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Dissociable Control of Impulsivity in Rats by Dopamine
D2/3 Receptors in the Core and Shell Subregions of the
Nucleus Accumbens
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Previous research has identified the nucleus accumbens (NAcb) as an important brain region underlying inter-individual variation in
impulsive behavior. Such variation has been linked to decreased dopamine (DA) D2/3 receptor availability in the ventral striatum of rats
exhibiting spontaneously high levels of impulsivity on a 5-choice serial reaction time (5-CSRT) test of sustained visual attention. This study
investigated the involvement of DA D2/3 receptors in the NAcb core (NAcbC) and the NAcb shell (NAcbS) in impulsivity. We
investigated the effects of a DA D2/3 receptor antagonist (nafadotride) and a DA D2/3 partial agonist (aripiprazole) infused directly into
either the NAcbC or NAcbS of rats selected for high (HI) and low (LI) impulsivity on the 5-CSRT task. Nafadotride increased significantly
the level of impulsivity when infused into the NAcbS, but decreased impulsivity when infused into the NAcbC of HI rats. By contrast, intra-
NAcb microinfusions of aripiprazole did not affect impulsivity. Systemic administration of nafadotride had no effect on impulsive behavior
but increased the number of omissions and correct response latencies, whereas systemic injections of aripiprazole decreased impulsive
and perseverative behavior, and increased the number of omissions and correct response latencies. These findings indicate an opponent
modulation of impulsive behavior by DA D2/3 receptors in the NAcbS and NAcbC. Such divergent roles may have relevance for the
etiology and treatment of clinical disorders of behavioral control, including attention-deficit hyperactivity disorder and drug addiction.

INTRODUCTION

Impulsivity is a multidimensional behavioral construct
involving rash or risky behavior and a strong tendency
toward spur-of-the-moment, poorly judged decisions and
actions. Although it can be a beneficial personality trait,
pathological manifestations of impulsivity are associated
with a number of psychiatric disorders, including attention-
deficit hyperactivity disorder (ADHD) (Winstanley et al,
2006) and substance use disorders (Brewer and Potenza,
2008, DSMIV American Psychiatric Association).

Recent conceptualizations have categorized impulsivity
in terms of deficiencies in decision-making, inhibitory
response control (for example, stopping) and in bridging
delays to future rewards (Winstanley et al, 2006; Dalley
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et al, 2007; Pattij and Vanderschuren, 2008; Eagle et al,
2008; Robinson et al, 2009). Although the neural subs-
trates of impulsivity are only partly understood, consider-
able evidence points to a significant involvement of the
nucleus accumbens (NAcbs) (Dalley et al, 2008; Pattij and
Vanderschuren, 2008), a forebrain region involved in the
integration and expression of motivated behavior (Mogen-
son et al, 1980; Robbins and Everitt, 1996). It has recently
been suggested that NAcb dopamine (DA) mediates high
impulsivity in rats, potentially through abnormal modula-
tion of NAcb function by DA D2/3 receptors. Thus, rats
exhibiting a trait-like form of impulsivity—characterized
by an inability to withhold a response to a cued visual
stimulus on a 5-choice serial reaction time (5-CSRT) task
(Bari et al, 2008)—show a reduced density of DA D2/3
receptors in the ventral striatum as measured by positron
emission tomography (Dalley et al, 2007). However, the
precise anatomical locus of this reduction in DA D2/3
receptors in the NAcb is unclear and could involve changes
in one or more subregions of the ventral striatum, including
especially the NAcb core (NAcbC) and NAcb shell (NAcbS)
(Groenewegen et al, 1999; Zahm, 1999, 2000).
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Levels of impulsivity expressed as square root of premature responses (premature responses/total trials) on the 5-CSRT task, during baseline

sessions (2-5,7—10; Tl of 55s) and long ITl sessions (1,6,11; [Tl of 7s), in HI and LI selected for intra-shell (group: F(I,14) = 161284, p<0.0001; session:
F(10,140) =64.581; p<0.0001; group x session: F(10,140)=2.440, p<<0.00l) (a) or intra-core (group: F(l,14)=54366, p<0.000!; session:
F(10,140) =54.658; p<0.0001; group x session: F(10,140) =5.203, p<0.0001) (b) microinfusion experiments.

In this study, we therefore sought to investigate the role of
DA D2/3 receptors in the NAcbC and NAcbS in mediating
inter-individual differences in impulsive behavior on the
5-CSRT task. The effects of intra-NAcbC vs intra-NAcbS
infusions of the DA D2/3 receptor antagonist, nafadotride,
(Sautel et al, 1995) and the DA D2/3 partial agonist,
aripiprazole, (DeLeon et al, 2004) were investigated and
compared with systemic administration of these drugs
in rats previously selected for high (HI) or low (LI)
impulsivity. On the basis of previous findings showing that
intra-NAcbC infusions of DA D2/3 receptor antagonists
generally reduce impulsive behavior on the 5-CSRT task
(Pattij et al, 2007; Pezze et al, 2009), we predicted that, in HI
animals, nafadotride would similarly reduce impulsive
behavior following its administration into the NAcbC. As
HI and LI rats are likely to display differences in DA activity
(Pattij and Vanderschuren, 2008), we expected aripiprazole
to exert differential effects between HI and LI animals, as it
can display both agonist and antagonist actions depending
on DA levels (Deleon et al, 2004). Furthermore, although the
role of DA D2/3 receptors in the NAcbS has not previously
been investigated in the context of ‘trait-like’ impulsivity,
we hypothesized on the basis of previous research that DA
D2/3 receptors in the NAcbC and NAcbS may make
dissociable contributions to the regulatory control of
impulsive behavior (Pattij et al, 2007; Murphy et al, 2008).

MATERIALS AND METHODS

Subjects

A total of 96 male Lister Hooded rats (Charles River, Kent,
UK) were used, housed under humidity and temperature-
controlled conditions and an alternating light/dark cycle
(red lights on from 0730 to 1930 hours). Rats weighing
~300g at the start of the experiments were maintained at
85% of their free-feeding weight. Water was provided ad
libitum. All experimental procedures were conducted in
accordance to the UK Animals (Scientific procedures) Act
1986 (Home Office license number PPL 80/2234).

5-CSRT Training

Two groups of rats were trained in operant 5-CSRT task
chambers (25 x 25 x 25cm) controlled by WhiskerServer

software (version 2.8) and FiveChoice client (version 2.6)
(Cardinal and Aitken, 2001). Each daily session consisted of
100 discrete trials with stable performance being achieved
after about 40 sessions. Animals were trained to enter a food
magazine to initiate a trial. After an inter-trial-interval (ITI)
of 55 had elapsed, a brief light stimulus (0.5-s in duration)
was pseudo-randomly presented in one of the five
apertures. Following a nose poke in this aperture, (a ‘cor-
rect’ response) animals were rewarded with the delivery of
one food pellet (45mg Noyes dustless pellets) in the
magazine. A nose-poke response in any of the adjacent
apertures (an ‘incorrect response’), as well as a failure to
respond within 5s after the onset of the stimulus
(‘omission’), resulted in no food delivery and a time-out
period with the house light extinguished for 5s. Nose pokes
made during the IT], that is, before the onset of the stimulus
(or ‘premature responses’) were recorded as a measure of
impulsivity, and resulted in a 5-s time-out and no food
reward.

Screening for HI and LI

Following acquisition of the 5-CSRT task rats were
challenged with three long ITI sessions to encourage
impulsive responding, as described previously (Dalley
et al, 2007; Belin et al, 2008; Economidou et al, 2009). Such
sessions were presented at weekly intervals and consisted of
a fixed long ITI of 7s. Subjects were ranked according to
their level of impulsivity throughout the 3-week screening
procedure and the highest and lowest 8 subjects selected as
HI and LI rats, respectively. One group of HI and LI rats was
selected for the intra-NAcbS infusions, which was subse-
quently also used for the systemic administration experi-
ments (Figure la); another group of HI and LI animals
was selected for the intra-NAcbC infusion experiment
(Figure 1b).

Surgery

The HI and LI rats were anesthetized with ketamine
(Ketaset, 100 mg/kg, intraperitoneally (i.p.); Vet Drug, Bury
St Edmunds, UK) and xylazine (Rompun, 10 mg/kg, i.p., Vet
Drug), and secured in a stereotaxic frame with the incisor
bar set at —3.3 mm relative to the interaural line in flat skull
position. Bilateral 22-gauge double-guide cannulae (Plastics
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One, Sevenoaks, UK) were bilaterally implanted above
either the NAcbC or the NAcbS, according to the following
stereotaxic anterior-posterior (AP), mediolateral (ML),
and dorsoventral (DV) coordinates: NAcbC: AP + 1.5 mm,
ML #19mm, DV —2.2mm; NAcbS: AP +1.7mm, ML
+0.75mm, DV —2 mm. AP and ML coordinates were taken
from bregma, DV coordinates from skull surface (Paxinos
and Watson, 1998). Cannulae were secured to the skull with
dental acrylic and stainless steel screws and occluded by a
stylet. After surgery, animals were allowed to recover for
a week.

Microinfusions

Following reestablishment of stable performance on the
5-CSRT task, intracerebral microinfusions of nafadotride
and aripiprazole were carried out in HI and LI rats 5min
before behavioral testing. One rat from each group of HI
animals was removed from the study because of unstable
performance after surgery. The infusion experiments were
run over a 3-day cycle, starting with an initial baseline
session. On day 2, animals received an infusion of drug or
vehicle (‘veh’) before testing. On day 3, animals were not
tested and remained in their home cages. The micro-
infusions were delivered through a 28-gauge bilateral
injector (Plastics One, Roanoke, USA) inserted through
the guide cannula and extending 4.5 mm (NAcbC) or 5mm
(NAcbS) beyond the tip of the guide. The injector was left in
place for 1 min before each 1min infusion (0.5pl) and a
further 1 min afterwards to allow sufficient time for the drug
to diffuse into the surrounding tissue. Rats received two
previous habituation sessions in the same testing condi-
tions, separated by 2 days of baseline training. During
the first habituation session, the injector was inserted
through the guide cannula and left in place for 1min.
During the second habituation session, rats received an
infusion of vehicle. The first drug infusion was given after a
further 2 days of baseline training. Rats first received
infusions of nafadotride (veh, 0.1 and 0.3 pg) and aripipra-
zole (veh, 0.03, 0.1, and 0.3 pug) according to a randomized
Latin-square design with a wash-out period of 1 week. The
doses were selected according to previous research (Barik
and de Beaurepaire, 2005) and pilot experiments. All
drug testing was performed with sessions comprising a
fixed ITI of 5s.

Systemic Drug Administration

Nafadotride and aripiprazole were administered by systemic
intraperitoneal injection in HI and LI rats that had
previously received intra-NAcbS microinfusions. Systemic
injections were given 1 week after the last intracerebral
infusion on a 3-day cycle as described above. Nafadotride
and aripiprazole were injected 20 min before behavioral
testing according to a Latin-square design (veh, 1 and 3 mg/
kg) with a wash-out period of 1 week between both drugs.
The doses were based on previously published research
(Boulougouris et al, 2008; Nordquist et al, 2008; St Onge
and Floresco, 2009). All drug testing was performed with
sessions comprising a fixed ITI of 5s.

Neuropsychopharmacology

Drugs

Aripiprazole (Toronto Research Chemicals, North York,
Canada) was dissolved in 2% glacial acetic acid and 30%
dimethyl formamide in distilled deionized water. The pH
was adjusted to 5.5 with 0.1 M NaOH. Nafadotride (Tocris
Cookson, Bristol, UK) was dissolved in 1 M HCI and normal
saline and the pH adjusted to 6 with 0.1 M NaOH. Both
drugs were injected in a volume of 1 ml/kg. All drugs were
aliquoted after preparation and frozen at —80°C.

Histological Assessment of Cannulae Placements

Animals received an overdose of sodium pentobarbital
(1.5ml per rat, i.p., Dolethal 200 mg/ml, Rhone-Merieux,
Athens, USA), and perfused transcardially with 0.01 M PBS
followed by 4% paraformaldehyde. The brains were
removed and post-fixed in 4% paraformaldehyde overnight.
The brains were transferred into a 20% sucrose solution in
0.01 M PBS and left overnight before being sectioned into
60-pm coronal sections with a freezing microtome. Every
third section was mounted and stained with Cresyl Violet.
Cannulae placements were verified under a light microscope
and mapped onto standardized coronal sections of the rat
brain (Paxinos and Watson, 1998).

Statistical Analysis

Two-way repeated-measures ANOVAs were used to analyze
the effects of intra-NAcb microinfusions on 5-CSRT task
performance in HI and LI rats (NAcb subregion x drug
dose). For the analysis of the effects of intra-NAcb
nafadotride, three-way repeated-measures ANOVAs were
additionally performed (group x NAcb subregion x drug
dose). The effects of systemic drugs administration were
assessed by two-way repeated-measures ANOVA (group-
drug). If the sphericity assumption was violated, the
Greenhouse-Geisser epsilon test was applied to calculate a
more conservative p-value for each F ratio. On confirmation
of significant main effects, differences among individual
means were analyzed using the Duncan’s post-hoc test.
Significant violations of homogeneity of variances across
the HI and the LI groups and of normality were corrected
using square root transformations. For all analyses, the
significance level was o= 0.05.

RESULTS
Histology

Figure 2 shows the positions of the injector tips in the
NAcbC and NAcbS. In total, eight rats were excluded from
the study (two HI and six LI) because injector cannulae
were positioned outside the target areas. There was no gross
tissue damage in the local vicinity of the injector tracks.

Intra-NAcb Nafadotride Infusions

The effects of intra-NAcb infusions of nafadotride on
impulsive responding and other behavioral measures on the
5-CSRT task are shown in Figure 3 and Supplementary
Table 1 (see Supplementary online material). In HI animals,
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Figure 2 Schematic representations of injector tips in the shell (n=11) (a) and the core (n=12) (b) of the NAcb. Reconstructed from Paxinos and

Watson (1998).
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Figure 3  Effects of intra-NAcb shell (diagonal stripes) or core (vertical stripes) microinfusions of nafadotride (0, 0.03, or 0.1 pg per 0.5 pul) on impulsivity in
HI (a) and LI (b) rats on the 5-CSRT task. Impulsivity is expressed as square root of premature responses (premature responses/total trials). For the shell
experiment, n=6 HI and n=>5 LI rats. For the core experiment, n=6 HI and n=5 LI. Doses are expressed in pg/0.5 pl. Each bar represents the

mean + SEM. *p<0.05.

nafadotride had opposite effects on the level of pre-
mature responses depending on the Nacb subregion into
which it was infused (group x NAcb subregion interaction:
F(2,20) =7.4125, p<0.01, Figure 3a). Post-hoc analysis
showed that impulsivity was significantly increased in HI
rats when nafadotride was infused into the NAcbS at the
highest dose tested (0.1ng vs veh: p<0.05, n=6). By
contrast, microinfusions of nafadotride into the NAcbC
significantly decreased impulsivity in HI animals at the
highest dose tested (0.1pg vs veh: p<0.05, n=6). In LI
animals, microinfusions of nafadotride into either the
NAcbS (n=5) or the NAcbC (n=5) had no significant
effect on premature responding (Figure 3b).

The double dissociation of the effects of microinfusions of
nafadotride on impulsivity depending on both the Nacb

subregion and the group of animals (HI or LI) tested was
further confirmed by three-way ANOVA (group x drug x
Nacb subregion interaction: F(2,36) =7.227, p<0.01; group:
F(1,18) =9.790, p<<0.01). There were no significant effects
of intra-NAcbS and intra-NacbC nafadotride on choice
accuracy, omission, perseveration, correct response laten-
cies and magazine latencies (see Supplementary Table 1).

Intra-NAcb Aripiprazole Infusions

The effects of intra-NAcb infusions of aripiprazole on
impulsive responding and other behavioral measures on the
5-CSRT task are shown in Figure 4 and Supplementary
Table 2 (see Supplementary online material). Microinfu-
sions of aripiprazole into either the NAcbS or the NAcbC
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Figure 4 Effects of intra-NAcb shell (diagonal stripes) or core (vertical stripes) microinfusions of aripiprazole (0, 0.03, 0.1, or 0.3 pg per 0.5 pl) on
impulsivity in HI (a) and LI (b) rats on the 5-CSRT task. Impulsivity is expressed as square root of premature responses (premature responses/total trials). For
the shell experiment, n=6 Hl and n=5 LI rats. For the core experiment, n=6 Hl and n= 6 LI. Doses are expressed in pg/0.5 pl. Each bar represents the

mean = SEM.

did not significantly affect impulsive responding in either
HI (NAcbS: n=6; NAcbC: n=6) (Figure 4a) or LI (NAcbS:
n=>5; NAcbC: n=6) rats (Figure 4b).

No significant effects of intra-NAcbS and intra-NacbC
aripiprazole microinfusions were observed on choice
accuracy, omission, perseveration, correct response laten-
cies, and magazine latencies in either HI or LI animals (see
Supplementary Table 2).

Systemic Nafadotride Administration

The effects of systemic nafadotride on 5-CSRT task
performance are shown in Figure 5. Nafadotride signifi-
cantly increased the number of omissions (drug: F(2,26) =
10.123, p<0.001, Figure 5d), in both HI (n=7) and LI
animals (n=38) (group x drug: F(2,26) =0.830, NS). Post-
hoc analysis showed that this effect was attributable to the
highest dose tested (3 mg/kg vs veh: p<<0.0001). Nafadotride
also significantly increased correct response latencies
(F(2,26) =12.101, p<0.001, Figure 5e) in both HI and LI
rats (group x drug: F(2,26) =0.198, NS). Correct response
latencies were significantly increased by nafadotride injec-
tions at the highest dose tested (3 mg/kg vs veh: p<<0.0001).
Systemic administration of nafadotride had no effect on
impulsive responding, perseveration, attentional accuracy,
and magazine latencies (Figures 5a-c and f).

Systemic Aripiprazole Administration

The effects of systemic aripiprazole on 5-CSRT task
performance are shown in Figure 6.

Aripiprazole significantly decreased impulsivity in both
HI (n=7) and LI rats (n=38) (drug: F(2,26)=8.200,
p<0.01; group: F(1,13)=9.989, p<0.01; group x drug:
F(2,26) =2.495, NS; Figure 6a). Post-hoc analyses showed
that this effect was significant at both doses tested (1 mg/kg
vs veh: p<0.05; 3mg/kg vs veh: p<0.01). Systemic
aripiprazole also significantly reduced perseverative
responding (drug: F(2,26) =4.494, p<0.05; group x drug:
F(2,26) =2.987, NS; Figure 6b). Post-hoc analyses revealed
that perseverative responding was significantly decreased at
both doses tested (1 mg/kg vs veh: p<<0.05; 3 mg/kg vs veh:
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p<0.05). In addition, aripiprazole significantly increased
omissions (drug: F(2,26) =21.373, p<<0.0001; group x drug:
F(2,26) =0.471, NS; Figure 6d), at both doses tested (1 mg/
kg vs veh: p<0.01; 3 mg/kg vs veh: p<<0.001). Aripiprazole
also increased correct response latencies (drug: F(2,20) =
4.170, p<0.05; group x drug: F(2,20) =1.250, NS; Figure 6e),
an effect attributable to the highest dose (p <0.05). Systemic
administration of aripiprazole had no significant effect on
attentional choice accuracy (Figure 6c) and magazine
latencies (Figure 6f).

DISCUSSION

This results provide new insights into the neurobiological
basis of impulsivity. Nafadotride, a DA D2/3 receptor
antagonist, exerted an impulsivity state-dependent, dissoci-
able effect in the NAcbS and NAcbC, increasing the level of
impulsivity when infused into the NAcbS, but decreasing it
when infused into the NAcbC, selectively in HI animals.
Systemically administered nafadotride had no effect on
impulsive behavior but increased omission levels and
correct response latencies. By contrast, aripiprazole, a DA
D2/3 receptor partial agonist, had no effect on impulsive
behavior when infused into either the NAcbS or the NAcbC,
but decreased impulsive and perseverative behavior,
whereas increasing errors of omission and lengthening
correct response latencies, when administered systemically.

The NAcb has been widely associated with impulsive
behavior in humans and rodents (Cardinal et al, 2001; Aron
et al, 2007; Pattij and Vanderschuren, 2008). We have
reported that spontaneously high impulsive rats on the
5-CSRT task exhibit a decrease in DA D2/3 receptor
availability in the ventral striatum, including the NAcb
(Dalley et al, 2007). Dopaminergic function has been
broadly implicated in disorders of impulse control mainly
on the basis of the evidence that psychostimulants are
effective in ADHD (Solanto, 2002; Winstanley et al, 2006).
In this study, systemic administration of DA D2/3 agents
either had no effect, or nonselectively affected impulsivity,
whereas increasing omissions and lengthening correct
latencies, suggesting a rather general effect on locomotor
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or motivational functions. However, we provide functional
evidence that trait-like impulsivity is nonetheless depen-
dent on intra-NAcb DA neurotransmission involving
DA D2/3 receptors. As an increasing or decreasing DA
neurotransmission enhances or reduces, respectively, im-
pulsivity on the 5-CSRT task (Cole and Robbins, 1989; Pattij
and Vanderschuren, 2008), it could be hypothesized that HI
rats show increased DA activity as compared with LI
animals, as a consequence of too few DA D2/3 receptors in
the NAcb (Dalley et al, 2007) functioning as autoreceptors
(Viggiano et al, 2003). Indeed, impulsivity on the 5-CSRT
task has been associated in vitro with high and low DA
release in the NAcbS and NAcbC, respectively (Diergaarde
et al, 2008). Accordingly, these results support a subregion-
dependent dopaminergic basis for inter-individual differ-
ences in impulsivity, which may depend on opponent
dopaminergic modulation of the NAcb core and shell
subregions.

In HI animals, nafadotride decreased impulsivity when
infused into the NAcbC. This result is consistent with recent
studies showing that intra-NAcbC infusions of D2-like
receptor antagonists decrease impulsivity when high levels
of this behavior are induced, either by PFC lesions (Pezze

et al, 2009) or by amphetamine (Pattij et al, 2007). NAcb
D2-like DA receptors have been suggested to regulate
behavioral control via cortical and limbic influences
possibly through a gating mechanism (Floresco, 2007).
Within the NAcb, DA can either enhance or decrease
glutamate-induced activity of medium spiny neurons, by
actions at D2-like receptors (Yang and Mogenson, 1986;
Goto and Grace, 2005). Thus, decreased stimulation of
NAcb D2/3 receptors by tonic DA release has been shown to
facilitate PFC inputs, and unilateral inactivation of the PFC
combined with NAcb D2/3 receptor stimulation decreases
inhibitory control during goal-directed behavior (Goto and
Grace, 2005). Hence, in this study, blockade of NAcbC DA
D2/3 receptors in HI rats may decrease impulsive respond-
ing through a facilitation of PFC glutamatergic inputs,
thereby increasing PFC control over behavior. This result
suggests that, in HI individuals, intra-NAcbC D2/3-
mediated DA neurotransmission that negatively modulates
PFC glutamatergic inputs would be in a constitutively
hyperactive state.

By contrast, intra-NAcbS nafadotride exacerbated im-
pulsive responding in HI animals, suggesting that the
impulsive trait is associated with constitutively hypoactive
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D2/3-mediated DA neurotransmission in this subregion.
Thus, the proposed D2-like receptor-mediated gating
mechanism underlying behavioral output might be less
efficient in HI individuals because D2/3-mediated DA
neurotransmission in the NAcbS and NAcbC is dysregu-
lated. The apparent lack of effect of systemic nafadotride on
impulsivity might result from these opposing actions in
both the NAcbS and NAcbC, and not because an insufficient
dose of nafadotride was used (see also Boulougouris et al
(2008); St Onge and Floresco (2009)). It is also conceivable
that brain regions other than the NAcb mediate in part the
effects of the systemically administered drugs, potentially
through opponent interactions between the PFC and
striatum. For example, previous research has strongly
implicated the anterior cingulate cortex (Muir et al, 1996),
infralimbic cortex (Chudasama et al, 2003), and dorsome-
dial striatum (Rogers et al, 2001) in the regulation of
impulsive behavior.

Previously, it has been shown that intra-NAcbC infusions
of the DA D2/3 receptor antagonists sulpiride (Pezze et al,
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2009) and eticlopride (Pattij et al, 2007) result in increased
omissions and correct response latencies on the 5-CSRT
task without affecting impulsive behavior. By contrast, in
this study, intra-NAcb infusions of nafadotride generally
only affected impulsive responding. As sulpiride and
eticlopride are both more selective for DA D2 than DA D3
receptors (Vallone et al, 2000; Levant, 1997), and nafado-
tride is more selective for DA D3 than DA D2 receptors
(Sautel et al, 1995), attentional performance and impulsivity
may be differentially modulated by DA D2 and DA D3
receptors, respectively. Consistent with this notion, nafado-
tride increased omissions and response latencies at doses
that would be expected to block DA D2 receptors (Levant
and Vansell, 1997).

In this study, intra-NAcbS or NacbC infusions, as well as
systemic injections of the DA D2/3 partial agonist
aripiprazole, did not modify levels of impulsivity in HI
and LI rats. Aripiprazole is a partial DA receptor agonist
with high affinity for both DA D2 and D3 receptors (deLeon
et al, 2004). On the basis of the hypothesis that HI and LI



rats may show hyper- and hypo-DA activity, respectively
(Pattij and Vanderschuren, 2008), we had postulated that
aripiprazole may have different effects on impulsive
behavior in HI and LI rats. In fact, several studies have
shown that aripiprazole can have either agonist or
antagonist properties at DA D2/3 receptors depending on
the level of DA activity (Deleon et al, 2004). The absence of
an effect of aripiprazole on impulsivity in this study might
suggest that inter-individual differences in impulsivity on
the 5-CSRT task are not related to major differences in DA
release, consistent with evidence that HI rats do not show
higher striatal DA release than non-impulsive rats (Dalley
et al, 2007). The lower number of DA D2/3 receptors in the
ventral striatum of HI rats would hence not seem to be
associated with an impairment in presynaptic function,
which would directly affect DA tone (Benoit-Marand et al,
2001), but rather to a change in postsynaptic activity.
However, previous research has shown that electrically
evoked DA release is increased and decreased in the NAcbS
and NAcbC, respectively, in HI compared with LI rats
(Diergaarde et al, 2008). Therefore, the absence of an effect
of aripiprazole on impulsive action might also be due to a
concomitant action on pre- and postsynaptic DA D2/3
receptors (Deleon et al, 2004), in contrast to nafadotride,
which seems preferentially to block postsynaptic receptors
at low doses (Griffon et al, 1995).

These data revealing dissociable roles of DA D2/3
receptors in the NAcbS and NAcbC in impulsive behavior
are compatible with previous evidence showing contrasting
effects on impulsivity of NAcb shell vs core deep brain
stimulation on a reaction-time task, with impulsivity being
decreased by NAcbC, but increased by NAcbS stimulation
(Sesia et al, 2008). In addition, NAcbC lesions were shown
to potentiate, whereas NAcbS lesions were found to
attenuate, amphetamine-induced increases in impulsive
behavior on a forced choice task (Murphy et al, 2008).
Thus, interactions between NAcbS- and NAcbC-dependent
mechanisms likely mediate the expression of high impul-
sivity on the 5-CSRT task. The precise direction of this
interaction is unknown but may be relevant to the
hierarchical or cascading anatomical arrangement of the
ventral midbrain DA system previously described in
primates (Haber et al, 2000) and rats (Ikemoto, 2007).
Thus, the NAcbS projects to the ventral tegmental area
(VTA) that reciprocally projects to the NAcbS, but also to
the NAcbC. The NAcbC influences VTA and substantia
nigra neurons in turn, and thereby modulates more dorsal
structures of the striatum to control behavioral output.
Hence, impaired DA D2/3-mediated neurotransmission
within the NAcbS might affect the entire DA cascading
circuitry, eventually altering NAcbC activity and conse-
quently behavioral output. Such an influence of the
NAcbS over NAcbC functioning in the control of beha-
vior has already been implicated in the context of latent
inhibition (Weiner et al, 1999) and neural plasticity
(Mameli et al, 2009).

Trait-like impulsivity on the 5-CSRT task has recently
been identified as a vulnerability marker for cocaine (Dalley
et al, 2007; Belin et al, 2008; Economidou et al, 2009) and
nicotine (Diergaarde et al, 2008) addiction. A role of the
NAcbS has been identified in the reinforcing and stimulant
action of cocaine, whereas the NAcbC has been shown to be
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involved in the acquisition of cocaine-seeking behavior (Ito
et al, 2004). Moreover, the circuitry connecting the NAcbC
and the dorsal striatum has been shown to mediate the
establishment of cocaine-seeking habits (Belin and Everitt,
2008). As striatal DA D2/3 receptors have also been linked
to drug seeking (Pilla et al, 1999; Nader et al, 2006; Volkow
et al, 2009), a putative dysregulation of DA neurotransmis-
sion involving DA D2/3 receptors in the NAcbS and the
NAcbC of HI rats might therefore also account for their
propensity to stimulant drug addiction.
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