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Several lines of evidence from post-mortem, brain imaging, and genetic studies in schizophrenia patients suggest that Gamma-amino

butyric acid (GABA) deficits may contribute to the pathophysiology of schizophrenia. Pharmacological induction of a transient GABA-

deficit state has been shown to enhance vulnerability of healthy subjects to the psychotomimetic effects of various drugs. Exacerbating or

creating a GABA deficit was hypothesized to induce or unmask psychosis in schizophrenia patients, but not in healthy controls. To test

this hypothesis, a transient GABA deficit was pharmacologically induced in schizophrenia patients and healthy controls using iomazenil, an

antagonist and partial inverse agonist of the benzodiazepine receptor. In a double-blind, randomized, placebo-controlled study, clinically

stable chronic schizophrenia patients (n¼ 13) received iomazenil (3.7 mg administered intravenously over 10 min). Psychosis was

measured using the Brief Psychiatric Rating Scale and perceptual alterations were measured using the Clinician Administered Dissociative

Symptoms Scale before and after iomazenil administration. These data were compared with the effects of iomazenil in healthy subjects

(n¼ 20). Iomazenil produced increases in psychotic symptoms and perceptual alterations in schizophrenia patients, but not in healthy

controls. The greater vulnerability of schizophrenia patients to the effects of iomazenil relative to controls provides further support for

the GABA-deficit hypothesis of schizophrenia.
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INTRODUCTION

Converging lines of evidence, including postmortem (Benes,
2000; Benes and Berretta, 2001; Benes et al, 1996; Hashimoto
et al, 2003; Lewis et al, 2005; Ohnuma et al, 1999; Volk et al,
2000; Volk and Lewis, 2002; Volk et al, 2002; Woo et al,
1998), genetic (reviewed by Charych et al (2009), and
brain imaging studies (Ball et al, 1998; Busatto et al, 1997;
Schroder et al, 1997; Verhoeff et al, 1999; Yoon et al, 2010),
suggest that dysfunction of the gamma-amino butyric acid
(GABA) system contributes to the pathophysiology of
schizophrenia. In postmortem studies of schizophrenic
patients, alterations in GABAergic transmission have been
shown in many ways, including (1) reduced mRNA levels
for the GABA-synthesizing enzyme glutamic acid decarboxy-
lase-67 (Impagnatiello et al, 1998; Volk et al, 2000), (2)

decreased density of axon cartridges of chandelier neu-
rons (Woo et al, 1998), (3) decreased gene expression of
the GABA membrane transporter-1 (Ohnuma et al, 1999;
Volk and Lewis, 2002), (4) increased density of GABA-A
receptors (Benes et al, 1996), (5) elevated density of
a1- (Impagnatiello et al, 1998; Ohnuma et al, 1999) and
a2-subunit-containing GABA-A receptors at pyramidal
neuron axon segments (Volk et al, 2002), (6) decreased
Reelin mRNA, which is preferentially expressed in
GABAergic interneurons (Impagnatiello et al, 1998), and
(7) decreased levels of ankyrin-G, a membrane protein that
anchors the GABA receptor complex onto initial axonal
segments of pyramidal cells in the area of chandelier cell
synapses in superficial cortical area (Cruz et al, 2009). Many
of these findings appear to be specific to schizophrenia
(Volk and Lewis, 2002). Besides post-mortem data, some
in vivo brain imaging (SPECT) studies suggest reduced
benzodiazepine (BZ) receptor binding in schizophrenia
(Ball et al, 1998; Busatto et al, 1997; Schroder et al, 1997).

GABAergic deficits described above may contribute to the
pathophysiology of psychosis by several mechanisms. While
it is out of the scope of this paper to discuss all the possible
mechanism, a few putative mechanism are discussed below.
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One mechanism may involve the critical role that GABA
interneurons have in synchronizing neural activity and,
consequently, in information processing (reviewed in
Uhlhaas and Singer, 2010). Sensory perception, emotion,
attention, and memory, which are characteristically dis-
turbed in schizophrenia, are based on distributed processes
among multiple cortical and subcortical regions. It has been
proposed that the neural assemblies representing these
processes are functionally ‘bound’ together by synchronous
high-frequency oscillatory activity to create a coherent
cortical representation (Engel and Singer, 2001; Singer,
1999; Singer and Gray, 1995; Tallon-Baudry, 2003; Varela,
2001; Varela, 1995). The spike timing of pyramidal cells and
the tuning of neuronal rhythms are largely governed by
GABAergic interneurons. Loss of the inhibitory influence of
GABAergic interneurons from cell loss or reduced function
could lead to a loss of synchronization of pyramidal cell
activity, resulting in the loss of associative functions,
disruption of normal gating mechanisms, and eventually
psychotic symptoms. Consistent with this hypothesis,
several lines of evidence suggest that dysfunctional syn-
chronized oscillatory neuronal activity may contribute to
the pathophysiology of the perceptual and cognitive
abnormalities in schizophrenia (Lewis et al, 2005; Uhlhaas
and Singer, 2010).

Another potential mechanism by which GABA contribute
to the pathophysiology of psychosis may involve the
interactions between the GABA and dopamine (DA)
systems. Converging lines of evidence suggest that the
activity of DA neurons in the VTA is under tonic inhibitory
control by GABA-A receptors (Fritschy and Mohler, 1995;
Pirker et al, 2000; Waldvogel et al, 2008). Specifically
relevant to this study, systemic administration of GABA-A
receptor inverse agonist, FG7142 has been shown to activate
VTA neurons (Murphy et al, 1996). Interestingly, FG7142-
induced VTA activation was reversed by DA receptor
antagonists. It should be noted that FG7142 and iomazenil
are both inverse agonists. Therefore, a reduction in
GABAergic transmission by GABA-A receptors, as would be
the case with iomazenil, in the presence of pre-existing
dysregulation of DA function, as is the case in schizophrenia,
would be expected to further disinhibit DA systems, leading
to a worsening of the DA-related symptoms in schizophrenia
(Abi-Dargham et al, 1998; Laruelle et al, 1996). We acknowl-
edge that this study does not directly test whether iomazenil
increases neural synchrony deficits or DA dysregulation.
Rather, the study measures a very distal outcomeFpsychotic
symptoms that could result from an exacerbation of DA
dysregulation or altered neural synchrony. The current report
describes how pharmacological induction of GABAergic
deficits, with iomazenil, increases psychosis.

Pharmacological induction of GABAergic deficits in-
creases vulnerability to psychosis. Iomazenil (Ro 16–0154)
is an iodine analog of the BZ receptor competitive
antagonist flumazenil. Iomazenil has high affinity and
selectivity for BZ receptors (Kd¼ 0.5 nM) (Johnson et al,
1990). Some of its pharmacological properties are compar-
able with those of flumazenil (Beer et al, 1990). However,
unlike the competitive antagonist flumazenil, which blocks
the effects of BZ agonists but lacks intrinsic pharmaco-
logical effects (Hunkeler et al, 1981), inverse agonists have
intrinsic pharmacological effects opposite to those of BZs

(Tallman and Gallager, 1985). In preclinical studies,
iomazenil has been shown to behave as a BZ receptor
competitive antagonist with inverse agonist effects (Beer
et al, 1990; Roche; Schubiger and Hasler, 1989). Similarly,
clinical studies demonstrate that iomazenil has anxiogenic
effects and at higher doses has proconvulsant effects
(Randall, personal communication) that are consistent with
inverse agonist activity at BZ receptors. Iomazenil produces
a net deficit in GABA function.

Iomazenil has been shown to increase the psychotomi-
metic effects of the 5-HT2 partial agonist 1-(m-chlorophe-
nyl)piperazine (m-CPP) in healthy subjects (D’Souza et al,
2006). Thus, although neither iomazenil nor m-CPP alone
induces psychosis, the combination of iomazenil followed
by m-CPP causes measurable psychotic symptoms in
healthy subjects. Similarly, unpublished preliminary data
from our laboratory suggest that GABA deficits induced by
iomazenil pretreatment may also increase the psychotomi-
metic effects of low-dose amphetamine (0.1 mg/kg, intrave-
nous (IV) infusion over 1 min), which by itself does not
induce psychotic symptoms, and delta-9-tetrahydrocanna-
binol (D9-THC) in healthy subjects. Collectively, these
studies suggest that the known vulnerability of schizo-
phrenia patients to the psychotomimetic effects of amphe-
tamine (Laruelle et al, 1999; Laruelle et al, 1996) and
D9-THC (D’Souza et al, 2005) might result from pre-existing
GABA deficits.

Although there is strong support for the existence of a
GABA deficit in schizophrenia, the proportion of schizo-
phrenia patients with this deficit is not known. The limited
data available suggest that only 50% of schizophrenia
patients have lower GABA levels than the lowest level found
in healthy normal controls (Yoon et al, 2010). Furthermore,
BZ augmentation reduces psychosis in only 30–50% of
schizophrenia patients (Wolkowitz and Pickar, 1991).

We hypothesized that if GABA deficits contribute to an
increased propensity toward psychosis in schizophrenia,
then enhancement of these deficits should exacerbate
psychotic symptoms in some schizophrenia patients, but
not in healthy normal controls.

MATERIALS AND METHODS

Participants

Thirteen chronic, stable schizophrenia patients were
recruited and compared with data from 20 healthy normal
controls from a previous study (D’Souza et al, 2006).
Diagnosis was confirmed by SCID-III-R or SCID-IV.
Inclusion and exclusion criteria for both studies were
identical other than diagnosis. Included were men, 18–70
years old, who were able to provide informed consent;
excluded were those with other Axis-I disorders; substance
abuse (by history or urine toxicology); treatment with BZs
in the previous week, clozapine, or low-potency anti-
psychotics (thorazine, thioridazine, mesoridazine); unstable
medical conditions; active neurological illness requiring
treatment; seizure history; abnormal baseline EKG;
suboptimally controlled psychosis (defined as 416 on the
four-key positive symptom subscale of the Brief Psychiatric
Rating Scale (BPRS)); high risk for violence or suicide; and
women, as the teratogenic potential of iomazenil is
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unknown. Potential subjects underwent a thorough medical
and psychiatric history, complete physical examination, and
a battery of laboratory tests including EEG, EKG, blood
chemistry (CBC, BUN, creatinine, fasting blood glucose,
electrolytes, liver and thyroid function tests), and urinalysis.

The study was conducted at the Neurobiological Studies
Unit (VA Connecticut Healthcare System, West Haven, CT)
with the approval of the Institutional Review Boards of
VA Connecticut Healthcare System and Yale University
School of Medicine. Subjects were recruited by word
of mouth, clinician referral, and public advertisement.
Subjects were compensated $100 per test day for participat-
ing. Confidentiality of study data was assured. Data on the
effects of iomazenil in healthy subjects were taken from the
iomazenil-only and placebo-only test days of a published
study of the interactions of iomazenil and m-CPP (D’Souza
et al, 2006). These studies were carried out in the same
setting, by the same investigators and raters, during the
same time period, using almost identical protocols.

Experimental Design

Subjects completed two test days, during which they
received placebo or active (3.7 mg/kg) iomazenil over
10 min in random, counterbalanced order under double-
blind conditions. Test days were separated by at least 72 h in
order to minimize any carryover effects.

Schedule of testing

The detailed schedule of test procedures is described
elsewhere (D’Souza et al, 2006). Subjects were required to
refrain from using alcohol, street drugs, psychotropic
medications, or caffeinated beverages for 2 weeks before
testing and throughout the entire study. Urine toxicology
was conducted on each test day to rule out recent drug use;
a positive screen resulted in exclusion from the study.

After obtaining IV access and two sets of baseline
assessments, subjects were administered active IV iomazenil
or placebo (saline over a 10-min period). Behavioral ratings
were conducted before (�55 to �30 min) and after ( + 10 to
+ 30 min) the administration of iomazenil.

Measures

Psychotic symptoms were measured using the four-key
positive symptom subscale of the BPRS, which has items for
hallucinatory behavior, conceptual disorganization, unusual
thought content, and suspiciousness (Overall and Gorham,
1962; Woerner et al, 1988). Perceptual alterations were
measured using the Clinician Administered Dissociative
Symptoms Scale (CADSS) (Bremner et al, 1998), a scale
consisting of 19 self-report items and 8 clinician-rated items
(0, not at all; 4, extremely), that evaluates aspects of altered
environmental perception, time perception, body percep-
tion, feelings of unreality, and memory impairment. The
scale has been shown to be sensitive to the effects of other
psychoactive drugs, including ketamine and THC (D’Souza
et al, 2004; Krystal et al, 1994). Anxiety was measured
using the clinician-rated anxiety item of the BPRS, which
is sensitive to iomazenil effects (D’Souza et al, 2006). The
same research assistant rated both days of a subject and

the same group of staff rated both schizophrenia patients
and healthy controls. Interrater reliability was assessed
every 1–2 months, and intraclass coefficients for the BPRS
and CADSS were consistently 40.85.

Statistical Analysis

All statistical analyses were performed using SPSS Version
17. Demographic data were compared using independent
t-tests. As the BPRS and CADSS data were not normally
distributed in controls, and as there were obvious baseline
differences between the two groups, peak change from
baseline was used in the analysis of these behavioral
outcome variables. These variables were analyzed using
repeated analysis of variance (ANOVA) with iomazenil
(active vs placebo) as within-subject factor and group
(schizophrenia vs control) as between-subject factors.

RESULTS

Schizophrenia patients were significantly older, less edu-
cated, and less employed than control subjects (Table 1).

Positive Symptoms

There was a significant main effect of drug (iomazenil vs
placebo, F(1,31)¼ 7.26, p¼ 0.011) and drug-by-group inter-
action (F(1,31)¼ 5.84, p¼ 0.022), but no main effect of
group (schizophrenia vs control, F(1,31)¼ 0.20, p¼ 0.66) on
peak change in four-key BPRS scores. Although iomazenil
did not have any significant effect on four-key BPRS scores
in controls (0.1±0.31 for placebo and 0.15±0.67 for
iomazenil, F(1,12)¼ 0.09, p¼ 0.77), it produced significant
increases in schizophrenia subjects (�0.46±0.97 for
placebo and 0.46±1.66 for iomazenil, F(1,12)¼ 6.35,
p¼ 0.027, P2¼ 0.35; Figure 1).

Overall Symptoms

There were no significant effects of group (F(1,31)¼ 3.35,
p¼ 0.08), drug (F(1,31)¼ 0.87, p¼ 0.36), or drug� group
interaction (F(1,31)¼ 0.29, p¼ 0.60) in total BPRS score
peak change.

Perceptual Alterations

There was a significant main effect of drug (iomazenil vs
placebo, F(1,31)¼ 10.08, p¼ 0.003) and a drug-by-group
interaction (F(1,31)¼ 5.05, p¼ 0.032) but no main effect of
group (schizophrenia vs control, F(1,31)¼ 0.004, p¼ 0.95)
on peak change in CADSS total scores. Although iomazenil
did not have any significant effect on peak change in CADSS
total scores in controls (0.35±1.04 for placebo and
0.60±1.76 for iomazenil, F(1,12)¼ 0.80, p¼ 0.38), it pro-
duced significant increases in schizophrenia subjects
(�0.23±1.17 for placebo and 1.23±1.42 for iomazenil,
F(1,12)¼ 8.08, p¼ 0.015, ZP

2 ¼ 0.40; Figure 2). There were no
significant correlations between the peak change in CADSS
and BPRS four-key positive symptom scores for each drug
condition.
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Anxiety

Baseline BPRS anxiety scores were comparable between
placebo day and iomazenil day in both schizophrenia
(Table 1). There were no significant effects of group
(F(1,31)¼ 0.03, p¼ 0.87), drug (F(1,31)¼ 0.73, p¼ 0.40),
or drug� group interaction (F(1,31)¼ 0.73, p¼ 0.40) on the
peak change of BPRS anxiety subscale.

DISCUSSION

Consistent with the GABA-deficit hypothesis of schizo-
phrenia, iomazenil increased psychotic symptoms and
perceptual alterations in schizophrenia patients, but not in
controls. The effects of iomazenil were modest; effect size
was small (ZP

2¼ 0.35). It should be noted that the schizo-
phrenia patients were symptomatically stable and taking
D2-receptor antagonists, which could have blunted their
response to iomazenil. Furthermore, as GABA deficits likely
contribute to a vulnerability to psychosis rather than being
intrinsically pro-psychotic, the small effect of iomazenil was
not unexpected, and is noteworthy especially as iomazenil
did not have any effects in healthy normal subjects. The
notion that GABA deficits increase the vulnerability to
psychosis is illustrated by the observation that although
m-CPP, a partial serotonin 2C, 1A, 1B, and 1D receptor

agonist, did not produce psychosis in healthy subjects when
administered alone, it did so when administered after
iomazenil (D’Souza et al, 2006).

Iomazenil increased psychosis and perceptual alterations
in about 50% of schizophrenia patients (Figures 1 and 2),
supporting the hypothesis that GABA deficits may be
present only in a subgroup. As discussed elsewhere, GABA
deficits may increase vulnerability to pro-psychotic drugs.
Thus, the hypothesis that only a subgroup of schizophrenia
patients have GABA deficits might explain why only a
subgroup of schizophrenia patients experience worsened
psychosis in response to m-CPP (Iqbal et al, 1991; Krystal
et al, 1993), amphetamine (Lieberman et al, 1987), ketamine
(Lahti et al, 1995; Malhotra et al, 1997), or D9-THC (D’Souza
et al, 2005).

The use of iomazenil to interrogate GABA function in
schizophrenia is novel. This study has a number of
strengths, including a double-blind, placebo-controlled
design, and use of well-validated measures. It also has
some limitations. First, the sample size was relatively small,
thus confirmatory study with a larger sample size may be
necessary. The groups were not matched for treatment with
antipsychotic drugs. However, treatment with antipsychotic
medications (DA D2 receptor antagonists) would be
expected to blunt the response of schizophrenia patients
to iomazenil, obscuring group differences rather than

Table 1 Demographic Characteristics

Schizophrenia (n¼ 13) Controls (n¼20) Comparison

Age (years)* 45.7±10.6 37.9±9.9 t¼ 2.157, df¼ 31, p¼ 0.039

M/F 13/0 20/0 NS

Ethnicity (Caucasian/African American/other) 6 Caucasian,
6 African American,
1 Hispanic

13 Caucasian,
5 African American,
2 Hispanic

Phi¼ 0.219, p¼ 0.452

Employment status** 2 of 13 employed All employed Phi¼ .877, po0.001

Education (years)** 12.4±1.99 15.9±1.86 t¼�4.439, df¼ 26, po0.001

BPRS baseline scores

Total** 30.69±6.36 19.05±1.19 t¼ 8.043, df¼ 31, po0.001

Positive symptoms** 8.38±4.11 4.05±.22 t¼ 4.743, df¼ 31, po0.001

Anxiety baseline* 1.69±0.79 1.28±.60 t¼ 2.133, df¼ 31, p¼ 0.041

CADSS baseline score* 1.54±2.70 0.10±.31 t¼ 2.383, df¼ 31, p¼ 0.024

Schizophrenia subtype (DSM-IIIR) Chronic paranoidF11

Chronic undifferentiatedF1

Chronic disorganizedF1

Age of onset (years) 28.75±10.33

Antipsychotic medication FluphenazineF2

Fluphenazine decanoateF2

HaloperidolF1

PerphenazineF1

RisperidoneF1

OlanzapineF1

UnmedicatedF3

Antipsychotic dose (mg) in chlorpromazine equivalents 668±686 mg

*po0.05, **po0.001.
Data presented as means±SD.
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enhancing them. Further studies comparing schizophrenia
patients on and off antipsychotic medications will need to
be conducted. The groups were also not matched by age.
However, there is no reason to presume that older subjects
show increased response to iomazenil, and a significant
response to iomazenil persisted within the schizophrenic
group even when age was used as a covariate in the analysis.
As only men were studied, because the teratogenic potential
of iomazenil is unknown, the results may not generalize to
women. Finally, on the basis of other evidence suggesting
GABA deficits in schizophrenia (Lewis and Hashimoto,
2007), the study presumes that any differential responses to
iomazenil reflect a trait rather than a state. However, this
will need to be confirmed by studying the effects of
iomazenil in different stages of schizophrenia.

In conclusion, iomazenil exacerbated psychosis in some
schizophrenia patients. Identifying patients with GABA
deficits is of therapeutic relevance, as a number of drugs can
be used to enhance GABA function, such as MK-077, BZs,
tiagabine, and vigabatrin. The findings of this small study
justify future studies with iomazenil in a larger sample
with more proximal measures of GABA function (such as
electrophysiological indices of neural synchrony) that might
be more sensitive in assessing GABA deficits in schizo-
phrenia. Further studies should also compare schizophrenia
patients on and off antipsychotic medications, and compare
different stages of schizophrenia to verify that any observed
GABA deficits are stable over time.
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