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Women with schizophrenia have later onset and better response to antipsychotic drugs (APDs) than men during reproductive years, but

the menopausal period is associated with increased symptom severity and reduced treatment response. Estrogen replacement therapy

has been suggested as beneficial but clinical data are inconsistent. Latent inhibition (LI), the capacity to ignore irrelevant stimuli, is a

measure of selective attention that is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis-

inducing drug amphetamine and can be reversed by typical and atypical APDs. Here we used amphetamine (1 mg/kg)-induced disrupted

LI in ovariectomized rats to model low levels of estrogen along with hyperfunction of the dopaminergic system that may be occurring in

menopausal psychosis, and tested the efficacy of APDs and estrogen in reversing disrupted LI. 17b-Estradiol (50, 150 mg/kg), clozapine

(atypical APD; 5, 10 mg/kg), and haloperidol (typical APD; 0.1, 0.3 mg/kg) effectively reversed amphetamine-induced LI disruption in sham

rats, but were much less effective in ovariectomized rats; 17b-estradiol and clozapine were effective only at high doses (150 mg/kg

and 10 mg/kg, respectively), whereas haloperidol failed at both doses. Haloperidol and clozapine regained efficacy if coadministered with

17b-estradiol (50 mg/kg, an ineffective dose). Reduced sensitivity to dopamine (DA) blockade coupled with spared/potentiated sensitivity

to DA stimulation after ovariectomy may provide a novel model recapitulating the combination of increased vulnerability to psychosis

with reduced response to APD treatment in female patients during menopause. In addition, our data show that 17b-estradiol exerts

antipsychotic activity.
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INTRODUCTION

Since description of schizophrenia as ‘men illness’ by
Kraepeline (1919), scores of epidemiological and clinical
studies have documented gender differences in schizophre-
nia. Women have a more favorable illness course during the
reproductive years, characterized by later onset of symp-
toms, lower symptom severity, and better response to
antipsychotic drug (APD) treatment (Agius et al, 2009;
Angermeyer and Kuhn, 1988; Hafner, 2003; Hafner et al,
1989; Iacono and Beiser, 1992; Lindamer et al, 1997;
Mortimer, 2007; Pregelj, 2009; Riecher-Rossler and Hafner,
2000; Salem and Kring, 1998; Seeman, 1982, 1986;
Szymanski et al, 1995; Tamminga, 1997). In contrast,

menopause is associated with increased vulnerability to
illness, elevated symptom severity, and reduced response to
treatment (Horacek et al, 2006; Kulkarni et al, 1996, 2008b;
Lane et al, 1999; Salokangas, 1995; Saugstad, 1989; Seeman
and Lang, 1990). Increased symptom severity and reduced
treatment response are associated also with low-estrogen
phases of the menstrual cycle (Ereshefsky et al, 1991;
Farina et al, 1981; Lane et al, 1999; Salokangas, 1995;
Seeman, 1989; Simpson et al, 1990; Tamminga, 1997). These
data have been captured in the estrogen hypothesis of
schizophrenia that posits exacerbations of illness manifes-
tations in women are related to low levels of estrogen
(Hafner et al, 1989; Huber et al, 2004; Seeman and Lang,
1990). Accordingly, it has been suggested that exogenous
estrogen on its own or combined with APDs may have
therapeutic potential in schizophrenia, although this notion
has been challenged (for recent reviews see Agius et al,
2009; Mortimer, 2007).

Ovariectomy (OVX)-induced hormonal decline in rats is
considered to model decreased gonadal function during
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menopause (Adam et al, 2009; Daniel et al, 2006; Gurkan
et al, 1986; LeBlanc et al, 2009; Rogers et al, 2009; Walf et al,
2009), and has been proposed specifically to model the
hormonal state associated with predisposition to schizo-
phrenia during menopause (Bosse and Di Paolo, 1995).
Although many studies showed that OVX is associated with
poorer behavioral and cognitive performance, including
tasks considered relevant to schizophrenia such as social
interaction and object recognition (Barnes et al, 2006;
Frye, 2001; Frye et al, 2006b, 2007; Frye and Rhodes, 2006a;
Paris and Frye, 2008), the study of the estrogen hypothesis
using animal models of schizophrenia has been limited.
Some support derives from studies showing that estrogen
affects prepulse inhibition (PPI) (Gogos et al, 2009; Gogos
and Van den Buuse, 2004; Koch, 1998; Vaillancourt et al,
2002; Van den Buuse and Eikelis, 2001), a measure of
sensorimotor gating whose disruption is considered to
model sensorimotor deficits in schizophrenia, as well as the
response to the pro-psychotic drugs amphetamine and
cocaine (Becker and Beer, 1986; Becker and Rudick, 1999;
Earley and Leonard, 1978; Gibbs et al, 1998; Naik et al, 1978;
Segarra et al, 2009).

We have recently tested the estrogen hypothesis using the
latent inhibition (LI) model of schizophrenia (Arad and
Weiner, 2008, 2009). LI is a cross-species selective attention
phenomenon manifested as retarded conditioning to a
stimulus that was pre-exposed (PE) without consequence
before conditioning, and is commonly considered to index
the ability to ignore irrelevant stimuli. Loss of LI induced
in the rat by the psychotomimetic dopamine (DA) releaser
amphetamine and its reversal by APDs is a well-established
model of positive symptoms of schizophrenia (Lipska and
Weinberger, 2002; Moser et al, 2000; Weiner, 2003; Weiner
and Arad, 2009). We (Arad and Weiner, 2009) have shown
that hormonal cessation after OVX led to loss of LI,
which was restored after the administration of 17b-
estradiol. Most interestingly, we found that OVX interfered
with the efficacy of the typical APD haloperidol to re-
store LI, mimicking the reduced sensitivity to APD
treatment seen in schizophrenic women during menopause.
Furthermore, haloperidol regained efficacy when coad-
ministered with a behaviorally inactive dose of 17b-
estradiol, indirectly supporting an antipsychotic action of
17b-estradiol.

Here we sought to expand the OVX/LI model by testing
the efficacy of 17b-estradiol, haloperidol, and clozapine to
reverse amphetamine-induced disruption of LI in OVX rats.
Given our previous finding that OVX reduced the efficacy of
APDs, one major question of interest here was whether OVX
would also reduce the efficacy of amphetamine. We
hypothesized that amphetamine would not lose its efficacy
to disrupt LI in OVX compared to sham rats. Conversely,
APDs would be less effective in reversing amphetamine-
induced LI disruption in OVX rats, but their action
would be potentiated by concurrent 17b-estradiol treat-
ment, which would also block amphetamine effect on its
own. These outcomes would capture the combination of
increased vulnerability to psychosis with reduced response
to APD treatment that may be occurring during meno-
pause in women vulnerable to psychosis, and support
a direct antipsychotic (anti-amphetamine) action of 17b-
estradiol.

MATERIALS AND METHODS

Animals

Female Wistar rats bred in our laboratory were housed 3–4
per cage under reversed cycle lighting (lights on 0700–1900
hours) with ad lib access to food and water. They were
about 7 weeks old and weighing 155–267 g when submitted
to OVX and approximately 3 months old and weighing
248–469 g when behavioral testing begun. All experimental
protocols conformed to the guidelines of the Institutional
Animal Care and Use Committee of Tel Aviv University,
Israel, and to the guidelines of the NIH (animal welfare
assurance number A5010–01, expires on 30 September
2011). All efforts were made to minimize the number of
animals used and their suffering.

Ovariectomy

Rats were bilaterally ovariectomized under isoflurane
(Nicholas Piramal, UK) anesthesia. After shaving the
abdominal area, we made a midline incision through the
skin and muscle layer. Fallopian tubes were ligated by a
nylon thread, after which the ovaries were carefully
removed. Sutures of muscle layer and skin were removed
10 days later. Rats were allowed additional 3 weeks of
recovery after removal of the sutures, before the beginning
of water restriction (see below). Within the 3-week recovery
period, about a week after removal of sutures, vaginal
smears were collected daily in the morning for 8 days in
sham and OVX rats to confirm regular or discontinuation of
estrous cycle. Phases of the estrous cycle were determined
by the morphology of cells in the vaginal smear under a
light microscope (Marcondes et al, 2002). Sham-operated
controls underwent an identical surgical procedure without
ovaries’ removal. Only sham females with regular 4-day
cycles in succession and OVX rats without estrous cycle
were used for behavioral testing.

Latent Inhibition

LI was measured in a thirst-motivated conditioned emo-
tional response procedure as described previously (Arad
and Weiner, 2009). Water-restricted (23 h) rats were trained
to drink in the experimental chambers for 15–20 min per
day for 5 days. Water in the chambers was given in addition
to the 1 h water in home cages. The LI procedure consisted
of four stages given 24 h apart. Pre-exposure: with the bottle
removed, PE rats received 40 or 50 tones (10 s, 80 dB,
2.8 kHz) 40 s apart, whereas non-pre-exposed (NPE) rats
were confined to the chamber. Conditioning: with the bottle
removed, all rats received one or two tone-shock (tone: 10 s,
80 dB, 2.8 kHz; shock: 1 s, 0.5 mA) pairings given 5 min
apart. Lick retraining: rats were given a 15 min drinking
session as in initial training. Data of rats that failed to
complete 600 licks were dropped from the analysis. Test:
rats were placed in the chambers with access to the bottle.
When the rat completed 75 licks, the tone was presented for
5 min. Times to complete 25 licks before and after tone
onset were recorded. Times to complete licks 76–100 were
submitted to logarithmic transformation to allow para-
metric analysis of variance (ANOVA). Longer log times
indicate stronger suppression of drinking. LI is defined as
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shorter times to complete licks 76–100 after tone onset
(weaker fear conditioning) of the PE compared to NPE rats.

Drug and Hormone Administration

Amphetamine and APDs were administered intraperitone-
ally and 17b-estradiol was administered subcutaneously, all
in a volume of 1 ml/kg, 30 (amphetamine and clozapine),
60 (haloperidol), or 120 (17b-estradiol) min before pre-
exposure and conditioning stages. Amphetamine (Sigma,
Israel) was dissolved in saline and administered at a dose of
1 mg/kg. Haloperidol (Johnson&Johnson, Belgium) was
prepared from an ampoule containing 5 mg haloperidol in
1 ml solvent containing 6 mg lactic acid, diluted with saline,
and administered at doses of 0.1 or 0.3 mg/kg. Clozapine
(Novartis, Switzerland) was dissolved in 1 N acetic acid
(1.5 ml/10 mg), diluted with saline, and administered at
doses of 5 or 10 mg/kg. The doses of haloperidol and
clozapine are routinely used in our LI studies (Arad and
Weiner, 2009; Weiner et al, 1996b). 17b-Estradiol (Sigma)
was dissolved in corn oil and administered at doses of 10,
50, and 150 mg/kg. These doses were chosen on the basis of
behavioral literature and used in our previous study in OVX
rats (Arad and Weiner, 2009; Galea et al, 2001; Gibbs et al,
1998; Nofrey et al, 2008; Van den Buuse and Eikelis, 2001;
Walf and Frye, 2010). No-drug controls received the
corresponding vehicle/s as follows: saline as amphetamine
vehicle, saline solution containing 1% of lactic acid as
haloperidol vehicle, saline solution containing 7.5% acetic
acid as clozapine vehicle, and oil as 17b-estradiol vehicle. In
all experiments, lick retraining and test sessions were
conducted in a drug-free state.

Assessment of Estradiol Serum Levels

Serum estradiol levels produced by the four 17b-estradiol
conditions were determined in separate groups of sham and
OVX rats (n per group 7–8). Rats were given two injections
24 h apart (mimicking the injection protocol of LI).

Blood was taken by cardiac puncture (1 ml, with-
out preservative). The blood was allowed to clot for
20–40 min and was centrifuged at 930 g (2000 r.p.m.) for
20 min. Afterward serum was collected and was assayed
immediately.

17b-Estradiol serum levels were measured using an
enzyme-linked immunosorbent assay kits (Cayman, Michi-
gan, USA), based on manufacturer’s instructions. Table 1
presents mean serum levels of estradiol following our

administration regime in comparison to levels reported for
different stages of the estrous cycle and pregnancy (Nequin
et al, 1979; Shaikh, 1971).

Experimental Design

Experiment 1. In our previous study we showed that LI was
absent in OVX rats (Arad and Weiner, 2009). Because here
we intended to test whether amphetamine disrupts LI in
OVX rats, we needed to create conditions under which OVX
no longer disrupts LI, so that the effect of amphetamine
could be manifested. As detailed by us elsewhere (Weiner,
1990, 2003; Weiner and Arad, 2009), the expression of LI is
a function of the balance between the strength of pre-
exposure and the strength of conditioning, so that increas-
ing the strength of pre-exposure (eg, by increasing the
number of stimulus pre-exposures) and/or decreasing the
strength of conditioning (eg, by reducing the number of
conditioning trials) are expected to promote the expression
of LI. The aim of experiment 1 was to test whether such
manipulations of pre-exposure and conditioning para-
meters would restore LI in OVX rats. In our previous
study, OVX-induced disruption of LI was obtained using 40
pre-exposures and 2 conditioning trials. Here, we either
increased the number of pre-exposures from 40 to 50 while
keeping 2 conditioning trials or reduced the number of
conditioning trials from 2 to 1 while keeping 40 pre-
exposures, and compared LI under these two combinations
to the previous combination of 40 pre-exposures and 2
conditioning trials. The experiment included 36 OVX rats
divided into six experimental groups (n per group 6) in a
2� 3 design with main factors of pre-exposure (NPE, PE)
and pre-exposure-conditioning combination (40 pre-expo-
sures and 1 conditioning trial; 40 pre-exposures and 2
conditioning trials; 50 pre-exposures and 2 conditioning
trials). The latter combination that yielded LI in OVX rats
was used in experiments 2–7.

Experiment 2 tested the capacity of amphetamine to
disrupt LI in OVX rats. The experiment included 62 rats
(32 sham, 30 OVX) divided into eight experimental groups
(n per group 6–8) in a 2� 2� 2 design with main factors
of pre-exposure (0, 50), gonadal status (sham, OVX),
and treatment (0, 1 mg/kg amphetamine).

Experiment 3 tested the capacity of 17b-estradiol to
reverse amphetamine-induced LI disruption in OVX rats.
The experiment included 236 rats (119 sham, 117 OVX)
divided into 32 experimental groups (n per group 6–8) in a
2� 2� 2� 4 design with main factors of pre-exposure

Table 1 Serum Levels of Estradiol in Sham and OVX Rats After Administration of 17b-Estradiol at Three Doses

Gonads E state

Control Low E
(10 lg/kg)

Metestrus Medium E
(50 lg/kg)

Proestrus High E
(150 lg/kg)

Pregnancy
(GD 20–22)

Sham 48.7±12.7 20.2±3.2 20.6±1.6 120.6±14.0 142.2±45.8 628.4±95.0 628±210

OVX 5.5±0.6 17.9±3.5 F 125.8±15.7 F 660.4±59.4 F

Mean (±SEM) of serum level of estradiol 2 h after second injection (given 24 h apart) of 0, 10, 50, or 150 mg/kg of 17b-estradiol, in sham and OVX rats.
For comparison, levels found by Nequin et al (1979) along the cycle (metestrus and proestrus) and by Shaikh (1971) on gestation days (GD) 20–22 are provided.
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(0, 50), gonadal status (sham, OVX), treatment (0, 1 mg/kg
amphetamine), and pretreatment (0, 10, 50, or 150 mg/kg
17b-estradiol).

Experiments 4 and 5 tested the capacity of the typical and
atypical APDs, haloperidol (0.1, 0.3 mg/kg) and clozapine
(5, 10 mg/kg), respectively, to reverse amphetamine-in-
duced LI disruption in OVX rats. Because it is well
documented that haloperidol and clozapine at the doses
and injection protocol used here do not affect LI (Weiner
and Feldon, 1987; Weiner et al, 1997; Weiner et al, 1996b),
we did not use separate control (sham and OVX) groups for
each APD dose but instead injected each dose to half of the
controls. Both experiments included 20 experimental
groups (n per group 6–8) in a 2� 2� 5 design with main
factors of pre-exposure (0, 50), gonadal status (sham, OVX),
and treatment (vehicle, APD, amphetamine, amphetamine
+ low APD dose, amphetamine + high APD dose). Experi-
ment 4 included 141 rats (71 sham, 70 OVX), whereas
experiment 5 included 151 rats (77 sham, 74 OVX).

Experiments 6 and 7. Because amphetamine-induced
disruption of LI in OVX rats was resistant to haloperidol
(experiment 4) and showed reduced response to clozapine
(experiment 5), here we tested whether the efficacy of
haloperidol (0.1 mg/kg; experiment 6) and clozapine
(5 mg/kg; experiment 7) in reversing amphetamine-induced
LI disruption would be restored by their coadministration
with an ineffective dose of 17b-estradiol (50 mg/kg). The
experiments included 115 and 116, respectively, OVX rats
divided into 16 experimental groups (n per group 7–8) in a
2� 2� 4 design with main factors of pre-exposure (0, 50),
treatment (saline, amphetamine), and pretreatment (vehi-
cle, APD, 17b-estradiol, APD + 17b-estradiol).

Statistical Analysis

Times to complete licks 51–75 (before tone onset) and
logarithmically transformed mean times to complete licks
76–100 (after tone onset) were analyzed with two-way
ANOVA with main factors of pre-exposure and gonadal
status (experiment 1); three-way ANOVAs with main factors
of pre-exposure, gonadal status, and treatment (experiment
2, 4, and 5) or pre-exposure, treatment, and pretreatment
(experiment 6 and 7); and a four-way ANOVA with main
factors of pre-exposure, gonadal status, treatment, and
pretreatment (experiment 3). In cases of significant inter-
actions involving the factor of pre-exposure, LSD post hoc
comparisons were used to assess the difference between the
PE and NPE groups within each treatment condition.

RESULTS

There were no differences between the experimental groups
in the times to complete licks 51–75 (A period; all p’s40.05)
in any of the seven experiments (overall mean A periods
were 8.19, 9.58, 7.92, 10.77, 10.04, 9.66, and 7.13 for
experiments 1–7, respectively).

Experiment 1: LI in OVX Rats

Figure 1 presents the mean log times to complete licks
76–100 (after tone onset) of the PE and NPE OVX rats in the
three experimental conditions. As shown by us previously,

when 40 pre-exposures were followed by 2 conditioning
trials (40 + 2), there was no difference in suppression
between the PE and NPE groups, ie, no LI. In contrast,
rats exhibited LI, ie, lower suppression of the PE as
compared to the NPE group, when 40 pre-exposures were
followed by 1 conditioning trial (40 + 1) or when 50 pre-
exposures were followed by 2 conditioning trials (50 + 1).
ANOVA yielded significant main effects of pre-exposure
(F(1,30)¼ 20.88, po0.01) and pre-exposure/conditioning
combination (F(2,30)¼ 8.85, po0.01), as well as their
interaction (F(2,30)¼ 6.45, po0.01). Post hoc comparisons
confirmed the presence of LI in the 40 + 1 and 50 + 2
conditions (po0.01), but not in the 40 + 2 condition.

On the basis of these results in all the following
experiments (2–7), we used 50 pre-exposures and 2
conditioning trials.

Experiment 2: Effects of Amphetamine (1 mg/kg) on
LI in Sham and OVX Rats

Figure 2 presents the mean log times to complete licks
76–100 (after tone onset) of the PE and NPE sham and OVX
rats injected with amphetamine (0, 1 mg/kg). As can be
seen, saline-injected sham and OVX rats exhibited LI, but LI
was lost in both groups after amphetamine injection.
ANOVA yielded a significant effect of pre-exposure
(F(1,54)¼ 34.08, po0.001) and a significant pre-exposure�
treatment interaction (F(1,54)¼ 19.57, po0.001). Post hoc
comparisons confirmed the presence of LI in saline
(po0.001), but not in amphetamine conditions.

Experiment 3: Effects of 17b-Estradiol (10, 50, or
150 lg/kg) on Amphetamine-Induced LI Disruption
in Sham and OVX Rats

Figure 3 presents the mean log times to complete licks
76–100 (after tone onset) of the PE and NPE saline- or
amphetamine-injected sham and OVX rats pretreated with
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0, 10, 50, or 150 mg/kg of 17b-estradiol. As can be seen,
saline-injected sham and OVX rats exhibited LI whereas
amphetamine-injected sham and OVX rats did not exhibit
LI. LI was restored in amphetamine-injected sham rats
given 50 or 150 mg/kg of 17b-estradiol, whereas in OVX rats
only the high 17b-estradiol dose reversed amphetamine-
induced disruption of LI. On its own, 17b-estradiol
disrupted LI at the low dose of 10 mg/kg in both sham and
OVX rats but spared LI at the two higher doses. ANOVA
yielded main effects of pre-exposure (F(1,204)¼ 55.024,

po0.0001), treatment (F(1,204)¼ 11.296, po0.001), and
pretreatment (F(3,204)¼ 2.74, po0.05), as well as a signifi-
cant pre-exposure� gonadal status� treatment� pretreat-
ment interaction (F(3,204)¼ 3.023, po0.05). Post hoc
comparisons confirmed the presence of LI in saline-injected
sham and OVX rats given 0, 50, or 150 mg/kg 17b-estradiol;
in amphetamine-injected sham rats given 50 or 150 mg/kg
17b-estradiol; and in OVX rats given 150 mg/kg 17b-
estradiol (p’so0.05), but not in the other conditions.

Experiment 4: Effects of Haloperidol (0.1, 0.3 mg/kg)
on Amphetamine-Induced LI Disruption in Sham and
OVX Rats

Figure 4 presents the mean log times to complete licks
76–100 (after tone onset) of the PE and NPE saline- or
amphetamine-injected sham and OVX rats pretreated with
0, 0.1, or 0.3 mg/kg of haloperidol. As can be seen, saline-
injected sham and OVX rats exhibited LI whereas amphe-
tamine-injected sham and OVX rats did not exhibit LI. LI
was restored in amphetamine-injected sham rats given both
doses of haloperidol, whereas both doses were ineffective in
amphetamine-injected OVX rats. On its own, haloperidol
spared LI. ANOVA yielded significant main effects of
pre-exposure (F(1,121)¼ 119.42, po0.001), gonadal status
(F(1,121)¼ 5.32, po0.05), and treatment (F(4,121)¼ 4.99,
po0.05), as well as a significant pre-exposure� gonadal
status� treatment interaction (F(4,121)¼ 2.75, po0.05).
Post hoc comparisons confirmed the presence of LI in
saline-injected sham and OVX rats that received vehicle
or haloperidol and in amphetamine-injected sham rats
that received both doses of haloperidol (p’so0.01), but
not in the other conditions.
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Experiment 5: Effects of Clozapine (5, 10 mg/kg) on
Amphetamine-Induced LI Disruption in Sham and
OVX Rats

Figure 5 presents the mean log times to complete licks
76–100 (after tone onset) of the PE and NPE saline- or
amphetamine-injected sham and OVX rats pretreated with
0, 5, or 10 mg/kg of clozapine. As can be seen, saline-
injected sham and OVX rats exhibited LI whereas amphet-
amine-injected sham and OVX rats did not exhibit LI. LI
was restored in amphetamine-injected sham rats given both
doses of clozapine, whereas only the high dose was effective
in amphetamine-injected OVX rats. On its own, clozapine
spared LI.

ANOVA yielded significant main effects of pre-exposure
(F(1,131)¼ 143.36, po0.001), gonadal status (F(1,131)¼ 3.96,
po0.05), and treatment (F(4,131)¼ 13.84, po0.001), as well
as a significant pre-exposure� gonadal status� treatment
interaction (F(4,131)¼ 2.93, po0.05). Post hoc comparisons
confirmed the presence of LI in saline-injected sham and
OVX rats that received vehicle or clozapine, in amphet-
amine-injected sham rats that received both doses of
clozapine, and in amphetamine-injected OVX rats that
received the high dose of clozapine (p’so0.01), but not in
the other conditions.

Experiment 6: Effects of Coadministration of
Haloperidol (0.1 mg/kg) and 17b-Estradiol (50 lg/kg) on
Amphetamine-Induced LI Disruption in OVX Rats

Figure 6 presents the mean log times to complete licks
76–100 (after tone onset) of the PE and NPE saline- or
amphetamine-injected OVX rats pretreated with vehicle,
0.1 mg/kg haloperidol, 50 mg/kg 17b-estradiol or haloperidol

+ 17b-estradiol. As can be seen, vehicle-injected OVX
rats exhibited LI whereas amphetamine-injected OVX
rats did not exhibit LI. Administration of haloperidol or
17b-estradiol alone failed to restore LI in amphetamine-
injected OVX rats, but LI was restored in rats that
were coadministered with haloperidol and 17b-estradiol.
On their own, haloperidol and 17b-estradiol spared LI.
ANOVA yielded significant main effects of pre-exposure
(F(1,99)¼ 126.53, po0.001) and treatment (F(1,99)¼ 26.45,
po0.001), as well as a significant pre-exposure�
treatment� pretreatment interaction (F(3,99)¼ 9.39,
po0.001). Post hoc comparisons confirmed the presence
of LI in all four groups of saline-injected OVX rats,
as well as in amphetamine-injected rats that received
haloperidol + 17b-estradiol (p’so0.01), but not in the other
conditions.

Experiment 7: Effects of Coadministration of Clozapine
(5 mg/kg) and 17b-Estradiol (50 lg/kg) on
Amphetamine-Induced LI Disruption in OVX Rats

Figure 7 presents the mean log times to complete licks
76–100 (after tone onset) of the PE and NPE saline- or
amphetamine-injected OVX rats pretreated with vehicle,
5 mg/kg clozapine, 50 mg/kg 17b-estradiol or clozapine +
17b-estradiol. As can be seen, vehicle-injected OVX rats
exhibited LI whereas amphetamine-injected OVX rats did
not exhibit LI. Administration of clozapine or 17b-estradiol
alone failed to restore LI in amphetamine-injected OVX
rats, but LI was restored in rats that were coadministered
with clozapine and 17b-estradiol. On their own, clozapine
and 17b-estradiol spared LI. ANOVA yielded significant
main effects of pre-exposure (F(1,100)¼ 102.39, po0.001),
treatment (F(1,99)¼ 31.76, po0.001), and pretreatment
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(F(3,100)¼ 3.38, po0.05), as well as a significant pre-
exposure� treatment� pretreatment interaction (F(3,100)¼
6.21, po0.001). Post hoc comparisons confirmed the
presence of LI in all four groups of saline-injected OVX
rats, as well as in amphetamine-injected rats that received
clozapine + 17b-estradiol (p’so0.01), but not in the other
conditions.

DISCUSSION

In this study, we showed that (1) amphetamine disrupted LI
in OVX rats as it did in sham-operated controls; (2)
compared to sham controls, reversal of amphetamine-
induced LI disruption in OVX rats required higher doses of
17b-estradiol and clozapine and was resistant to haloper-
idol; (3) coadministration of low dose of clozapine and
haloperidol with an ineffective dose of 17b-estradiol
restored LI in amphetamine-injected OVX rats; and (4)
17b-estradiol at medium and high doses reversed amphe-
tamine-induced LI disruption in sham rats.

Compared to our previous study centered on OVX-
induced disruption of LI (Arad and Weiner, 2009), in this
work the LI protocol has been changed so that OVX no
longer disrupted LI and an effect of amphetamine could be
shown. In experiment 1, as in the work by Arad and Weiner
(2009), no LI was evident in OVX rats if 40 pre-exposures
were followed by 2 conditioning trials. However, raising the
number of pre-exposures to 50 or reducing the number of
conditioning trials to 1 led to emergence of LI in these rats.
Nofrey et al (2008) have also found LI in OVX rats. The fact
that OVX effects on LI can be influenced by changing
procedural parameters indicates that hormonal level has no
role in the acquisition of LI, but exerts a modulatory
influence on its expression. Given the well-documented

capacity of estrogen to modulate DA neurotransmission
(Becker, 1999; Bourque et al, 2009; Chavez et al, 2010;
Dluzen and Horstink, 2003; Hughes et al, 2009; Morissette
et al, 2008), it is noteworthy that DA manipulations also
exert only a modulatory influence on the expression of LI
(Weiner, 2003).

Under conditions yielding LI in OVX rats, amphetamine
disrupted LI as it did in sham controls. Disruption of LI
reflects a selective attention deficit, whereby animals lose
the capacity to ignore the irrelevant stimulus, and is also
observed in amphetamine-treated humans, as well as in
high-schizotypal humans (Braunstein-Bercovitz et al, 2002;
Gray et al, 1992b; Salgado et al, 2000; Swerdlow et al, 2003;
Thornton et al, 1996) and in acutely psychotic schizo-
phrenia patients (Baruch et al, 1988; Gray et al, 1992a,
1995b; Rascle et al, 2001; but also see Swerdlow et al, 2005).
A failure to inhibit attention to irrelevant stimuli is likely to
give rise to aberrantly increased salience perception and
distractibility that are associated with psychotic symptoms
(Kapur et al, 2005; Weiner and Arad, 2009). These results
show that unlike the reduced efficacy of APDs in OVX rats,
the efficacy of amphetamine is not compromised by OVX.
The latter suggests that the pro-psychotic action of
amphetamine, and by extension, of increased dopaminergic
function does not require estrogen. Similar results were
reported with PPI. OVX spared PPI, which was disrupted by
the DA agonist apomorphine (Gogos et al, 2009; Van den
Buuse and Eikelis, 2001). PPI in OVX rats was disrupted also
by the pro-psychotic NMDA antagonist MK-801. We have
also found that MK-801 exerts the same effect on LI in OVX
and sham rats (M Arad and I Weiner, unpublished data).
Taken together, these results indicate that pro-psychotic
drugs from different classes remain effective in OVX rats.

As shown repeatedly in the past using males (for review
see Weiner, 2003; Weiner and Arad, 2009), amphetamine-
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induced LI disruption in sham female rats was reversed here
by both clozapine and haloperidol, at both doses used.
However, both drugs were less effective in OVX rats.
Clozapine was effective only at the higher 10 mg/kg dose,
and haloperidol failed to restore LI at both the 0.1 and
0.3 mg/kg doses. These outcomes extend our previous
demonstration of reduced APD efficacy in reversing LI
disruption in pharmacologically nontreated OVX rats (Arad
and Weiner, 2009). Moreover, LI disruption in ampheta-
mine-treated OVX rats is more resistant to APDs because in
the previous study, clozapine was effective at the 5 mg/kg
dose. These results support our previous conclusion that
OVX-induced loss of estrogen reduces the potency of APDs,
and further indicate that loss of estrogen coupled with
hyperdopaminergia aggravates the loss of APDs efficacy so
that not only typical but also atypical APDs, which are
considered more effective antipsychotics in general (Hor-
acek et al, 2006; Stone and Pilowsky, 2006) and in women in
particular (de Leon et al, 2004), lose their efficacy.

Failure of APDs to restore disrupted LI, and in particular
the different efficacies of haloperidol and clozapine, in OVX
rats, are of particular interest given that in male rats,
reversal by both classes of APDs has characterized to date
all known instances of LI disruption, be they induced by
pharmacological (Barak and Weiner, 2007; Russig et al,
2003), brain lesion (Coutureau et al, 1999; Weiner et al,
1996a), neurodevelopmental (Zuckerman et al, 2003), or
parametric (Killcross et al, 1994b; Shadach et al, 1999;
Weiner et al, 1996b) manipulations. Thus, loss of estrogen
in female rats appears to exert a unique and powerful
interference with APD action.

Following our previous demonstration that concurrent
17b-estradiol treatment potentiated the action of APDs
(Arad and Weiner, 2009), here we postulated that ineffective
APD doses would also regain their capacity to block
amphetamine-induced disrupted LI in the presence of
estrogen. Indeed we found that coadministration of low
haloperidol and low clozapine doses with an ineffective dose
of 17b-estradiol restored the efficacy of haloperidol and
clozapine, although each of the drugs alone (in these doses)
did not restore LI. These results indicate that 17b-estradiol
restores specifically the anti-psychotic (anti-amphetamine)
action of APDs, both typical and atypical. The latter
outcome is consistent with other reports that the behavioral
effects of D2 antagonists in OVX rats are potentiated by
coadministration of 17b-estradiol (Bedard et al, 1982;
Daniel, 2006; De Ryck et al, 1982; Di Paolo et al, 1979,
1984; Nicoletti et al, 1983; Palermo-Neto and Dorce, 1990).

17b-Estradiol not only potentiated the anti-amphetamine
action of APDs but also prevented amphetamine from
disrupting LI when given on its own. Gogos et al (2009)
recently found that chronic estradiol blocked disruption of
PPI induced by apomorphine. Importantly, here 17b-
estradiol blocked amphetamine effects in both OVX and
sham rats. Furthermore, although the anti-amphetamine
action was exerted in sham rats by both 50 and 150 mg/kg
17b-estradiol, in OVX rats only the highest dose of 150 mg/
kg exerted such action. The fact that a higher 17b-estradiol
dose was needed to counteract amphetamine action in OVX
rats suggests that low level of hormones and hyperdopami-
nergia are synergistic, supporting the notion that OVX-
induced hormonal reduction is pro-psychotic.

The low dose of 17b-estradiol (10 mg/kg), although having
no effect on amphetamine-induced disruption in both sham
and OVX rats, disrupted LI in both sham and OVX rats.
Nofrey et al (2008) have also reported that under conditions
in which OVX spared LI, 10 mg/kg of 17b-estradiol disrupted
LI. Taken together, results by Nofrey et al (2008) and by us
suggest that high doses of estradiol exert an antipsychotic
action whereas low doses exert a pro-psychotic action.

Amphetamine-induced LI disruption and its reversal by
APDs are mediated by increased DA release and blockade of
DA transmission, respectively, within the nucleus accum-
bens (Gray et al, 1995a; Warburton et al, 1996; Weiner,
2003). Consequently, our results imply that acute high dose
of estradiol, which blocked the effects of amphetamine and
potentiated the effects of haloperidol on LI, reduced
mesolimbic DA function, whereas low dose, which dis-
rupted LI, increased DA release within the nucleus
accumbens. Results consistent with both reduction and
increase of striatal dopaminergic function by estradiol have
been reported for all indices of dopaminergic activity,
including receptor levels/binding, membrane dopamine
transporter levels, and release, depending on dose and
treatment paradigm (Arvin et al, 2000; Bazzett and Becker,
1994; Becker and Beer, 1986; Becker and Rudick, 1999; Di
Paolo, 1994, 1982, 1984, 1985; Disshon et al, 1998; Disshon
and Dluzen, 2000; Dluzen, 1997; Landry et al, 2002;
McDermott, 1993; McDermott et al, 1994; Morissette et al,
2008; Morissette and Di Paolo, 1993; Peris et al, 1991; Shieh
and Yang, 2008; Thompson and Moss, 1994; Zhou et al,
2002). It has been suggested that antidopaminergic effects
are primarily exerted by high doses of estrogen or chronic
administration, whereas pro-dopaminergic actions are more
associated with lower physiological levels of estrogen
(Barber et al, 1976; Becker, 1999; Bedard et al, 1977; Cyr
et al, 2002; Di Paolo, 1994; Di Paolo et al, 1981; Hruska and
Silbergeld, 1980; McEwen and Alves, 1999; Riddoch et al,
1971). The specific mechanisms by which estradiol exerts
the effects observed here remain to be elucidated.

OVX had been proposed to model gonadal hormone
withdrawal occurring at menopause (Bosse and Di Paolo,
1995; Le Saux and Di Paolo, 2006; Vaillancourt et al, 2002).
In support of this notion, we showed previously that OVX
disrupts LI and impairs the efficacy of APDs to restore LI in
OVX rats, in line with reduced APD efficacy reported in
menopausal women with schizophrenia (Arad and Weiner,
2009). In this study, we used a combination of reduced
hormonal level induced by OVX and increased dopaminer-
gic activity induced by amphetamine to more closely model
what may be occurring during menopause in women
vulnerable to psychosis. Using disrupted LI and its
restoration by 17b-estradiol and APDs as a behavioral
readout for this biological constellation, our results have
extended and strengthened our previous findings and their
implications for the often-debated relationship between
hormonal level and vulnerability to psychosis.

First, cessation of hormones interferes with the anti-
psychotic action of APDs as reflected in lowered efficacy to
reverse amphetamine-induced LI disruption. Because the
behavioral effects of amphetamine in general and amphe-
tamine-induced LI disruption in particular are well-
established models of psychosis, fortified by the capacity
of amphetamine to induce and exacerbate psychosis in
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healthy and schizophrenic humans as well as enhance
striatal DA release in schizophrenia patients (Laruelle et al,
1996, 1999), reduced efficacy of APDs in blocking amphe-
tamine-induced behavioral abnormality allows a strong
conclusion that loss of estrogen reduces specifically the
antipsychotic potency of APDs. This reduced anti-amphe-
tamine efficacy of APDs on the background of low
hormonal level provides a close parallel to reduced efficacy
of APD treatment in women with schizophrenia during
periods associated with low levels of hormones (Kulkarni
et al, 1996; Saugstad, 1989; Seeman, 1989; Seeman and Lang,
1990).

Second, cessation of hormones may be synergistic with
hyperdopaminergia induced by amphetamine. Although
our data do not show directly that amphetamine is more
efficacious in disrupting LI in OVX rats, indirectly the data
indicate that the effects of amphetamine on LI in OVX rats
were more potent than in sham rats. Thus, a three times
higher dose of 17b-estradiol was needed to block the LI
disruptive effect of amphetamine in OVX than the dose
needed in sham rats; in addition, both low and high doses of
haloperidol and clozapine reversed disrupted LI in sham
and OVX rats, but only high dose of clozapine was effective
in OVX rats injected with amphetamine. It remains to be
shown directly that OVX rats are more sensitive to LI
disruptive effects of amphetamine. Such increased sensitiv-
ity could be shown by proving that amphetamine is effective
in disrupting LI in OVX rats under conditions at which it
loses capacity to disrupt LI in normal rats (De la Casa et al,
1993; Killcross et al, 1994a), or that LI disruption in OVX
rats can be achieved by lower amphetamine doses than in
control rats. However, be it normal or higher compared to
sham, the potency of amphetamine in OVX rats sharply
contrasts with the loss of potency of APDs after OVX.
Reduced sensitivity to dopaminergic blockade coupled with
intact/increased sensitivity to increased DA transmission in
OVX rats may provide clues as to how loss of estrogen
exacerbates or triggers psychosis in vulnerable women.

Finally, our results show that 17b-estradiol can exert
antipsychotic activity as reflected in reversal of ampheta-
mine-induced LI disruption in OVX and sham rats. As
detailed in the Introduction, it has been suggested that
exogenous estrogen may have antipsychotic properties or
increase response to APDs in women with schizophrenia.
Although the latter has been supported in several studies
(Agius et al, 2009; Akhondzadeh et al, 2003; Cyr et al, 2002;
Korhonen et al, 1995; Kulkarni, 2009; Kulkarni et al, 1996,
2001, 2008a,; Lindamer et al, 2001; Mortimer, 2007; Rao and
Kolsch, 2003), other studies reported that estrogen treat-
ment failed to improve or even worsened symptoms
(Bergemann et al, 2005; Chua et al, 2005; Gattaz et al,
1994; Lindamer et al, 2001; for review see Mortimer, 2007).
We previously provided support for antipsychotic capacity
of 17b-estradiol by showing a synergistic effect of ineffective
doses of 17b-estradiol and APDs in reversing OVX-induced
disrupted LI (Arad and Weiner, 2009), and have replicated
such a synergistic effect here for amphetamine-induced
disrupted LI. However, although a synergistic action
between APDs and 17b-estradiol implies that APDs require
a certain level of estrogen to be effective, such dependence
does not confer 17b-estradiol a direct antipsychotic action.
In contrast, the capacity of 17b-estradiol given on its own to

reverse amphetamine-induced disrupted LI in OVX rats as
well as in sham rats strongly supports a direct antipsychotic
action of 17b-estradiol. We have recently found that 17b-
estradiol also reverses amphetamine-induced disrupted LI
in male rats (M Arad and I Weiner, unpublished data).

In summary, the differential sensitivity to blockade and
enhancement of dopaminergic transmission after OVX as
seen here, with reduced sensitivity to DA blockade and
spared or potentiated sensitivity to DA stimulation, may
provide a novel model of menopausal psychosis that is
associated with low levels of estrogen along with hyperfunc-
tion of the dopaminergic system. This constellation appears
to rather accurately model the combination of increased
vulnerability to psychosis with reduced response to APD
treatment in female patients during menopause (Hafner,
2003; Seeman, 1989). Such a model may have important
implications for the clinical progression and treatment of
schizophrenia in women. Regarding the latter, our data are
clear in showing that estrogen exerts antipsychotic activity.
Unfortunately, in OVX rats and by extension in menopausal
women, very high doses of 17b-estradiol would be needed.
However, our data do suggest that using physiological 17b-
estradiol doses as an add-on treatment may augment APD
efficacy, and in fact may be more effective than raising the
dose of APD.

A gender focus on mental disorders has been rapidly
emerging in the last few years kindled by the acknowl-
edgment of salient gender differences in all major
psychiatric disorders. Much effort still needs to be invested
by both clinical and basic research to study the biological
and psychological causes and impacts of psychiatric
disorders in the female gender. The present model is a step
in this direction.
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