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Abstract

Burkholderia pseudomallei is the causative agent of melioidosis, a fatal infectious disease endemic in tropical regions
worldwide, and especially prevalent in southeast Asia and northern Australia. This intracellular pathogen can escape from
phagosomes into the host cytoplasm, where it replicates and infects adjacent cells. We previously demonstrated that, in
response to B. pseudomallei infection of macrophage cell line RAW 264.7, a subset of bacteria co-localized with the
autophagy marker protein, microtubule-associated protein light chain 3 (LC3), implicating autophagy in host cell defence
against infection. Recent reports have suggested that LC3 can be recruited to both phagosomes and autophagosomes,
thereby raising questions regarding the identity of the LC3-positive compartments in which invading bacteria reside and
the mechanism of the autophagic response to B. pseudomallei infection. Electron microscopy analysis of infected cells
demonstrated that the invading bacteria were either free in the cytosol, or sequestered in single-membrane phagosomes
rather than double-membrane autophagosomes, suggesting that LC3 is recruited to B. pseudomallei-containing
phagosomes. Partial or complete loss of function of type III secretion system cluster 3 (TTSS3) in mutants lacking the
BopA (effector) or BipD (translocator) proteins respectively, resulted in delayed or no escape from phagosomes. Consistent
with these observations, bopA and bipD mutants both showed a higher level of co-localization with LC3 and the lysosomal
marker LAMP1, and impaired survival in RAW264.7 cells, suggesting enhanced killing in phagolysosomes. We conclude that
LC3 recruitment to phagosomes stimulates killing of B. pseudomallei trapped in phagosomes. Furthermore, BopA plays an
important role in efficient escape of B. pseudomallei from phagosomes.
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Introduction

Burkholderia pseudomallei is a Gram-negative, soil dwelling bacillus.

It is the causative agent of melioidosis, a fatal infection of many

animal species and humans and is endemic in tropical and

subtropical areas of the world [1,2]. Melioidosis generally presents

as a febrile illness ranging from acute pneumonia or septicemia to

chronic abscesses; prolonged periods of latency have also been

documented [3]. The overall mortality associated with melioidosis

remains high; at approximately 40% in northeast Thailand and

20% in northern Australia [2,4]. While some B. pseudomallei

virulence factors have been identified including capsule, flagella,

lipopolysaccharide (LPS), pili, quorum sensing molecules and the

type III secretion system cluster 3 (TTSS3), our current

understanding of B. pseudomallei pathogenesis remains incomplete

(reviewed in [1,5,6]).

B. pseudomallei is an intracellular pathogen that can invade both

phagocytic [7] and non-phagocytic cells [8]. Following internal-

ization, bacteria can escape from the phagosome into the host

cytoplasm in a process that is dependent on a functional TTSS3

[9]. Once in the cytoplasm bacteria can replicate and induce actin

polymerization at one pole of the bacterium, facilitating

intracellular motility [10]. This actin-based motility is considered

to facilitate bacterial spreading into adjacent cells leading to the

formation of multinucleated giant cells (MNGC), which have been

observed both in cultured cell lines and the tissues of patients [11].

Autophagy is a cellular degradation system that eliminates

unwanted molecules, damaged proteins and organelles from

within the cell and it plays an important role in many physiological

and pathological processes, including the cellular response to

starvation, cell development and tumor suppression (reviewed in

[12,13]). Autophagy is also a component of innate immune

defence, as it is involved in the clearance of a variety of pathogenic

bacteria [14,15,16]. Autophagy is critical for the elimination of

cytoplasmic Group A Streptococcus [17] and inhibits the intracellular

survival of Mycobacterium tuberculosis [18]. However, some host-

adapted intracellular pathogens including Shigella flexneri, Listeria

monocytogenes and Salmonella enterica serovar Typhimurium, have
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developed means to evade killing by autophagy. The molecular

strategies used by some pathogens to evade autophagy have been

reported [19,20,21,22]. Other pathogens can divert phagosome

maturation towards the autophagy pathway, taking control of this

host defence pathway to the benefit of the pathogen [23,24].

Legionella pneumophia, Coxiella burnetii, Brucella abortus, Porphyromonas

gingivalis, Staphylococcus aureus, and Anaplasma phagocytophilum each

exploit modified autophagosomes as their intracellular niche

[25,26,27,28,29].

We have shown that, in response to B. pseudomallei infection of

macrophage cell line RAW 264.7, only a subset of bacteria co-

localized with the autophagy marker protein LC3 [30]. When cells

were treated with rapamycin, an inducer of autophagy, bacterial

co-localization with LC3 was significantly increased and bacterial

survival reduced. Thus, autophagy was implicated as part of the

host defence system against B. pseudomallei infection, although the

strategy by which most invading bacteria avoided host autophagic

attack remained unclear. Moreover, we showed the involvement of

the bacterial TTSS3-effector protein BopA in modulating the host

cell response, as bopA mutant bacteria showed increased co-

localization with LC3 and reduced intracellular survival [30].

A recent report showed that LC3 can be recruited directly to

bacteria-containing phagosomes [31]; a process designated LC3-

associated phagocytosis (LAP) [32]. In RAW 264.7 cells infected

with Escherichia coli, LAP was induced by lipopolysaccharide (LPS)

via toll-like receptors (TLR), and involved the rapid translocation

of the autophagic proteins Beclin1 and LC3 to the bacteria-

containing phagosomes, leading to an increased level of phago-

cytosis and bacterial killing [31]. Such reports led us to assess the

nature of the compartment in which intracellular B. pseudomallei is

sequestered. Here we demonstrate, through analysis of electron

microscopic (EM) images of infected cells, that intracellular B.

pseudomallei bacteria are free in the cytosol or sequestered in single-

membrane phagosomes, but rarely in double-membrane autop-

hagosomes, suggesting that LC3 is recruited to B. pseudomallei-

containing phagosomes. Furthermore analysis of a mutant lacking

a functional TTSS3 showed that when bacteria are unable to

escape from the phagosome they become strongly co-localised

with LC3, confirming that LC3 is recruited to B. pseudomallei-

containing phagosomes. A high percentage of LC3 positive

phagosomes become LAMP1 positive, implicating LC3 recruit-

ment in efficient phagosome maturation. Importantly, we also

show that efficient escape of B. pseudomallei from phagosomes

requires the presence of the predicted TTSS3 effector protein

BopA. Finally, as we were unable to observe more than a single

bacterium within a double membrane vesicle, we conclude that B.

pseudomallei can efficiently avoid engulfment by canonical autop-

hagosomes. Taken together these data show that LC3 recruitment

to B. pseudomallei-containing phagosomes plays a role in destruction

of bacteria trapped in phagosomes, but that most bacteria can

escape from the phagosome and once free in the cytoplasm are

rarely targeted by autophagosomes.

Materials and Methods

Bacterial strains and cell culture
B. pseudomallei wild-type strain K96243 [33] and mutants were

cultured in Luria–Bertani (LB) broth at 37uC. E. coli strain

SM10lpir was used as a conjugative donor of the lpir-dependent

suicide replicon pDM4 (ori R6K, mob RP4, sacBR, cat) and its

derivatives [34]. The RAW 264.7 cell line stably expressing GFP-

LC3 was constructed as described [30]. Cells were maintained at

37uC in 5% CO2 without antibiotics in RPMI 1640 medium

(Gibco Laboratories), supplemented with 10% (v/v) heat-inacti-

vated fetal bovine serum (JRH Biosciences). Bacteria were heat-

killed at 98uC for 30 min. The rat anti-LAMP1 antibody was

obtained from the Development Studies Hybridoma Bank

developed by J.T. August under the auspices of the NICHD and

maintained by The University of Iowa, Department of Biological

Sciences, Iowa City, IA. All other chemicals were purchased from

Sigma unless otherwise indicated.

Mutagenesis of TTSS3 genes
The B. pseudomallei bopA deletion mutant has been described

previously [30]. This mutant is unmarked and contains an in-frame

deletion within bopA. Although we were unable to complement this

mutant, we have subsequently used RT-PCR to analyse the

transcription of the bicP and bpss1522 genes, which are downstream

of bopA. Primer pairs (bicP-F, 59-AACGTGTCGATCAGGC-

TTTC-39 and bicP-R, 59-ACGCACACCGAATGGTTGAA-39)

and (BPSS1522-F, 59-GGCGCGCACGCGTTCGCATA-39 and

BPSS1522-R, 59- GGGTGCTCGTCGTCGACAGC-39) were

used to amplify bicP and bpss1522 RT-PCR products respectively.

RT-PCR products of the expected size, 368 bp (bicP) and 637 bp

(bpss1522) were generated from cDNA derived from both the wild-

type and bopA mutant strains (Figure 1), indicating that the deletion

mutation within bopA does not disrupt the transcription of these

genes.

A B. pseudomallei bapA mutant was constructed by double-

crossover allelic exchange using the lpir-dependent vector pDM4

which carries the negative-selectable marker sacB [34]. PCR primer

pairs (59-GGGCCCACTAGTCCGATCCGAAGCAACCGA-

CAAGA-39 and 59-GGGCCCAGATCTACCATGTCGACGA-

GATTCGTC-39; 59-GGGCCCAGATCTCTTTATCCGCTCG-

TCGACGATGCTT-39 and 59-GGGCCCTCTAGATTGGCG-

TATTGGCGTATTGGCGTA-39) were used to amplify upstream

and downstream sequences flanking the bapA open reading frame,

respectively. A 918-bp fragment spanning the 59 section of bapA and

upstream DNA was cloned into SpeI/BglII digested pBluescript

(Stratagene) then a 1,241 bp downstream fragment spanning the 39

section of bapA and downstream DNA was cloned into the BglII/

XbaI sites. The tetracycline resistance cassette tetA(C) was digested

from the plasmid pUTminiTn5 [35] and ligated into the BglII site

between the two cloned bapA fragments, generating a plasmid

containing a 1,565 bp internal deletion in bapA. The mutagenesis

construct was then transferred to pDM4. This pDM4 derivative was

introduced into B. pseudomallei by conjugation and transconjugants

selected on plates containing tetracycline (25 mg/ml). Colonies were

then screened for chloramphenicol sensitivity in the presence of

sucrose.

A bipD mutant was constructed by single crossover insertional

mutagenesis. PCR primers (59-GGGCCCACTAGTAACCTGC-

TCGAGCGCCTGGAAA-39 and 59-GGGCCCTCTAGAGCC-

GCCGTCGATCTTCATGT-39) were used to amplify a 261 bp

internal fragment from within the target open reading frame. This

fragment was digested with the appropriate enzymes, ligated to

SpeI/XbaI-digested pDM4 and introduced into B. pseudomallei as

above. Single crossover mutants were selected on LB plates

containing chloramphenicol (50 mg/ml). Each of the mutants was

verified by PCR and sequence analysis.

Bacterial replication assays
To determine the ability of B. pseudomallei strains to replicate

intracellularly, RAW 264.7 cells stably expressing green fluores-

cent protein-LC3 (GFP-LC3) were infected with B. pseudomallei

K96243 as previously described [30]. Briefly, RAW 264.7 cells

(seeded at 1.06105 cells/well) in 24-well trays (BD Biosciences)

were infected with B. pseudomallei at a multiplicity of infection

LC3-Associated Phagocytosis and B. pseudomallei
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(MOI) of 10:1, and incubated at 37uC for 1 h to allow bacterial

invasion. Infected cells were washed 3 times with phosphate

buffered saline pH 7.2 (PBS) and then inoculated into fresh

medium supplemented with kanamycin (800 mg/ml) and ceftaza-

dime (800 mg/ml) to kill extracellular bacteria. At 2, 4 and 6 h

after addition of bacteria, cells were washed 4 times with PBS and

Figure 1. Reverse transcription (RT)-PCR of bicP and bpss1522 in wild-type and bopA mutant B. pseudomallei. RNA extracted from the
wild-type K96243 or bopA deletion mutant strain was reverse-transcribed to obtain cDNA. Each cDNA preparation was used as a template for RT-PCR.
(A) Schematic diagram showing the position of primers used for RT-PCR. (B) Electrophoretic separation of RT-PCR products amplified with primers for
bicP (top panel) and bpss1522 (lower panel). These products were generated from reactions: (2) bopA mutant cDNA; (3) bopA mutant cDNA, no RT
control; (4) wild-type cDNA, (5) wild-type cDNA, no RT control; (6) wild-type genomic DNA control; and (7) No DNA control. DNA size markers (bp) are
shown in lane 1.
doi:10.1371/journal.pone.0017852.g001
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intracellular bacteria were released by addition of 0.1% Triton X-

100. For each time point, cell lysates were prepared from cells

grown in 3 separate wells. Serial dilutions of each lysate were

plated onto LB agar and the numbers of intracellular bacteria

(expressed as colony forming units (CFU)), were enumerated by

direct colony counts after 48 h. Bacterial survival was normalised

to counts obtained at 2 h post-infection (p.i.), the time point at

which extracellular bacteria were killed with antibiotics, and data

presented as relative survival (%).

Immunofluorescence and confocal microscopy
To determine co-localization with GFP-LC3, cells were

cultured in 24-well trays (BD Biosciences) containing 13-mm-

diameter glass coverslips (ProScitech). At the indicated time points

p.i., the cells were fixed with methanol for 10 min and blocked for

1 h in PBS containing 1% (w/v) bovine serum albumin (BSA) and

0.1% (v/v) Triton X-100. Coverslips were incubated with rabbit

anti-B. pseudomallei outer membrane serum [30] at a 1:100 dilution.

The fluorescently labeled secondary antibody Alexa Fluor 405-

conjugated goat anti-rabbit IgG serum (Molecular Probes) was

used at a 1:250 dilution. LAMP1 was labeled with rat anti-LAMP1

antibody (Development Studies Hybridoma Bank, University of

Iowa, IA) at a 1:100 dilution followed by Alexa Fluor 568-

conjugated goat anti-rat IgG serum (Molecular Probes) at a 1:250

dilution. Stained cells were washed with PBS, coverslips mounted

in Permafluor aqueous mounting medium (Immunotech) and

visualised using a confocal laser scanning microscope (CLSM;

Olympus FV500) equipped with a 1.2 NA water immersion lens

(Olympus 60X UPlanapo). Image analysis and processing was

performed using Olympus FluoView TIEMPO software version

4.3 and the public domain software Image-J version 1.41a (http://

rsb.info.nih.gov/ij). The intracellular location of bacteria was

assessed using Z-stack CLSM analysis. For actin staining, RAW

264.7 cells, cultured on coverslips at the indicated time points p.i.,

were fixed in 3.5% (w/v) para-formaldehyde (PFA) and 0.1% (v/v)

Triton X-100 consecutively for 10 min prior to staining as

described above. Stained cells were counter stained with Alexa-

Flour 488 conjugated phalloidin (Molecular Probes) at a 1:500

dilution for 50 min to visualize cellular actin filaments.

Transmission electron microscopy
For standard transmission electron microscopy, infected (at a

MOI of 10 or 100) and uninfected RAW 264.7 cells were fixed for

2 h at room temperature with 2.5% (w/v) glutaraldehyde (EM

Sciences) in 0.1 M cacodylate buffer, pH 7.2 at the indicated time

points. Cells were collected, washed twice and postfixed for 1 h at

room temperature with 1% (w/v) osmium tetroxide and then

subsequently incubated with 2% (w/v) uranyl acetate for 1 h.

After dehydration and embedding in Epon resin (EM Sciences),

ultra-thin 70 nm sections were cut and stained with lead citrate

and uranyl acetate. Sections were viewed at 80 kV using a Hitachi

H-7500 transmission electron microscope fitted with a Gatan

Multiscan 791 CCD camera.

Statistical analyses
For quantification studies, at least 100 bacteria were counted for

each condition in each experiment, unless otherwise indicated.

Values were expressed as mean 6 standard error of the mean

(SEM). Statistical analysis was performed using GraphPad Prism

software version 5.00 (http://www.graphpad.com). Differences

between groups were analyzed by 2-tailed, 2-sample, unequal

variance Student’s t test or ANOVA analysis with Dunn post-hoc

test where appropriate. A p value of ,0.05 was considered to be

statistically significant.

Results

Intracellular B. pseudomallei are localized free in the
cytosol or in phagosomes

Only a small subset of intracellular B. pseudomallei co-localizes

with the autophagy marker protein LC3 in infected RAW 264.7

macrophage cells, although this co-localization increases when

cells are treated with the autophagy inducer rapamycin [30].

However, intracellular pathogens may be subject to LC3-

dependent host autophagic processes by three distinct pathways

as depicted in Figure 2: A) autophagosomes may directly sequester

bacteria free in the cytosol [21,36]; B) autophagosomes may engulf

bacteria-containing phagosomes [18]; C) LC3 may be recruited

directly to bacteria-containing phagosomes thus stimulating

phagosome maturation [31]. The operation of each of these

pathways could give rise to co-localization of bacteria with LC3.

To investigate which of these pathways may be responsible for co-

localization of B. pseudomallei with LC3 in infected RAW 264.7

cells, we used transmission electron microscopy (TEM) to view

sections prepared from cells infected with wild-type bacteria (at

MOI of 100) (Figure 3).

Cell sections were scored for the presence of bacteria and

whether the bacteria were within single-membrane compartments

(phagosomes), double- or multi- membrane compartments (autop-

hagosomes) or unbounded by any detectable membranes (free in

the cytosol). These analyses showed that B. pseudomallei was

primarily present either free in the cytoplasm (Figure 3A), or

within single-membrane phagosomes (Figure 3B). For wild-type B.

pseudomallei the proportion of bacteria free in the cytosol was 39%,

54% and 71% at 2, 4 and 6 h p.i. respectively (Figure 3G), while

the proportion of bacteria within phagosomes was 61%, 46% and

29% at 2, 4 and 6 h p.i. respectively. Of the 500 bacteria identified

and scored in TEM sections, only a single bacterium was observed

within a double-membrane compartment that could be considered

to be an autophagosome (Figure 3C). Importantly, the number of

canonical double-membrane structures representing different

stages of autophagosome maturation (phagophore, autophago-

some, amphisome) increased in infected RAW 264.7 cells

(Figure 3D–F), confirming our previous observation that autoph-

agy is induced in response to B. pseudomallei infection [30].

However, these autophagosome structures did not contain

bacteria. Therefore, B. pseudomallei is not efficiently targeted by

canonical double-membrane autophagosomes via the pathways A

or B as shown in Figure 2. However, as we have previously shown

that approximately 5–10% of wild-type B. pseudomallei are

associated with LC3 at 2 h p.i. [30], these results suggest that

LC3 may be recruited to B. pseudomallei-containing phagosomes (as

depicted in pathway C of Figure 2). Qualitatively identical data

were obtained by TEM analysis of RAW 264.7 cells infected with

wild-type B. pseudomallei at MOI of 10.

The putative TTSS3 effector BopA is required for efficient
escape of B. pseudomallei from phagosomes

We next used TEM to analyse the intracellular location of the B.

pseudomallei TTSS3 bipD and bopA mutants in RAW 264.7

macrophage cells. BipD is a component of the needle tip complex

of the B. pseudomallei TTSS3 apparatus [37]; a bipD mutant is

unable to escape from the phagosomes of macrophage cells up to

6 h p.i. [9]. BopA is a predicted secreted TTSS3 effector protein

[38]. As expected the bipD mutant was observed only in single

membrane phagosomes at 2 and 4 h p.i. and even at 6 h p.i. 98%

of bacteria were still localised in phagosomes while the remaining

2% of bacteria were observed free in the cytoplasm. Furthermore,

fluorescence microscopy of infected cells labelled with Alexa Fluor

LC3-Associated Phagocytosis and B. pseudomallei
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488-conjugated phalloidin showed that the bipD mutant did not

form actin tails or MNGC (Figure 4A), consistent with the earlier

observations of Stevens et al. [9], These data confirm a critical role

of the TTSS3 in phagosome escape. The bopA mutant also showed

significantly reduced phagosome escape compared to the wild-type

strain with 9% of the bopA mutant cells observed free in the cytosol

at 2 h p.i., compared to 39% for the wild-type strain.

Furthermore, the bopA mutant also showed reduced escape at

4 h p.i. (24% compared to 54% for the wild-type strain) and 6 h

p.i. (59% compared to 71% for the wild-type strain). Fluorescence

microscopy analysis indicated that the bopA mutant could form

actin tails when free in the cytoplasm and caused MNGC

formation in RAW 264.7 cells (Figure 4A), but at later time points

compared to wild-type cells (data not shown). Therefore, the

predicted TTSS3 effector protein BopA is important for efficient

escape from phagosomes.

B. pseudomallei mutants defective in phagosome escape
show increased LC3 co-localization

A B. pseudomallei bopA mutant displays increased co-localization

with LC3 (Figure 5C and [30]). Our TEM data presented here

indicate that wild-type B. pseudomallei and the bopA and bipD

mutants are very rarely found within double membrane

autophagosomes and that the bopA mutant displays reduced

phagosome escape. Taken together these observations support the

proposal that B. pseudomallei co-localization with LC3 occurs as a

result of recruitment of LC3 to phagosomes that contain bacteria.

To further explore this proposal we analysed the co-localization of

the B. pseudomallei bipD mutant with LC3. Fluorescence microscopy

analysis showed that the bipD mutant displayed a high level of co-

localization with LC3 at 2 h, 4 h and 6 h p.i. (Figure 5C). As

shown above, the bipD mutant displayed no escape from

phagosomes at 2 h and 4 h p.i (Figure 3G). Therefore, this

association with LC3 at these time points must result from LC3

recruitment to phagosomes. To investigate whether LC3 recruit-

ment to phagosomes was affected by other TTSS3 effectors, we

utilised a mutant defective in another putative effector, BapA,

constructed for another study. The bapA deletion mutant did not

show increased co-localization with LC3 and its ability to escape

from phagosomes was indistinguishable from that of wild-type

bacteria (data not shown). Collectively these data strongly suggest

that all B. pseudomallei co-localization with LC3 results from LC3

recruitment to B. pseudomallei-containing phagosomes and not to

engulfment of cytosolic bacteria by autophagosomes. Thus, the

previously reported increased co-localization of a B. pseudomallei

bopA mutant with LC3 [30] results from the reduced ability of this

mutant to escape from phagosomes.

LC3 recruitment stimulates phagosome maturation
In the process of LC3-associated phagocytosis (LAP), recruit-

ment of LC3 to the phagosome was found to lead to rapid

acidification of the compartment and enhanced killing of ingested

Figure 2. Possible fates of B. pseudomallei in infected macrophages. Following phagocytic uptake by macrophages, bacteria are first located
within phagosomes. The majority of wild-type B. pseudomallei (Bp) can escape from the phagosome into the cytosol in a process which is largely
uncharacterized but involves the TTSS3. Once free in the cytosol bacteria activate BimA-mediated actin-based motility, replicate and invade adjacent
cells via membrane protrusions. Potentially some cytosolic bacteria may be sequestered in canonical autophagosomes (pathway A). Some bacteria
which remain in phagosomes might be sequestered by double-membrane autophagosomes (pathway B). The autophagy marker protein LC3 can be
recruited to bacteria-containing phagosomes, a process designated LC3-associated phagocytosis (LAP) which stimulates further phagosomal
maturation via recruitment of other proteins including LAMP1, a late endosome/lysosome marker, and the subsequent fusion of phagosomes with
lysosomes, leading to bacterial killing (pathway C). Finally phagosomes may mature to phagolysosomes without LC3 recruitment (pathway D).
doi:10.1371/journal.pone.0017852.g002

LC3-Associated Phagocytosis and B. pseudomallei
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E. coli in RAW 264.7 cells [31,32]. In an earlier study we

demonstrated decreased intracellular survival of the bopA mutant

[30]. In this study the bipD mutant also showed reduced

intracellular survival at 6 h p.i. (Figure 4B). Furthermore, B.

pseudomallei mutants lacking either BipD or BopA display reduced

virulence in a mouse melioidosis model [38]. To test the

hypothesis that decreased intracellular survival of these mutant

bacteria is associated with LAP, we investigated the co-localization

of B. pseudomallei with LC3 and the lysosome marker lysosomal-

associated membrane glycoprotein-1 (LAMP1) in RAW 264.7 cells

(Figure 5). LAMP1 is an abundant lysosomal membrane protein

that is both delivered to phagosomes during their maturation and

required for fusion of lysosomes with phagosomes [39] and

autophagosomes [40]. Both the bopA and bipD mutants showed

Figure 3. B. pseudomallei-containing vacuoles are bound by single membranes and the TTSS3 and the effector BopA are required
for bacterial escape. (A–F) Transmission electron micrographs show the intracellular location of B. pseudomallei in RAW 264.7 cells at 2–6 h post
infection (p.i.). The scale bar is indicated. Boxed areas are shown as magnified images below each panel. Intracellular bacteria were observed either
free in the cytosol and not membrane bound (panel A), or within single-membrane phagosomal compartments (panel B). Only one bacterium was
found in a double-membrane compartment (panel C), which could be an autophagosome. Canonical autophagosomes having a double-membrane
were observed in infected and uninfected RAW 264.7 cells (panels D–F). Arrows indicate detailed membrane ultrastructure. (G) The percentage of
bacteria free in the cytosol of RAW 264.7 cells following infection with B. pseudomallei wild-type, bopA mutant and the bipD mutant at 2, 4, and 6 h
p.i. Data represent the mean 6 SEM of three separate experiments (n = 100 bacteria). Where shown * indicates p,0.05 relative to the wild-type strain
at each time point.
doi:10.1371/journal.pone.0017852.g003

LC3-Associated Phagocytosis and B. pseudomallei
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increased levels of co-localization with LAMP1 (Figure 5B) and

LC3 (Figure 5C) compared to the wild-type strain at all time

points. At 4 h and 6 h p.i. the bipD mutant showed higher levels of

co-localization with each marker protein than did the bopA mutant.

We also determined dual co-localization of bacteria with LC3 and

LAMP1 (Figure 5D), as a measure of the maturation of bacteria-

containing LC3 phagosomes by fusion with lysosomes. The

percentage of bacteria co-localized with both LC3 and LAMP1

was also significantly higher for both the bopA and bipD mutants

(Figure 5D). Importantly, for the wild-type and mutant strains a

high percentage of LC3-positive bacteria-containing phagosomes

was also LAMP1 positive (Figure 5E), suggesting that LC3

recruitment is associated with enhanced levels of phagolysosome

maturation. Consistent with this proposal is the observation that

only a very low percentage of LC3-negative bacteria-containing

phagosomes are LAMP1 positive but more than 60% of LC3-

positive bacteria-containing phagosomes at 4 h p.i. were LAMP1

positive. These data are consistent with the hypothesis that LC3

Figure 4. B. pseudomallei-associated actin-tails, host cell membrane protrusions and MNGC formation require TTSS3 translocator
BipD, but not effector BopA. (A) Representative confocal micrographs with DIC images of RAW 264.7 cells infected with the wild-type strain, the
bopA mutant, or the bipD mutant at 6 h p.i. Bacteria were stained red, filamentous actin was stained green and nuclei were stained blue. Bacteria with
associated actin-tails are marked with arrows. Scale bar = 5 mm. (B) Intracellular survival of B. pseudomallei wild-type and bipD mutant in RAW 264.7
cells at 2, 4, and 6 h p.i. Bacterial survival was normalized to CFU counts obtained at 2 h p.i. and presented as relative survival (%). Data represent the
mean 6 SEM of three separate experiments, each carried out in triplicate. Where shown * indicates p,0.05 relative to the wild-type strain at each
time point.
doi:10.1371/journal.pone.0017852.g004
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Figure 5. B. pseudomallei with defective TTSS3 show enhanced co-localization with autophagy marker protein LC3 and the
lysosome marker LAMP1. (A) Confocal images of RAW 264.7 cells expressing GFP-LC3 (green) and infected with B. pseudomallei (Bp). Cells were
fixed at 2 h p.i., permeabilized, and stained for B. pseudomallei (blue) and LAMP1 (red). Arrows indicate bacteria associated with LC3 that are also
within LAMP1-positive vacuoles. Bacterial co-localization with LC3 or LAMP1 was defined by the presence of labelled B. pseudomallei (blue) which
were fully overlaid by intense green/red or fully contained within a green/red ring. Scale bar = 5 mm. (B–D) Quantitative analysis of bacterial co-
localization with LC3 (B), LAMP1 (C) or both LC3 and LAMP1 (D) in RAW 264.7 cells infected with B. pseudomallei wild-type, bopA mutant or bipD
mutant at 2, 4, and 6 h p.i. (E) The percentage of LC3-positive (LC3+ Bp) or LC3-negative bacteria (LC32 Bp) of the wild-type, bopA mutant or bipD
mutant at 2 or 4 h p.i. that co-localized with LAMP1. Data represent the mean 6 SEM of three separate experiments (n = 100 bacteria). Where shown *
indicates p,0.05 relative to wild-type strain at each time point.
doi:10.1371/journal.pone.0017852.g005
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recruitment to B. pseudomallei-containing phagosomes stimulates

fusion of phagosomes with lysosomes, leading to enhanced killing

of the bacterial contents.

The recruitment of LC3 to phagosomes is diminished in
RAW 264.7 cells which have taken up heat-killed
B. pseudomallei

In order to determine whether LC3 recruitment to phagosomes

always occurs when B. pseudomallei is present within phagosomes,

we analysed the co-localization of LC3 with heat-killed bacteria

taken up by RAW 264.7 cells. In these experiments only a very

small number of internalised bacteria were observed to co-localize

with LC3 (Figure 6). Therefore, retention of bacteria within

phagosomes is not sufficient for LAP to occur. A low level of co-

localization with LC3 was observed for all three heat-killed strains

tested: wild-type, bopA mutant and bipD mutant. Similar results

were observed in cells infected with B. pseudomallei which had been

killed by treatment with PFA or methanol (data not shown). These

data suggest that LAP requires the presence of specific bacterial

factor(s) produced by viable B. pseudomallei.

Discussion

LC3-associated phagocytosis (LAP)
TEM analysis of infected RAW 264.7 macrophage cells

revealed that invading B. pseudomallei bacteria are found either

free in the cytosol or sequestered in single-membrane phagosomes

(Figure 3). Of 500 bacteria identified and scored in TEM sections

only one bacterium was observed within a double-membrane

structure likely to be a canonical autophagosome. As we have

shown in a previous study that B. pseudomallei can be observed co-

localized with the autophagosome marker LC3 these data suggest

that LC3 is recruited to B. pseudomallei-containing phagosomes and

that cytoplasmic bacteria are very rarely engulfed by autophago-

somes. Moreover, B. pseudomallei-containing phagosomes are

apparently not targeted by autophagy (Figure 2, pathway B) as

no triple membrane structures were observed. These data were

supported by analysis of the B. pseudomallei bipD mutant which is

unable to escape from the phagosome but which showed high

levels of co-localization with LC3. Although conventional

autophagosomes appear to be rarely involved in clearance of B.

pseudomallei, LC3-associated phagocytosis (LAP) can be considered

to be an autophagy-related mechanism as it requires autophagic

proteins Beclin1, Atg5 and Atg7, and is inhibited by the PI3K

inhibitors wortmannin or LY294002 [31,32]. Indeed, treatment of

RAW 264.7 macrophage cells with wortmannin reduced the co-

localization of the bopA mutant with LC3 and increased bacterial

survival compared to untreated cells [30].

The LPS of B. pseudomallei stimulates both TLR2 and TLR4

while only TLR2 contributes to host defense [41]. We have

observed that the treatment of RAW 264.7 cells with B. pseudomallei

LPS induces a significant increase in the formation of GFP-LC3

puncta [30]. Therefore, in light of the data presented here we

propose that LAP in B. pseudomallei-infected macrophages is

induced in response to LPS, probably via a TLR2- or TLR4-

dependent mechanism. Consistent with this proposal TLRs are

known to activate the NOX2 NADPH oxidase, and recently it was

shown that NOX2-generated reactive oxygen species are neces-

sary for LC3 recruitment to phagosomes [42]. Interestingly we

observed that retention of bacteria within phagosomes is

insufficient for LAP to occur, as heat-killed B. pseudomallei showed

dramatically reduced co-localization with LC3 suggesting that

LAP requires other bacterial factor(s) produced by, or present on,

live bacteria.

Role of T3SS3 and BopA in the evasion of LAP
The TEM data presented here show the importance of the

TTSS3 for escape from phagosomes and identify the putative

effector protein BopA as having an important role in phagosome

escape. Importantly, bacterial escape from the phagosome results

in reduced bacterial killing through avoidance of sequestration

within phagolysosomes. The bipD mutant showed almost no

escape from phagosomes within RAW 264.7 cells up to 6 h p.i.;

similar results have been observed for a B. pseudomallei bipD mutant

within J774.2 murine macrophage-like cells [9]. BipD is predicted

to be a component of the secretion needle tip [37,43] and thus a

bipD mutant would be unable to secrete any effector proteins. The

mechanism by which TTSS3 facilitates phagosome escape is not

currently known. Several other putative effector proteins are

specified by the B. pseudomallei TTSS3 gene cluster [9]. Inactivation

of single TTSS3 effector proteins can lead to different outcomes

with respect to co-localization with LC3 which presumably reflects

the ability of single gene mutants to escape from the phagosome.

Thus, the bopA mutant exhibited increased co-localization with

LC3 and delayed escape from phagosomes, but a mutant defective

in another putative effector, BapA, showed a similar level of co-

localization with LC3 as the wild-type strain. Furthermore, the

observation of a small number of free bipD mutant bacteria at 6 h

p.i. suggests that the bipD mutant can escape the phagosome at late

time points, a phenotype observed in another TTSS3-defective

strain, a bsaZ mutant [44]. Consistent with our observations

regarding localization of bacteria in single-membrane compart-

ments is that the presence of actin tails and MNGC formation

could be observed in RAW 264.7 cells infected with wild-type or

bopA mutant bacteria as expected because many bacteria are free

in the cytosol. Notably, these phenotypes are not observed for bipD

Figure 6. The recruitment of LC3 to bacteria-containing
phagosomes is diminished in RAW 264.7 cells infected with
heat-killed B. pseudomallei. Quantitative analysis of bacterial co-
localization with LC3 in RAW 264.7 cells infected with live B.
pseudomallei (wild-type strain, the bopA mutant or the bipD mutant)
or heat-killed strains at 2 and 4 h p.i. The data represent the mean 6
SEM of three separate experiments (n = 100 bacteria). Where shown *
indicates p,0.05 relative to the wild-type strain at each time point.
doi:10.1371/journal.pone.0017852.g006
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mutant bacteria as we, and others [9], have shown that bacteria

are almost completely sequestered in phagosomes at 6 h p.i..

What then is the specific role of BopA in escape of bacteria from

phagosomes? Given that the bopA mutant displays a reduced ability

to escape the phagosome, it is likely that BopA plays a direct role

in disruption of the phagosome membrane, facilitating escape of

sequestered bacteria into the host cytosol. Interestingly, it was

recently reported that BopA contains a Rho GTPase inactivation

domain at its carboxy terminus which may function as a protease

or acyltransferase acting on host molecules [45]. Another recent

report showed that BopA also contains a cholesterol binding

domain [46]. Binding of cholesterol by BopA might lead to the

accumulation of cholesterol on phagosome membranes which

could limit lysosomal recognition and/or fusion. Such a view is

supported by the finding that cholesterol depletion in macrophages

infected with Mycobacterium avium triggered phagolysosomal or

autophagolysosomal formation with consequent bacterial degra-

dation [47]. A detailed investigation of the cellular location and

biochemical function of BopA is warranted in order to provide

further insight into its role in phagosome escape and intracellular

survival. Notably the bopA mutant shows reduced virulence in

mouse melioidosis models, suggesting that its role in intracellular

survival is critical for the pathogensis of B. pseudomallei.

Cytosolic B. pseudomallei is resistant to canonical
autophagic attack

Wild-type B. pseudomallei is highly resistant to LAP and lysosomal

killing, as the majority of the intracellular population escapes from

phagosomes. Once free in the cytosol, bacteria activate BimA-

mediated actin-based motility, replicate, invade adjacent cells via

membrane protrusion and form MNGCs (Figure 4). As demon-

strated by TEM analysis cytosolic bacteria are highly resistant to

uptake by canonical autophagosomes. Indeed, while we were able

to observe many autophagosomes in infected RAW 264.7 cells, we

identified only one which contained a bacterium. How then do

these free bacteria avoid attack by canonical autophagy? It has

recently been suggested that it is unlikely that BopA acts in a

manner analogous to IcsB of S. flexneri which acts to inhibit

sequestration of bacteria in autophagosomes by preventing Atg5

binding to BimA [46]. This proposal fits with the results we

present here showing that a bopA mutant is more susceptible to

LAP, but not to cytoplasmic engulfment by autophagosomes.

Autophagosomes engulf several species of cytoplasmic bacteria

such as Group A Streptococcus and S. enterica serovar Typhimurium

[17,48]. Although the signals inducing this autophagic attack are

largely unknown, ubiquitination of cytoplasmic bacteria and the

binding of the autophagy adaptor protein p62/SQSTM1 play a

role in this process (reviewed in [49]). Some bacteria have

developed mechanisms to evade or exploit the processes activated

by ubiquitination, producing both ubiquitin ligases and deubiqui-

tinases that modulate host defence responses. Recently, the B.

pseudomallei TssM protein was identified as exhibiting deubiquiti-

nase activity [50], and this activity may represent a mechanism by

which B. pseudomallei avoids recognition by the machinery of

canonical autophagy. Clearly a major challenge that remains is to

understand how bacteria free in the cytosol are resistant to attack

by canonical autophagy.
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