11 to the Burgers equation was used,

which is valid up to the shock-formation distance r in a loss-

less media.

To quantify the error, we calculated the time-domain L2

error of the present model versus the corresponding exact

analytic solution (Fubini solution). The time-domain L2

error is defined as37

e ¼ pnumðtÞ � pexactðtÞk k
pexactðtÞk k ; (24)

where pðtÞk k is the L2 norm of the time-domain signal p(t).
Examination of error as a function of the control varia-

bles, as plotted in Fig. 2(a), indicated that error increased as

the propagation distance increased. This trend was expected

due to increased nonlinearity of the signal, thus causing an

eventual breakdown in the band-limited assumptions of

the present model. For relatively strong nonlinear cases

(z > 0.4r), the error did not increase significantly as the step

size changed from r/256 to r/128, but the error did increase

significantly when the step size was changed from r/64 to

r/16. Overall, results indicated that, for a weakly nonlinear
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problem, a step size of dz ¼ r/16 (equivalent to k in this spe-

cific case) was still able to provide good accuracy (L2 error

smaller than 0.001) while maintaining computational effi-

ciency [less than 1 s for plane-wave simulation on a personal

laptop: Dual-core 2.00 GHz processors and 3 GB of random

access memory (RAM)], provided that the temporal resolu-

tion was sufficiently fine. Even for a strongly nonlinear case

(z ¼ 0.88r), the error generated by using a step size ¼ r/16

may be considered tolerable relative to the error typically

introduced in experimental measurement. In contrast, the fi-

nite element method,3 which solves the time-domain nonlin-

ear wave equation using a predictor/multi-corrector algorithm

in combination with standard time-stepping procedures,

requires up to 80 elements per wavelength to obtain the

Fubini solution. It is noted that the projection size determined

here is based on plane-wave propagation in homogeneous

media. For accurate results in cases containing diffraction,

the step size must be reduced. However, as long as the regime

is not at, or near, the shock-formation distance, a standard

step size of r/64 is sufficient.

Therefore, the method proposed here has the advantage

that the z-step for calculating the nonlinear term can be

much larger than in the conventional time–space derivative

scheme, where fast changes of the wave profile must be

accounted for, and the z-step must be a small portion of

the shock-formation distance. Here, fast changes are in-

cluded in the phase exponential coefficient, similar to the

KZK or Burgers equation, where they are accounted by oper-

ating in the retarded time variable. That is why in the limit-

ing case of linear propagation the step can be arbitrary.

Lastly, to demonstrate the validity of Eq. (8) near or

beyond the shock distance, an example was considered that

compares the numerical method with the Fay solution to the

Burgers equation,11 which is devised to provide an accurate

solution when the propagation distance is larger than 3r and

the diffusivity is small. In the present study, a distance of

3.3r and diffusivity of 2 � 10�5 was selected. Dz was cho-

sen to be r/512, and the temporal resolution dt was increased

to 1/(256fc) so that 128 harmonics were considered. The

very fine temporal resolution was chosen because shock

wave has a spectrum that converges slowly toward high fre-

quencies and need more harmonics to represent the wave

front. Figure 2(b) shows the comparison, and the agreement

is good. The L2 error is 0.02.

Note that the present frequency-domain model is inher-

ently most practically applicable to non-shockwave prob-

lems where only a limited number of harmonics need to be

considered. Although still valid for cases of stronger nonli-

nearity, the computational advantage is diminished. To bet-

ter apply the present model to shock wave propagation while

maintaining efficiency, a limited-harmonic nonlinear algo-

rithm could be used, e.g., limiting the steepness of the shock-

fronts by artificially increasing the attenuation.5 However,

further development of this technique is beyond the scope of

this work and not further discussed here.

2. Directional independence

To test the directional independence of the nonlinear

field solution, a 2-D steered transducer problem was

explored. A 1 MHz fundamental frequency of continuous

wave signal with amplitude of 1 MPa was used to excite a

15 cm continuous line array. The sound speed was set to

1500 m/s, the density to 1000 kg/m3, and the nonlinearity

coefficient to 3.5. No attenuation was considered. The size

of the transducer was much larger than the fundamental

wavelength, so that the sound field along the center of the

beam was nearly planar within a certain distance. The time

step for the spectral method was set to be 1/(64fc). The spa-

tial step dz and dx were set to 1/8k. Ideally, for different

steering angles (different phase distributions on the trans-

ducer), the field along each beam-path should be identical

for points equidistant from the center of the transducer.

Figure 3 shows the deviation of results at the first three fre-

quencies to their mean values with changing steering angles.

The results were obtained at a distance of 39 mm to the cen-

ter of the source. The steering angle changes from 0� to 70�

(angle with respect to the z axis). A larger angle was not

used due to the large computational domain it requires.

FIG. 2. (a) Curves of errors for the present method showing the L2 error for

forward projection step size and propagation distance measured in shock-

formation distance r. (b) Comparison between the present method and ana-

lytic solution for one-dimensional nonlinear wave propagation at 3.3r.
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The maximum deviation is below 5%, confirming the direc-

tional independence of the current method.

3. Comparison with ASA code

Next, the model was applied to a more complex 3-D

scenario. For comparison, we simulated identical initial

fields in the forward direction both using the present algo-

rithm and an established nonlinear code. For this purpose, an

open code software package designed to simulate ultrasound

wave propagation (Abersim)28 was used. This package was

developed at the Department of Circulation and Medical

Imaging at the Norwegian University of Science and Tech-

nology (NTNU), and deals with the diffraction, nonlinearity,

and attenuation using an operator splitting approach. Similar

to the present algorithm, the diffraction term is solved using

the angular spectrum approach. However, this algorithm

only projects sound in the forward direction. Nonlinearity is

only accounted for a wave traveling parallel to the z axis,

since a plane-wave assumption is made, in the term account-

ing for nonlinearity, the sound pressure p is only a function

of z and t.38 In addition, attenuation in the algorithm is con-

sidered to obey a power law and is realized by a convolution.

In contrast, in the present algorithm, the dependence of

attenuation on frequency is arbitrary, and can be easily

implemented without requiring convolution.

For testing, a 3-D example was addressed. The configu-

ration simulated a concave circular transducer (single ele-

ment) with an aperture radius of 10 mm and a 75 mm focal

distance. The delay time used to create the focus was calcu-

lated by (d�d0)/c0, where d is the distance from a point on

the transducer to the focus and d0 is the distance from the

center of the transducer to the focus. The initial time-domain

signal was Gaussian-shaped. The center frequency was

1 MHz, the fractional bandwidth was 0.3, and the initial

peak pressure was 0.75 MPa. The excitation signal can be

found in Fig. 4(a), its spectrum can also be found in

Fig. 4(b). Figure 4(c) shows the spatial distribution for the

fundamental frequency component along the x axis. It is

noted that the distribution seems uniform as would be

expected, since the time delay only changes the phase not

the magnitude of the pressure. Figure 4(d) shows the spatial

spectrum again for the fundamental frequency (kc ¼ 2pfc/c0).

For the fundamental frequency, kx/kc ranges from �1 to 1,

which represents the full range of possible propagation

directions. Likewise for the sub-harmonic frequency, the

range is expected to be from �2 to 2. It is well known that

the spatial spectrum larger than 1 or smaller than �1 repre-

sents evanescent waves, therefore they will be filtered out in

the current algorithm. For higher harmonics, the range is nar-

rower than from �1 to 1, which does not cover the full

range, but the error introduced is expected to be small

because there is more directivity at higher harmonics.

Human muscle was modeled by setting the sound speed

to 1549.9 m/s, the density to 1060 kg/m3, the nonlinear pa-

rameter to b 3.9, and the attenuation to obey the power law

as a(f ) ¼ a � f b, where a was 0.52 dB/cm and b was 1.1.39

The temporal resolution in Abersim was set to 1/(512fc), as

the Abersim simulation results converge well at this tempo-

ral resolution. Noticeable numerical damping was observed

in Abersim at larger time steps. This was potentially due to

Abersim’s use of the method of characteristics,9,38 which

can cause interpolation error when solving the nonlinear

term. It was previously reported that “good results are

obtained using a temporal grid of 10–15 samples per period

at the highest harmonic frequency that should be accurately

computed.”9 The time step for the present spectral method

was set to be 1/(64fc) at which the result converges. It is

noted that numerical damping has not been observed in the

present model for large time steps. The spatial step, dz, in

the present algorithm was set to 1/4k, while in Abersim a

sub-cycling step given by Dz ¼ c0/2pfc was used. The sound

diffusivity d was calculated through the equation a ¼ dx2/

2c0
3, where a is the attenuation coefficient.11 The dispersion

obeys the Kramers–Kronig relations and is written as21

1

cw
¼ 1

c0

þ a tan
pb

2

� �
xj jb�1� x0j jb�1

� 	
: (25)

Prior to simulating nonlinear media, both the present code

and Abersim were tested for linear cases (b ¼ 0) with and

without attenuation. The two approaches were found to have

excellent agreement. To save space, the linear results are not

presented here.

Time-domain solutions at the focus [Fig. 4(e)] as well as

the frequency-domain solution for the first four harmonics

[Fig. 4(f)] both indicate good agreement between the two

methods. The time-domain L2 error was not estimated

because different temporal resolutions were used.

The total calculation time of the present approach for

this 3-D wave propagation problem is less than 15 min when

implemented using MATLAB, on a XP 64-bit operating system.

The hardware consisted of four dual-core 2.67 GHz Xeon

processors, and 24 GB of RAM. The matrix size of the pres-

sure p is 121 � 121 � 1025. Therefore, the present approach

captures the whole solution of the Westervelt equation in a

computationally efficient manner.

FIG. 3. Deviation of results at the first three frequencies to their mean

values for a steering transducer as a function of the steering angle.
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C. Backward projection

A key advantage of the present approach is the ability to

propagate a nonlinear signal both toward and away from the

source. Thus, a signal could be recorded at a given distance

from the source, and then back-projected to give information

about the signal near a transducer face, assuming the propa-

gating field is contained within the measurement plane, z0.

FIG. 4. (a) Initial pressure in the center of the transducer for the three-dimensional simulation (1025 grid points). (b) Waveform spectrum of the initial pres-

sure in the center of the transducer (32 harmonics). (c) Spatial distribution for the fundamental frequency component along the x axis (121 grid points). (d)

Spatial spectrum for the fundamental frequency. (e) Time-domain comparison between the present method and Abersim at the focus (z ¼ 75 mm) for three-

dimensional nonlinear wave propagation from a single-element circular transducer in muscle tissue. (f) Frequency-domain comparison (first four harmonics).
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As discussed in Sec. II, this property can be contrasted with

time reversal methods, which are violated in the presence of

the absorption term.33 We demonstrate this ability by projec-

ting the forward-propagated signals from a transducer back-

ward to the source location, where they are compared with

the original signal.

Two cases were tested for nonlinear wave propagation

in different acoustic media. In the first case, the forward pro-

jected sound field was obtained from the example in Sec. III

B 3 at the focal plane z ¼ 75 mm, where the simulated acous-

tic medium was human muscle. For the backward projection,

the time step was 1/(64fc) and step-size dz was 1
4

wavelength

at the center frequency. The time history of the obtained sig-

nal along the x axis (y ¼ 0, z ¼ 75 mm) is provided in Fig.

5(a). This signal was backward projected to the z ¼ 0 plane

as shown in Fig. 5(b). The initial signal at z ¼ 0 mm is shown

in Fig. 5(c). The L2 error was 0.09. More detailed compari-

son is shown for a point in the center of the transducer in the

time-domain (Fig. 6). For reference, the linear backward pro-

jection (b ¼ 0) is also implemented and plotted. It can be

seen that in a nonlinear acoustic medium, the linear backward

projection is inaccurate. Consequently, use of such linear

methods to characterize a field in a nonlinear medium can be

expected to lead to erroneous results. Accordingly, the L2

error for the linear backward projection was 0.27, signifi-

cantly larger than the error for nonlinear projection. While a

comprehensive study is not presented here, this error is

expected to increase as nonlinearity increases.

The second scenario considered a dispersion relation

described by the frequency-dependent phase velocity given

as c ¼ 1525 � 2.5 � 10�5 f(Hz). The attenuation was given

as a(f) ¼ 13.3 � f1.09 þ 0.05 (dB/cm). The velocity26 and

attenuation40 were within the range that may be found, for

example, in human cancellous bone. To apply the present

theorem, it is assumed that the ultrasound is nearly normally

incident upon the bone surface, such that only longitudinal

waves are generated, and the Westervelt equation might be a

good approximation.41 The density was assumed to be 1850

kg/m3.27 The nonlinearity coefficient b was 72.42 The for-

ward projected sound field was obtained from a concave

circular transducer with an aperture radius of 10 mm and a

focus distance of 60 mm. The excitation signal was the same

in Fig. 4(a) except that the peak amplitude was reduced

to 0.25 MPa. For both the forward and backward projec-

tions, the time step was 1/(32fc) and step-size dz was 1
4

wavelength.

In comparison with the first case simulating muscle, the

attenuation in the second case was significantly enhanced and

was modeled by a nonlinear power fit. The nonlinear coeffi-

cient was also increased. For these reasons, a specific low

FIG. 5. (a) Three-dimensional forward-projected signal at the focus plane

(z ¼ 75 mm, y ¼ 0 mm). (b) Three-dimensional backward-projected signal

at the source position (z ¼ 0 mm, y ¼ 0 mm). (c) Initial signal at the source

position (z ¼ 0 mm, y ¼ 0 mm). The medium is human muscle.

FIG. 6. Comparison of the nonlinear backward-projected signal, linear

backward-projected signal, and initial signal on the center of the transducer.

The medium is human muscle.
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pass frequency-domain filter was applied to the backward

projection. The need for the filter came from the approxima-

tion that the attenuation obeys the same law for the whole fre-

quency range. This assumption was made to simplify the

numerical simulation. Therefore, in our simulation, the

attenuation was extremely large at a very high frequency.

This introduced an issue for the backward projection, as the

attenuation term amplified the signal exponentially during the

backward projection, and a small numerical noise at a very

high frequency relative to the frequency content of the signal

quickly led toward infinity. The cut-off frequency of a low-

pass filter in such situations, however, is commonly deter-

mined based on the spectral analysis of the relevant sound

field. In this case, spectral analysis showed that the signal

was extremely small after the third harmonic (3 MHz).

Therefore, the cut-off frequency was set at 3 MHz. Once

again, the forward projected field at the focal plane (z ¼ 60

mm) was initially generated. The time history of the obtained

signal along the x axis (y ¼ 0, z ¼ 60 mm) is shown in Fig.

7(a). This signal was backward projected to the z ¼ 0 plane

as shown in Fig. 7(b). The initial signal at z ¼ 0 mm is

shown in Fig. 7(c). The L2 error was 0.1. The linear projec-

tion was again also implemented and the L2 error was 0.37.

A detailed comparison of sound pressure of a point in the

center of the transducer is shown in Fig. 8. Overall, the wave

reconstructions demonstrate the potential of the present

method to accurately backward project a signal in a nonlin-

ear medium.

V. SUMMARY AND CONCLUSION

The present nonlinear wave-vector-frequency-domain

representation of the Westervelt equation has been shown

to yield an implicit analytic solution. Its original form is

not suitable for numerical implementation; therefore, its

approximation was found and numerically solved. In the

approach, diffraction is calculated through the solution to

the homogenous frequency-domain Westervelt equation,

while the nonlinearity is calculated by the particular solu-

tion through a Green’s function. Comparisons between the

present method and other well-established methods, includ-

ing analytic solutions, validate the accuracy and efficiency

of the approach. Moreover, the analytic solution of the pres-

ent method permits projection of acoustic waves from an

initial measurement plane to distances closer to the source.

This backward-projection technique was also verified

numerically.

This study suggests that, similar to its linear counterpart,

measurement of time and spatially resolved pressure across a

single plane could provide data to characterize an entire

FIG. 7. (a) Three-dimensional forward-projected signal at the focus plane

(z ¼ 60 mm, y ¼ 0 mm). (b) Three-dimensional backward-projected signal

at the source position (z ¼ 0 mm, y ¼ 0 mm). (c) Initial signal at the source

position (z ¼ 0 mm, y ¼ 0 mm). The medium is human cancellous bone.

FIG. 8. Comparison of the nonlinear backward-projected signal, linear

backward-projected signal, and initial signal on the center of the transducer.

The medium is human cancellous bone.
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field, including nonlinear induction of both harmonic and

sub-harmonic wave components. A single plane also has the

potential to characterize the radiative behavior of its source.2

This could be particularly useful in the case of high power

transducers, where the source itself commonly radiates

higher harmonics of the fundamental. In this case, the back-

projection could serve to separate source signals from me-

dium-dependent acoustic nonlinear effects.

The present examples are simulated using ideal condi-

tions. It is expected that in the absorptive case, appreciable

signal strength will be required for accurate back projection,

with the precise requisite signal-to-noise ratio as a function

of the desired accuracy. Planar projection is shown to be

valid under arbitrary dispersion conditions for both forward

and backward propagation. This could prove particularly

useful under conditions of anomalous dispersion, and pro-

vides a straightforward and computationally efficient method

for predicting behavior in dispersive media. Although the

current algorithm was limited only to homogeneous situa-

tions, the method is expected to be applicable under more

general conditions.43
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APPENDIX A

This appendix derives the solution to Eq. (2). It is

convenient to move the nonlinear term in Eq. (2) to the

right hand side of the equation, where it may now be

viewed as a “source function” for the equation, albeit one

that is only known over a given initial plane at z0. In this

representation an implicit solution to Eq. (2) may be

expressed in terms of an integral equation using the 1-D

Green’s function30

Gðz; z0Þ ¼ �i

2K
ðeiK z�z0j j � eiK zþz0j jÞ; 0 � z; z0 < 1 (A1)

and the known homogeneous solution.

The general solution can be written as

PðzÞ ¼ AeiKzþBe�iKzþ bx2

2iq0c4
0K

ðz

0

eiKðz�z0Þ � eiKðzþz0Þ
� 	

F Pðz0Þð Þdz0
�

þ
ðþ1

z

e�iKðz�z0Þ � eiKðzþz0Þ
� 	

F Pðz0Þð Þdz0
�

¼ AeiKzþBe�iKzþ bx2

2iq0c4
0K

ðz

0

eiKðz�z0Þ � eiKðzþz0Þ
� 	

F Pðz0Þð Þdz0
�

�
ðz

0

e�iKðz�z0Þ � eiKðzþz0Þ
� 	

F Pðz0Þð Þdz0

þ
ðþ1

0

e�iKðz�z0Þ � eiKðzþz0Þ
� 	

F Pðz0Þð Þdz0
�

¼ AeiKzþBe�iKzþ bx2

2iq0c4
0K

ðz

0

eiKðz�z0Þ � eiKðz�z0Þ
� 	

F Pðz0Þð Þdz0
�

þ
ðþ1

0

e�iKðz�z0Þ � eiKðzþz0Þ
� 	

F Pðz0Þð Þdz0
�

¼ AeiKzþBe�iKz� bx2

2iq0c4
0K

e�iKz

ðz

0

eiKz0F Pðz0Þð Þdz0 � eiKz

ðz

0

e�iKz0F Pðz0Þð Þdz0
� �

þ bx2ðe�iKz� eiKzÞ
2iq0c4

0K

ðþ1
0

eiKz0F Pðz0Þð Þdz0;

(A2)

where

F Pðz0Þð Þ ¼ Pðkx; ky; z
0;xÞ � Pðkx; ky; z

0;xÞ: (A3)

Since
Ðþ1

0
eiKz0F Pðz0Þð Þdz0 is a constant with respect to z, it

merges into A and B, which leads to

PðzÞ ¼ AeiKz þ Be�iKz � bx2

2iq0c4
0K

� e�iKz

ðz

0

eiKz0F Pðz0Þð Þdz0
�

�eiKz

ðz

0

e�iKz0F Pðz0Þð Þdz0
�
: (A4)

The task now is to determine A and B, which need boundary

conditions. Applying the initial condition at the source plane

leads to A ¼ P(0) � B. Imposing the well-known Sommer-

feld radiation condition

lim
z!1

dP

dz
� iKP

� �
¼ 0 (A5)

yields

B ¼ M

2iK

ðþ1
0

eiKz0F Pðz0Þð Þdz0; (A6)

where M ¼ bx2=q0c4
0:

The final solution can be now written as

PðzÞ ¼ Pð0ÞeiKz þMe�iKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þ

�MeiKz

2iK

ðþ1
z

eiKz0F Pðz0Þð Þdz0

þMeiKz

2iK

ðz

0

e�iKz0F Pðz0Þð Þdz0 �
ðz

0

eiKz0F Pðz0Þð Þdz0
� �

:

(A7)
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APPENDIX B

This appendix discusses the third harmonics generated by a

continuous wave source under the weakly nonlinear approxima-

tion. For the third harmonics, the right hand side of Eq. (7) reads

M3eiK2z

2iK3

ðz

0

e�iK3z0F Pðz0Þð Þdz0

¼ 2M3eiK2z

2iK3

ðz

0

ð
e�iK3z0Px1

ðz;K0 � ~K0ÞPx2
ðz; ~K0Þdz0d ~K0;

(B1)

where

M3 ¼
bx2

3

q0c4
0

;

Px1
and Px2

are pressures at x1 and x2, respectively.

Substituting Eq. (12) into Eq. (B1), we have
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2iK3

ðz

0

ð
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iK3

4bk2
1

q0c2
0

ðz

0

ð
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ð
eiðK02a þK

02
b Þz � eiK0

2
z

K
02
2 � ðK0a þ K0bÞ

2
Pð0; ~K00ÞPð0; ~K0 � ~K00Þd ~K00d ~K0dz0

¼ M3eiK3z

iK3

4bk2
1

q0c2
0

ð ð ðz

0
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02
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2
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K
02
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2
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1

q0c2
0

ð ð ðK02 � K3 þ KbÞeiðK0aþK0bþKbÞz
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02
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2
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2
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where
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x1

c0
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� ~K00
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s
; K0b ¼
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x2
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s
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� �2

� K0j j2
s

:

Similarly, we have for the left hand side of Eq. (7)

M2e�iK2z

2iK2

ðþ1
z

eiK2z0F Pðz0Þð Þdz0 �M2eiK2z

2iK2
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z
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ðz

0

eiKz0F Pðz0Þð Þdz0

¼ �M3

K3

4bk2
1

q0c2
0

ð ð ðK0a þ K0b þ K3 þ KbÞeiðK0
2
þKbÞz

ðK0a þ K0b þ K3 þ KbÞðK02 þ K3 þ KbÞ K
02
2 � ðK0a þ K0bÞ

2
h iPð0;K0 � ~K0ÞPð0; ~K00ÞPð0; ~K0 � ~K00Þd ~K00d ~K0

� ðK02 þ K3 þ KbÞeiðK0aþK0bþKbÞz þ ðK0a þ K0b � K02ÞeiK3z

ðK0a þ K0b þ K3 þ KbÞðK02 þ K3 þ KbÞ K
02
2 � ðK0a þ K0bÞ

2
h iPð0;K0 � ~K0ÞPð0; ~K00ÞPð0; ~K0 � ~K00Þd ~K00d ~K0: (B3)

Although it is not mathematically obvious that Eq. (7) holds

for the third harmonics, for the 1-D case, Eq. (B3) reduces to

zero while Eq. (B2) does not. The 2-D example used in Sec. II

is again used for the verification of Eq. (7). The details of the

configuration of this 2-D problem can be found in Sec. II.

Figure 9 illustrates the results along the lateral dimension at
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a distance of 1.9 cm from the source, for partial solution

[Eq. (B2)] and complete solution [Eq. (B2) þ Eq. (B3)]. It can

be observed that these two results are indistinguishable.
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