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Abstract

Mice lacking the p27Kip1 Cdk inhibitor (Cdkn1b) exhibit increased susceptibility to lymphomas from the Maloney murine
leukemia virus (M-MuLV), and exhibit a high frequency of viral integrations at Xpcl1 (Kis2), a locus on the X-chromosome.
Xpcl1 encodes miR-106a,363, a cluster of microRNAs that are expressed in response to adjacent retroviral integrations. We
report the first large-scale profile of microRNA expression in MuLV-induced lymphomas, in combination with microarray
gene expression analysis. The source material was T-cell lymphomas induced by M-MuLV in p27Kip1 knockout mice and
normal thymus. Surprisingly, the overall levels of miRNA expression were equivalent in lymphomas and normal thymus.
Nonetheless, the expression of specific microRNAs was altered in tumors. The miR-106a,363 miRNA were over-expressed in
lymphomas, particularly those with viral integrations at the Xpcl1 locus. In contrast, p27Kip1 deletion itself was associated
with a different pattern of microRNA expression. Gene expression was dramatically altered in lymphomas, yet paralleled
data from T-cell lymphomas induced by other mechanisms. Genes with altered expression in association with the p27Kip1

null genotype were of similar functional classes to those associated with Xpcl1 integration, but with the opposite pattern of
expression. Thus, the effect of p27Kip1 deletion may be to oppose an anti-oncogenic effect of Xpcl1 rather than enhancing its
oncogenic functions. A subset of miR-106a,363 target genes was consistently reduced in lymphomas with Xpcl1
integrations, particularly genes with cell cycle and immune functions. We identify four predicted target genes of miR-
106a,363 miRNA, including N-Myc (Mycn), and the TGF-beta receptor (Tgfbr2) using 3’UTR reporter assays. Still,
bioinformatic miRNA target predictions were poor predictors of altered gene expression in lymphomas with Xpcl1
integration. Confirmation of miR-106a,363 gene targeting relevant to the tumor phenotype requires in vivo validation,
because only a subset of predicted targets are consistently reduced in tumors that overexpress miR-106a,363.
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Introduction

Mice lacking one or both copies of the p27Kip1 Cdk inhibitor are

susceptible to developing a variety of tumor types when exposed to

mutagenic agents. [1,2] Several oncogenes and tumor suppressor

genes have been shown to cooperate with p27Kip1 loss, including

PTEN and APC, in the induction of breast, colon and prostate

cancers in mouse models. [2–4] We previously identified Xpcl1 as a

common viral integration site in T-cell lymphomas induced by

Moloney murine leukemia virus (M-MuLV) infection. M-MuLV

integrations targeted Xpcl1 at a higher frequently in tumors

induced in p27Kip1 knockout mice. This finding suggested that

p27Kip1 deletion cooperates with Xpcl1 activation in tumorigenesis,

thus the region was referred to as the X-chromosome p27 cooperating

locus. [5] Expression of a non-coding RNA from this locus was

increased in tumors with Xpcl1 integrations, and this was higher

than levels expressed in normal thymic tissue. Xpcl1 is not

exclusively targeted by M-MuLV in mice with p27Kip1 deletions; it

has also been identified as a viral integration site in p27+/2 and

wildtype animals. [5,6] Likewise, integrations of other retroviruses,

RadLV and SL3-3, have been independently reported to map to

the same X-chromosomal site in murine lymphomas. [7,8] These

integrations were associated with increased expression of a cluster

of additional non-coding RNA splice variants, proximal to the

viral integrations that were collectively referred to as Kis2.

Mapping of microRNA sequences to the murine and human

genomes identified the locus as the coding sequence for a cluster

of five microRNAs, commonly referred to as miR-106a,363,

which span the proximal and distal EST clusters. [9] Thus the

normal gene, herein referred to as Xpcl1, apparently produces a

primary transcript that is cleaved to form component pre-miRNA

hairpins, as well as the flanking ESTs. Indeed, the individual

PLoS ONE | www.plosone.org 1 March 2011 | Volume 6 | Issue 3 | e14758



microRNA comprising miR-106a,363 have been shown to be

increased in tumors with viral integrations at the locus. [8,10]

Large scale viral mutagenesis screens identified increased

cointegration of retroviruses at Xpcl1 and cyclin D3 loci, which

further suggests an interaction between the Rb pathway with

Xpcl1 in tumorigenesis. [11]

MicroRNAs are products of RNA precursors transcribed by

RNA polymerase II and cleaved by the nuclear microprocessor

complex, which is comprised of the RNAse III, Drosha, and

DGCR8/Pasha, yielding 50280 bp stem-loop pre-miRNA (re-

viewed by R. Shivdasani). [12] Cytoplasmic Dicer further cleaves

the hairpin structures off pre-miRNA producing double stranded

RNA that includes the mature 20222 bp microRNA product.

Mature miRNA enter the RNA induced silencing complex

(RISC), where recognition or target mRNA sequences may lead

to translational silencing or degradation of mRNA targets. [13]

The miRBase database currently lists 600 microRNAs in the

mouse genome. [14] MicroRNA have been shown to impact a

wide variety of physiological activities including developmental

timing, cell proliferation, cell death, and hematopoiesis through a

combination of direct effects on target gene expression and a

cascade of secondary effects. [15] The first oncogenic non-protein

encoding RNA discovered was BIC, which lies at a common

integration site of the avian leukosis virus, and encodes miR-155.

[16,17] MiR-155 is overexpressed in a variety of human B-cell

lymphomas, and BIC overexpression induced lymphomas in

transgenic mice. [18–20] Human B-cell lymphomas have also

been shown to harbor gene rearrangements involving the miR-

17,92 microRNA cluster, which is a paralog of miR-106a,363.

Overexpression of miR-17,92 in transgenic mice increased the

rate of Myc-induced lymphomas and was associated with reduced

apoptosis, whereas cells lacking miR-17,92 are prone to Myc

induced apoptosis. [21,22]

It has been reported that tumor cells exhibit a global reduction

in miRNA expression compared to normal tissues, and that

impairment of the miRNA processing machinery is oncogenic.

[23,24] Yet, little is known about the global patterns of miRNA or

protein-coding gene expression in lymphomas induced by murine

retroviruses. A hypothesis of the current work is that genetic

alterations of M-MuLV induced lymphomas would result in

characteristic phenotypic patterns of miRNA and protein-coding

gene expression. Deletion of p27Kip1 has been shown to be

associated with more rapid M-MuLV-induced lymphoma devel-

opment, with a higher frequency of viral integrations at Xpcl1. We

therefore hypothesized that the gene expression phenotype

associated with p27Kip1 deletion in tumors would reflect an

enhancement of the tumor phenotype, or an enhancement of

the miRNA or gene expression profile specific to Xpcl1. The classes

of genes associated with p27Kip1 loss or Xpcl1 activation may give

clues to the altered functions associated with these mutations.

Herein, we report the results of both a miRNA and a protein-

coding gene expression analysis from M-MuLV induced T-cell

lymphomas. We also validate the targeting of four genes by

miRNA from the miR-106a,363 cluster.

Results

Global miRNA expression in lymphomas vs. normal
thymus

Global assessments of microRNA expression have not been

reported in MuLV-induced lymphomas. In this study, we used a

qPCR platform (previously described) to assess expression of 188

microRNAs. [25] The source material was T-cell lymphomas that

had been induced by the M-MuLV infection of mice, with or

without p27Kip1 knockout mutations, in F1 hybrid (C57BL/6J 6
129S4) mice, as well as normal thymus controls. Retroviral

integration sites were previously mapped in these samples, and

integrations at the Xpcl1 locus were identified in tumors from

p27Kip1 null animals, as well as in tumors arising in mice with one

or more intact copies of p27Kip1. [5,6] (The complete dataset is

given in Table S1) We first compared the global miRNA

expression profile of all tumors in comparison with normal murine

thymus. The abundance of specific microRNAs varied over a wide

range (Figure 1A). In keeping with what has been reported in

human cancers, we found that the majority of microRNAs were

reduced in lymphomas relative to total RNA input. [24] However,

this approach does not consider the fact that lymphoma cells have

a higher total RNA content than does normal thymocytes. We

therefore measured the RNA and DNA content in each tumor and

compared this to normal thymic tissue. On average, the

lymphomas contained 1.9-fold more RNA relative to tissue mass,

and relative to genomic DNA mass. Considering that M-MuLV

tumors are near diploid, we conclude that there was nearly a two-

fold increase in total RNA per cell in the lymphomas. [26] When

adjusting for the total RNA content per cell, we find that the

number of miRNAs significantly increased in lymphomas is

comparable to the number that are decreased (Figure 1B).

Likewise, the sum total quantity of miRNA in lymphomas was

equivalent to normal tissue (Fold change = 1.0860.05, tumor vs.

normal, mean 6 SE) when considered on a per cell basis.

miRNA associated with p27Kip1 null genotype and Xpcl1
integrations

Amongst tumor samples, we compared the global microRNA

expression profiles associated with p27Kip1 genotype (p27Kip1 null vs.

wildtype), as well as the status of viral integrations at Xpcl1 (positive

or negative). Unsupervised hierarchical clustering based on

abundance of individual miRNA (not shown) did not strictly

segregate tumor samples either by p27Kip1 genotype or by Xpcl1

integration. This indicates that, for the majority of miRNA,

neither of these factors are the major determinant of variability.

Nonetheless, some of the most striking changes in miRNA

expression in lymphomas included the microRNA encoded by

the miR-106a-363 cluster (Figure 1B). Using a supervised analysis

algorithm (PAM), we tested the hypothesis that viral integrations at

Xpcl1 are associated with expression of a distinct set of miRNA.

The median false positive discovery rate (FDR) was zero at up to 5

microRNAs but rose sharply at higher numbers. This indicates

that there are only 5 microRNAs (miR-363, miR-92-2, miR-20b,

miR-19b, and miR-106a) influenced by viral integration at Xpcl1

(Figure 1D). Sequence of a sixth microRNA, miR-18b, also lies in

the cluster but it was not increased in Xpcl1+ tumors relative to

Xpc1- tumors. Thus, the increased miR-18 levels noted in tumors

(Figure 1B), may be due to expression from paralogous miR-

17,92 cluster. One potential mechanism of cooperation would be

if p27Kip1 deletion increased Xpcl1 expression, e.g. by increasing

expression following retroviral gene insertions or by increasing the

miRNA stability. Therefore, we asked whether homozygous

deletion of p27Kip1 was associated with altered miRNA expression

in tumor samples. A supervised analysis (Figure 1C) suggests that 9

microRNAs were associated with the p27Kip1 null genotype, with

considerable variability (FDR 30%). However, this list of miRNAs

does not include those from the miR-106a,363 cluster. Likewise,

limiting the analysis to tumors without Xpcl1 integrations, also does

not identify miR-106a,363 microRNA associated with the

absence of p27Kip1 (not shown). Thus, p27Kip1 deletion does not

appear to augment miR-106a,363 expression in lymphomas, but

it may induce increases in other miRNAs.

Xpcl1 and p27Kip1 in Lymphoma
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Gene expression in M-MuLV induced tumors
Because gene expression profiles have not been reported for M-

MuLV induced lymphomas, we compared the general pattern of

gene expression in tumors compared to normal thymic tissue. Our

analysis normalized expression values within samples, as a function

of both expression intensities, and 2-dimensional feature locations.

[27] A supervised analysis (PAM) was used to identify genes

differentially expressed in tumors (Figure 2) compared to normal

thymus. In addition, tumors showed more heterogeneity of

expression compared to normal tissue. In order to determine

whether the pattern of expression seen in M-MuLV tumors was

similar to other T-cell lymphomas we compared our data to that

previously reported for T-cell lymphomas arising in mice with a ß-

catenin mutation. [28] We observed a high degree of correlation

across the two data sets, which is shown in Figure 2B, a plot of

expression rankings. The correlation is readily apparent as an

Figure 1. Expression of miRNA in M-MuLV lymphomas. The overall abundance and distribution of expression of individual miRNA species in
(A) lymphomas, compared to normal thymus, is similar but varies over a wide range. Concentration is expressed as copies per 10 pg or input RNA. Of
the 62 miRNA with expression levels.250 copies/cell (B) the majority show increased expression in tumors. (Levels displayed as the fold change of
copies per tumor cell relative to copies per normal thymocyte, on a log2 scale). All 5 miRNA from the miR-106a,363 cluster (green) are increased in
tumors. The dashed red line shows magnitude of baseline shift resulting from a mean 1.9-fold increase in total RNA in tumors vs. normal thymus.
Every miRNA value below this line is reduced relative to the increased total RNA content of tumor cells. Nine miRNA altered in association with p27Kip1

genotype are shown in a heatmap (C) reflecting the relative abundance of each miRNA across tumor samples. Heatmap of five miRNA (D) with
changes associated with Xpcl1 viral integration status. All 5 are increased and are members of the miR-106a,363 cluster.
doi:10.1371/journal.pone.0014758.g001

Xpcl1 and p27Kip1 in Lymphoma
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increased density of points in the right upper and left lower

quadrants (R2 = 0.45, p,2610216 Pearson correlation). In a gene

ontology assessment, the biological function terms for DNA and

protein metabolism and the cell division cycle, were enriched

amongst genes with high levels of expression in tumors on either

platform. In contrast, T-cell function and intracellular signaling

terms were enriched in the genes with reduced expression in

lymphomas (Table S2). We refer to this altered pattern of gene

expression as the lymphoma expression phenotype.

Gene expression profiles of p27Kip1 null and Xpcl1+ tumors
To determine whether expression of specific classes of genes is

associated with p27Kip1 genotype, we compared the microarray

expression profiles of lymphomas from p27Kip1 null animals to

tumors from mice with one or two copies of p27Kip1. We ranked

genes according to their PAM score, then tested for enrichment of

gene ontology terms for the top 10% of genes altered in p27Kip1

null tumors, using the Panther gene classification system. [29] In

this analysis, statistical significance is a function of both the relative

enrichment of classification terms and the size of the gene class, so

we displayed results in circle plots (Figure 3A–C) showing all three

parameters. Interestingly, the classes of genes enriched in p27Kip1

null tumors were similar to those enriched in tumors in general

(Figure 3A,B and Table S2), suggesting that the p27Kip1 null tumors

had a more pronounced lymphoma expression phenotype. In a

separate analysis, we compared the patterns of gene expression in

Figure 2. Patterns of mRNA expression in M-MuLV induced lymphomas. A heatmap (A) of the mRNA expression in 22 samples, showing
both lymphomas (right) compared to normal thymus (left). The top 5000 genes (in terms of statistical significance) that display altered expression in
tumors compared to normal thymus are shown. Expression levels are relative to gene-specific means, and are displayed log2 scale of microarray spot
intensities (green = decreased, red = increased). A strong association of gene expression (B) in M-MuLV-induced lymphomas and ß-catenin-induced
lymphomas is seen in a plot of expression rankings. The 9804 genes with the highest levels of expression are shown color coded by plot density (left
lower quadrant = reduced gene expression in tumors on both platforms, right upper quadrant = increased expression). An even distribution of
points across all four quadrants would be expected if there is no association in tumor gene expression between the two tumor types. A heatmap of
250 genes (C) whose expression is most strongly associated with tumors containing Xpcl1 viral integration (+) vs. tumors without Xpcl1 integration
(2). Gene names are given for selected Xpcl1 predicted target genes.
doi:10.1371/journal.pone.0014758.g002

Xpcl1 and p27Kip1 in Lymphoma
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tumors with Xpcl1 integrations vs. tumors without Xpcl1 integra-

tions, using an identical approach. There was partial overlap

between Xpcl1 and p27Kip1 genotypes, with 5 out of 8 Xpcl1+
tumors lacking p27Kip1, and 4 out of 9 Xpcl1- tumors lacking

p27Kip1. For this reason, a slight resemblance between the classes of

genes associated with p27Kip1 loss and Xpcl1 integration might be

expected. To the contrary, the functional classes associated with

p27Kip1 null tumors showed the opposite pattern of expression in

Xpcl1+ tumors. For example, the cell cycle term was enriched

amongst genes with increased expression in p27Kip1 null tumors,

but it was also enriched amongst genes decreased in Xpcl1+ tumors

(Figure 3B,C and Table S2). The opposite was true for genes in the

Immunity and Defense category. These differences were largely

due to changes in non-overlapping genes, as highlighted in the

Venn diagram (Figure 3D), which further suggests that this

observation is not simply due to the overlapping sample groups.

To confirm the accuracy of the array results we verified, by qPCR,

the RNA levels of 14 genes associated with Xpcl1 integrations.

There was a strong correlation (R2 = 0.91, p = 561026, Pearson

correlation) between mean expression levels determined by the

microarrays and the qPCR assays (Figure 4A).

Xpcl1 target gene expression
To test the hypothesis that miRNA expression was associated

with reduced expression of predicted target genes we analyzed

expression of genes that are predicted targets of microRNAs

overexpressed in tumors with Xpcl1 locus integrations, and

microRNAs associated with p27Kip1 genotype. Within tumors, a

number of miR-106a,363 target genes displayed reduced

expression in association with Xpcl1 integration. Of 500 Xpcl1

predicted targets decreased in tumors with Xpcl1 viral integrations

there was relative enrichment for the terms Oncogenesis, and Cell

Cycle (Table 1). We cloned the 3’UTR of four predicted target

genes (Figure 4B,C), which showed varying levels of reduced

expression in tumors, into a luciferase reporter constructs. This

included two genes (N-myc and Grsf1) that were reduced in

association with Xpcl1 viral integration, and two genes (Tgfbr2 and

Nfat5) that were not. In each case, cotransfection of a genomic

fragment of Xpcl1 reduced expression of the 3’UTR reporter

constructs. Mutation of miRNA binding site seed regions in the

3’UTR eliminated the effect of miR-106a,363 on the expression

of Nfat5 and N-myc, but did not restore Grsf1 expression. In the case

of Tgfbr2, miR-106a,363 decreased the expression level of the

endogenous Tgfbr2 mRNA and decreased TGF-beta signaling as

measured by the p3TP-Lux reporter construct (Figure 4D). Still,

the majority of miR-106a,363 predicted targets did not show a

significant reduction at the RNA level in tumors with viral

integration at Xpcl1 (See Figure 4A and Table S3).

Discussion

A principal aim of this study was to determine the pattern of

miRNA and protein coding gene expression associated with

p27Kip1 deletion or Xpcl1 activation in M-MuLV lymphomas. Our

initial hypothesis was that the two events would be associated with

the activation of genes with similar functions, or in activities

complementary for tumor development. Despite the extensive use

of retroviral mutagenesis in mouse models, neither miRNA nor

gene expression profiles have been previously reported. Thus, we

felt it was imperative to observe the general patterns of gene

expression in M-MuLV induced tumors compared to normal

tissue, and determine whether this profile is comparable to T-cell

lymphomas induced by other mechanisms. We found a global

reduction in the miRNA/ total RNA ratio in tumors compared to

normal thymic tissue, which is analogous to what has been

described in human cancer. [24] However, it has long been

recognized that proliferating cells, in general, and cancer cells, in

Figure 3. Gene expression associated with Xpcl1 integration and p27Kip1 null genotype. Biological function classes of the top 2500 genes
associated with M-MuLV tumors vs. normal thymus (A) are shown in a circle plot with statistical significance plotted on the Y-axis and relative
enrichment (observed/expected) plotted on the X-axis. Genes showing increased expression are shown (red) to the right and those with decreased
expression (green) are plotted left of the Y-axis (P-values, binomial test). Circle diameters are proportional to the number of genes observed in each
group. Within tumor samples, the functional classification of genes associated with (B) p27Kip1 null genotype or (C) Xpcl1 integrations are shown. A
Venn diagram (D) shows limited overlap amongst genes exhibiting decreased expression in association with Xpcl1 integration (Xpcl1 Low) and
simultaneously showing increased expression in p27Kip1 null tumors (KO High) (n = 30). Likewise, there is little overlap between the Xpcl1 High vs. KO
Low sets (n = 37).
doi:10.1371/journal.pone.0014758.g003

Xpcl1 and p27Kip1 in Lymphoma
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particular, express higher levels of total RNA. [30,31] We

therefore quantified the total RNA abundance in our M-MuLV

lymphoma specimens, and found that the apparent change in

global miRNA levels was entirely attributable to the increased total

cellular RNA in tumors. Thus, it should not be assumed that

reduced miRNA levels are a general characteristic of tumors, if the

data is not adjusted to cell number. Still, in terms of biological

impact, a decrease in the ratio of miRNA/total RNA may have

the same implications as a drop in absolute miRNA abundance.

The stoichiometry of miRNA compared to the expression of their

target genes is likely a key determinant of miRNA effectiveness. In

contrast to the lack of change of global miRNA levels, the pattern

of individual microRNA expression was highly distinctive in

tumors. A large numbers of microRNA were significantly changed

(both up and down) compared to normal thymus.

We found that, of the 188 miRNA queried, the only miRNAs

significantly altered in association with Xpcl1 are members of the

miR-106a,363 cluster. This reinforces observations reported for

the radiation leukemia virus and SL3-3, which were also shown to

be associated with increased miR-106a,363 miRNA expression.

[8,10] Not all of the miR-106a,363 miRNA sequences are

unique. However, the fact that we see overexpression of miR-363

(which is unique to this cluster) shows that the cluster is

overexpressed. Mir-18, in contrast, is also encoded by the

paralogous miR-17,92 cluster. We observed increased expression

of miR-18 in lymphomas, compared to normal thymic tissue.

However, there was no further increase in miR-18 levels in tumors

with Xpcl1 integrations, so this likely represents expression from

the miR-17,92 paralog. The broad array of miRNAs sampled

here indicates the specificity of the effect of Xpc1 integration on

miR-106a,363, and argues against a general effect on miRNA

expression. Deletion of p27Kip1 did not independently increase the

Figure 4. Effect of Xpcl1 on target gene expression. (A) Differences in mRNA expression was measured by qPCR (mean -DDCt) for 17 genes and
plotted as the mean difference in PCR cycle number of Xpcl1 positive vs. Xpcl1 negative tumors. This correlated with the changes in genes expression
noted on microarrays (mean M, log2(tumor/normal)). Genes with varying levels of change in association with Xpcl1 integration are shown, some of
which are predicted targets of miR-106a,363 (red) and others which are not (blue). Comparison of luciferase activity (B) in reporter constructs
containing 3’UTR sequences of miR-106a,363 predicted target genes: Nfat5, N-myc, and Grsf1. Each 3’UTR reporter construct was cotransfected with
either pCIG-Xpcl1 or empty pCIG vector. Xpcl1 was also transfected with reporter constructs with mutations in the seed region of the predicted
miRNA target site (D3’UTR). Xpcl1 expression reduces luciferase expression associated with the 3’UTR of Tgfbr2 (C), and results in reduced Tgfbr2
mRNA levels as measured by qPCR. Xpcl1 reduces downstream signaling in response to TGF-beta (right panel C) as measured by activity of the 3T3-
Lux reporter construct. (Barplots are means 6 SE).
doi:10.1371/journal.pone.0014758.g004

Table 1. Biological Process of Xpcl1 targets with reduced
mRNA expression.

Xpcl1 Targets Observed Expected P-value

Oncogenesis 21 9 2.2E-02

Cell cycle 35 20 5.2E-02

Panther gene classification terms for the biological function of miR-106a,363
predicted target genes (n = 500) that show reduced expression in tumors with
Xpcl1 viral integrations, relative to the superset of genes present on the
microarray. (P-values, binomial test).
doi:10.1371/journal.pone.0014758.t001

Xpcl1 and p27Kip1 in Lymphoma
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expression of miR-106a,363, but instead may have influenced

expression of a separate group of miRNAs. This argues against the

hypothesis that p27Kip1 cooperates with Xpcl1 simply by

enhancing the expression of its constituent miRNAs.

In the case of protein coding genes, we observed a massive shift in

the pattern of gene expression in M-MuLV induced T-cell

lymphomas compared to normal thymic tissue. These changes are

impressive when considered either on absolute terms (RNA per cell)

or on relative terms (when adjusted to RNA abundance). On

absolute terms, the overall abundance of RNA in tumors was 1.96
higher than in normal thymic tissue. Typically, expression data is

normalized in ways that sets median gene expression values to a set

value or, as in our case, sets the log ratios (sample vs. reference) to

zero. Based on our raw (pre-normalized) data, 94% of all Entrez

genes show significant increases in expression in tumors compared

to normal thymic tissue (data not shown). Although this figure

conveys the magnitude of shift in global RNA expression in tumor

cells, it belies the shift in the pattern of gene expression exhibited by

the tumors. In contrast, when expression data is subjected to

conventional normalization (disregarding differences in RNA

content per cell) we see that many genes exhibit relative decreases

as well as increases in expression (Figure 2A). The functional

classification of genes showing reduced expression in the lympho-

mas was frequently related to T-cell immunity (Figure 3A, Table

S2). This is consistent with lymphomas developing a de-differen-

tiated phenotype. Alternatively, it may reflect a reduced likelihood

of up-regulating genes not essential to tumor development. Despite

differences in array platforms, we observed a high level of similarity

in gene expression in our M-MuLV lymphomas compared to that

previously reported for lymphomas with a stabilizing mutation of ß-

catenin. [28] In both cases, genes involved with RNA and protein

metabolism were up-regulated; whereas genes involved with

immunity showed relatively reduced expression. We conclude that

the massive alteration in gene expression in M-MuLV induced

tumors is a common feature of murine T-cell lymphomas and is not

a peculiarity of M-MuLV tumor induction.

In comparison to other tumors, gene expression in p27Kip1 null

tumors showed further reduction in expression of genes involved

with T-cell function (Figure 3). Thus, p27Kip1 loss was associated

with both shortened survival and a further deviation from the

normal T-cell expression phenotype. [5] Interestingly, genes

associated with Xpcl1 retroviral integration showed the opposite

pattern of expression, even though Xpcl1 integration frequently

occurred in p27Kip1 null animals. Our finding of a contrasting

pattern of expression associated with Xpcl1 genotype compared to

p27Kip1 genotype does not support the hypothesis that loss of p27Kip1

simply enhances Xpcl1’s expression phenotype. Because of sample

number limitations, our assessment did not include a pair-wise

comparison of all four subsets of tumor samples based on p27Kip1

and Xpcl1 genotypes. Such an approach might better elucidate the

extent to which coincident mutation of p27Kip1 modifies gene

expression changes by Xpcl1. Still, our data suggests that deletion of

p27Kip1 counters an anti-oncogenic pattern of gene expression

induced by Xpcl1, rather than enhancing an oncogenic effect.

According to the PicTar database 3,269 Entrez genes are predicted

targets of at least one of the miR-106a,363 miRNAs. Considering

the large number of predicted targets, it is expected that miR-

106a,363 expression would induce a combination of oncogenic and

anti-oncogenic effects. Others have demonstrated cellular activities by

miR-106a,363 (and its paralogous miRNA clusters) that are

potentially pro-oncogenic. This includes the demonstration that

anchorage independent growth is enhanced by miR-106a,363 as

well as direct targeting of Mylip and Rbp1-like gene expression. [10]

Likewise, miR-106a,363 and its paralogs have been shown to

promote proliferation of cultured cells by targeting p21Cip1/Waf1 and

p63. [32,33] Thus it is somewhat surprising that our gene expression

observations suggest that, in terms of its interaction with Xpcl1, the

effect of p27Kip1 loss is to overcome an anti-tumor activity of Xpcl1, as

opposed to enhancing Xpcl1’s oncogenic effect.

In regards to the expression of miRNA target genes, we saw a

high frequency of reduced gene expression (52%) amongst genes

that are predicted targets of miR-106a,363. However, we also

observed a high frequency of reduced expression amongst miRNA

target genes in general, regardless of the expression levels of their

predicted effecter microRNAs. Thus, global reduction in miRNA

target gene expression appears to be an incidental aspect of the

tumor phenotype, although it might also result from secondary

effects of a few overexpressed microRNAs. Two predicted targets

of miR-106a,363 miRNA are N-myc and Grsf1, both of which

were decreased in Xpcl1 positive vs. Xpcl1 negative tumors. M-

MuLV integrations were present at the N-Myc locus in 3 of the

Xpcl1 negative tumors that we assayed (not shown). This may

partially explain the reduced levels of N-Myc that we observed in

Xpcl1 positive tumors. Additionally, forced expression of Xpcl1 in

cultured T-cells reduced expression of an N-Myc 3’UTR reporter

construct. This effect by Xpcl1 was eliminated by mutation of the

predicted miRNA target site in the N-Myc 3’UTR, which indicates

that the miRNAs directly target N-Myc. Reduced N-Myc

expression would be expected to have an anti-proliferative effect,

in part because N-Myc activates transcription of the Skp2 ubiquitin

ligase, which in turn degrades p27Kip1 protein. [34,35] Thus, the

targeting of N-Myc by Xpcl1 is one example of an anti-oncogenic

effect that may be overcome by p27Kip1 deletion.

Not all of the predicted targets of miR-106a,363 were

consistently reduced in tumors with Xpcl1 integrations. For

example, Tgfbr2, the TGF-ß cell surface receptor, is a predicted

target of both miR-19b and miR-106a, but was not significantly

changed in tumors with Xpcl1 integration. Nonetheless, luciferase

reporter assays indicate that the 3’UTR of Tgfbr2 does confer

sensitivity to Xpcl1 expression (Figure 4). Likewise forced

expression of Xpcl1 in cultured cells reduced both Tgfbr2 mRNA

levels and reduced signaling downstream of TGF-ß. To an extent,

the discrepancy between tumor RNA expression and the reporter

assay data may reflect the ability of the luciferase assay to detect

the combined effect of miRNA on both mRNA stability and

protein translation. However, endogenous gene expression is also

subject to secondary effects and compensatory changes, which

might easily overwhelm the comparatively subtle impact of

miRNA. Finally, the existence of cell-type or gene-specific

modifiers of miRNA function remains a possibility; so cultured

T-cells may not accurately reflect the situation in tumors. Our list

of miR-106a,363 predicted target genes, exhibiting reduced

expression in association with Xpcl1 integration, shortens the set of

genes likely to mediate the effect of miR-106a,363 on the tumor

phenotype. The confirmation of the oncogenic potential of Xpcl1

and the elucidation of its pathogenic mechanism would further

benefit from the in vivo manipulation of Xpcl1 expression in the

absence of other M-MuLV integrations. Given the complexity of

gene expression in tumors, and the subtle yet widespread effects of

miRNA expression, overexpression of Xpcl1 in primary cells will

likewise be important for the confirmation of physiologically

relevant miR-106a,363 targets.

Materials and Methods

Sample preparation and microRNA quantification
This work involved frozen tumor samples previously taken from

p27Kip1 knockout mice (p272/2, p27+/2, and p27+/+) induced
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by neonatal Maloney Murine Leukemia Virus (M-MuLV)

infection. These tumors were previously surveyed for the genomic

integration sites of M-MuLV proviruses and are thus characterized

with respect to the presence or absence of M-MuLV integrations

at the Xpcl1 locus (Xpcl1 positive), and Myc family members. For

this work tumor tissue was characterized as being p27null (2/2)

vs. not null (+/2 or +/+) and with respect to M-MuLV integration

at the Xpcl1 locus (positive or negative). [5] The prior animal work

was conducted according to national guidelines (OLAW) and

approved by the IACUC of the Fred Hutchinson Cancer

Research Center. Animals had been observed daily and were

euthanized if they developed signs of morbidity, palpable tumors

greater than 1 cm. diameter, or age .1 year. These tumors were

previously characterized for the presence of M-MuLV integrations

at the Xpcl1 locus. All animals were humanely euthanized with

CO2 or anesthetic inhalation. Frozen whole thymus from

uninfected animals (on the same 129S4 6 C57BL/6J F1 hybrid

strain background) was used for comparisons. Tissues were

divided, weighed and then extracted for either DNA or total

RNA. RNA was prepared with Trizol (Invitrogen) using 1.5

volumes of isopropanol to increase the efficiency of miRNA

precipitation. RNA and DNA were quantified using Ribogreen

(Invitrogen) fluorescence. Expression of individual miRNAs were

determined using a quantitative primer-extension PCR assay

(Table S1), as previously described. [36] Ct values were converted

to copy numbers by interpolation on standard curves generated

using single stranded mature miRNAs to calculate miRNA copies

per 10 pg of input RNA, and are given in Table S1. The total

RNA to DNA ratios of each tumor sample was determined by

purifying total RNA and genomic DNA from weighed samples

(,5 mg) under non-saturating conditions on nucleic acid biding

columns (RNeasy and DNeasy, QIAgen). Standard curves with 2-

fold dilutions (0.625–10 mg) of starting material demonstrated a

high degree of linearity with respect to the mass of starting

material (R2 = 0.985 for RNA, R2 = 0.984 for DNA). The pamr

software package for R (R-project.org, BioConductor.org) was

used to identify miRNA associated with Xpcl1 integration (Xpcl1+
vs. Xpcl12) and p27Kip1 genotype (null vs. +/2 or +/+). [37] The

top miRNAs associated with p27Kip1 genotype and Xpcl1

integration are shown in heatmaps where quantities of individual

miRNAs are displayed relative to the mean expression value of the

same miRNAs across all samples. Hierarchical clustering was used

to group samples post hoc using Cluster 3.0 software with

Euclidean distance and complete linkage.

Microarray analysis
Trizol prepped total RNA was additionally treated with

DNAseI (RNAse free, Roche) and purified with RNeasy mini

columns (Qiagen). RNA was amplified and labeled with Cy5 and

Cy3 as previously described. [25] Labeled RNA pooled from 17

tumor samples and 3 normal thymuses formed a common

reference and were co-hybridized vs. sample RNA in a two color

format on duplicate custom murine oligonucleotide arrays

(Agilent, GEO accession GPL8525) (n = 40 arrays. See Table

S5 for complete sample descriptions). The genotypes of the

tumor samples were balanced with roughly half of the samples

(n = 9) being p27Kip1 null, and half of the samples containing

Xpcl1 viral integrations (n = 8), 4 of which were both p27Kip1 null

and Xpcl1+. (See Table S5 for detailed sample descriptions).

Log(2) ratios of fluorescence intensities (experimental sample vs.

pooled reference) were normalized by intensity-dependent Loess

followed by 2-dimensional location-dependent loess using the

marray Bioconductor package without local background subtrac-

tion or scaling. [27] Missing (software flagged features) values

were imputed by the K-nearest neighbor method, and genes

associated with tumors vs. normal were determined with the

PAM algorithm, using the pamr Bioconductor package. [38] We

compared relative gene expression of tumors vs. normal, ranked

by PAM-scores, to similarly processed raw data for ß-catenin

induced tumors obtained from the GEO repository. [28] Both

studies included normal thymus so we used this as a common

reference. Platform specific bias was avoided by comparing ranks

of expression data (expressed as log tumor/normal) and

calculating the geometric means across multiple samples. This

approach is equivalent to the Rank Product (RP) method, which

was shown to be robust for comparing gene expression profiles.

[39] Likewise, we analyzed our M-MuLV tumor data for genes

associated with either Xpcl1 integration or p27Kip1 genotype

(PAM-scores listed in Table S3). Data processing was streamlined

with custom wrapper functions contained in the ArrayFun package

(available at http://labs.fhcrc.org/fero/R/ArrayFun.html). This

package includes functions, (array.getGEO, array.readGEO), that

downloads data from these 40 microarrays, along with the

sample description table, from the GEO FTP site directly into R.

Both MIAME compliant raw and normalized data are available

at the GEO data repository (accession GSE16005). [40] An R

script that outlines for obtaining raw data and recapitulates the

data processing steps is included as a supporting data file (Table

S6). We used the ‘‘compare gene list’’ tool of the Panther

Classification System (http://www.pantherdb.org) In order to

determine the enrichment of biological function terms in genes of

interest. [29] We input the top 2500 Entrez Gene IDs (ranked by

PAM scores, above) and compared this to the entire set genes on

the arrays. Terms over-represented in the genes of interest (p-

values#0.05, binomial test) are shown in Figure 3 and are listed

in Table S2.

MicroRNA target validation
129S4 mouse genomic Xpcl1 DNA was isolated from a phage

library. A 1.5 kB fragment containing the entire miR-106a,363

miRNA cluster was subcloned into pCIG (courtesy of Andy

McMahon) with the chicken B-actin promoter, the pSM30 vector

(courtesy of Muneesh Tewari) and the p1026x vector with the

Lck promoter (courtesy of Brian Iritani). [41–43] Genomic

3’UTR DNA segments for putative target genes (N-Myc, Tgfbr2,

Grsf1, and Nfat5) were PCR amplified from mouse 129S4

genomic DNA, cloned into pGL3-control (Promega), a luciferase

reporter with the SV40 promoter, and verified by sequencing.

Three or four bases of miRNA seed sequence, in the UTR of

predicted target genes, were mutated using the QuickChange

Mutagenesis Kit (Agilent, #210513) with oligonucleotides, listed

in Table S4. Wildtype and mutant 3’UTR reporter constructs

were co-transfected (in triplicate) with pSM30-Xpcl1 vs. empty

vector and pRL-TK (Promega, renilla control) into 293T cells

using Lipofectamine 2000 (Invitrogen). Tgfbr2 3’UTR luciferase

assays compared pCIG-Xpcl1 vs. empty vector. Luciferase

activity was assayed at 48 hr. and adjusted by renilla activity.

To quantify the effect on Tgfbr2 mRNA expression and TGF-beta

signaling, murine SV40-180 T-cells were transfected by electro-

poration with either p1026x–Xpcl1 or empty vector. RNA was

isolated at 48 h and Tgfbr2 qPCR was done, as described above.

To measure TGF-beta signaling the p3TP-Lux reporter of TGF-

beta signaling (courtesy of William Grady) was additionally

transfected. The cells were treated with porcine TGF-beta 1

(5 ng/mL, R&D Systems) starting at 24 hrs. post-transfection and

luciferase activity was assayed at 48 h. [44] The transfection of

each construct and its controls were performed in triplicate or

quadruplicate.
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