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Purpose: To develop a method to reconstruct an interior region-of-interest �ROI� image with
sufficient accuracy that uses differentiated backprojection �DBP� projection onto convex sets
�POCS� �H. Kudo et al., “Tiny a priori knowledge solves the interior problem in computed tomog-
raphy,” Phys. Med. Biol. 53, 2207–2231 �2008�� and a tiny knowledge that there exists a nearly
piecewise constant subregion.
Methods: The proposed method first employs filtered backprojection to reconstruct an image on
which a tiny region P with a small variation in the pixel values is identified inside the ROI. Total
variation minimization �H. Yu and G. Wang, “Compressed sensing based interior tomography,”
Phys. Med. Biol. 54, 2791–2805 �2009�; W. Han et al., “A general total variation minimization
theorem for compressed sensing based interior tomography,” Int. J. Biomed. Imaging 2009, Article
125871 �2009�� is then employed to obtain pixel values in the subregion P, which serve as a priori
knowledge in the next step. Finally, DBP-POCS is performed to reconstruct f�x ,y� inside the ROI.
Clinical data and the reconstructed image obtained by an x-ray computed tomography system
�SOMATOM Definition; Siemens Healthcare� were used to validate the proposed method. The
detector covers an object with a diameter of �500 mm. The projection data were truncated either
moderately to limit the detector coverage to �350 mm of the object or severely to cover
�199 mm. Images were reconstructed using the proposed method.
Results: The proposed method provided ROI images with correct pixel values in all areas except
near the edge of the ROI. The coefficient of variation, i.e., the root mean square error divided by the
mean pixel values, was less than 2.0% or 4.5% with the moderate or severe truncation cases,
respectively, except near the boundary of the ROI.
Conclusions: The proposed method allows for reconstructing interior ROI images with sufficient
accuracy with a tiny knowledge that there exists a nearly piecewise constant subregion. © 2011
American Association of Physicists in Medicine. �DOI: 10.1118/1.3549763�
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I. INTRODUCTION

When an object f�x ,y� is scanned with a detector that has
coverage that is smaller than the whole object, exact recon-
struction of a region-of-interest �ROI� inside the object,
where all lines that pass through the ROI are measured,
would be beneficial. This situation occurs with diagnostic
x-ray computed tomography �CT� systems that scan large
patients, with C-arm cone-beam CT systems for interven-
tional radiology and radiation oncology, with PET/CT and
SPECT/CT systems and with single photon counting CT sys-
tems that have a limited detector speed.

Two methods have been developed that exactly solve the
interior ROI reconstruction from truncated projection data in
CT, but under restricted �probably impractical� conditions. It
has been shown in Refs. 1, 4, and 5 that with a small amount
of a priori knowledge about the object f�x ,y�, i.e., f�x ,y� is
known on a small subregion P located inside the ROI, the
interior ROI can be accurately reconstructed using differen-

tiated backprojection �DBP� projection onto convex sets
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�POCS�.6 Often in clinical cases, however, such a priori
knowledge is not available, except for knowledge about the
air in the bronchi or in the stomach.

It has also been proposed in Ref. 2 and proven in Ref. 3
that if the ROI is piecewise constant, the total-variation mini-
mization �TV-min� method can solve the interior ROI prob-
lem exactly. However, images reconstructed by TV-min can
look like patchy paintings, unnatural and different from im-
ages reconstructed by filtered backprojection �FBP�, which
radiologists are more familiar with and have been trained to
review and interpret.

In this study, we propose to develop and validate an ap-
proximate algorithm to reconstruct an interior ROI image
with sufficient accuracy that uses DBP-POCS and a tiny
knowledge that there exists a nearly piecewise constant sub-
region. This paper concerns two-dimensional image recon-
struction; the extension to three dimensions will be discussed
in Sec. V. Clinical x-ray CT data were used in the evaluation.
The structure of this paper is as follows: In Sec. II, we
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present the proposed algorithm. In Sec. III, we outline the
evaluation methods. Results are presented in Sec. IV. In Sec.
V, relevant issues are discussed.

II. THE PROPOSED ALGORITHM

Kudo et al.1 empirically showed that imperfect a priori
knowledge, e.g., merely the mean value of f�x ,y� within P,
was sufficient for reconstruction of ROI images with accu-
racy comparable to those reconstructed with f�x ,y�. We wish
to obtain such imperfect but sufficient a priori knowledge
using TV-min. The proposed algorithm sequentially performs
the five steps shown below. The strategy was to identify a
relatively flat small subregion P using FBP in steps 1 and 2,
to obtain pixel values in P using TV-min in steps 3 and 4,
and finally to reconstruct the ROI image using DBP-POCS
with a priori knowledge of pixel values in P in step 5. To
improve the robustness of the TV-min method, we used the
virtual water support �discussed below� in step 3 for the ini-
tial estimate, and the golden ratio �or golden angle) for the
angular distribution of projections7 in ordered-subset simul-
taneous arithmetic reconstruction technique �OS-SART� in
step 4.

Step 1. We perform FBP to reconstruct an image,
fFBP�x ,y� �Fig. 1�b��, from the truncated projection data. The
image suffers from cupping artifacts caused by the data trun-
cation; however, the quality is sufficient for step 2.

Step 2. We manually identify a small subregion, P, inside
the interior ROI, where the variation in the pixel values is
small �see Fig. 1�b��.

Step 3. We generate an image, f0�x ,y�, by embedding
fFBP�x ,y� into an on-centered, elliptical water support �Fig.
1�c��.

Step 4. We employ TV-min2, i.e., minimize the l1 norm of
the gradient image under the projection data constraint, uti-
lizing f0�x ,y� obtained in step 3 as the initial estimate,

fTV = arg min�f�TV subject to g = Hf , �1�

where H is the system matrix and g is the truncated, mea-
sured projection data. From the reconstructed image,
fTV�x ,y� �Fig. 1�d��, pixel values of the subregion P, fP�x ,y�,
are obtained.

Step 5. We set the initial image to zeros and perform
DBP-POCS to reconstruct the final image, fDBP�x ,y� �Fig.
1�e��, from the truncated, measured projections and the small
amount of a priori knowledge about subregion image,
fP�x ,y�.

In the following, we provide a high level pseudocode of
the proposed five-step algorithm and additional explanation
about steps 3–5. Further details of steps 4 and 5 including
pseudocodes can be found in Refs. 2 and 1, respectively.

�1� Do FBP g→ fFBP �step 1�
�2� Identify a subregion P in fFBP �step 2�
�3� Do virtual water support: fFBP→ f0 �step 3�
�4� Do TV-min: g, f0→ fTV; fP�x ,y�ª fTV�x ,y� for �x ,y� in

P �step 4, Ref. 2�

�5� Do DBP-POCS: g, fP→ fDBP �step 5, Ref. 1�.
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In step 3, the major and minor axes of the ellipse were
determined as follows. From the maximum line integral
value of each of the two projection data sets obtained at 0°
and 90°, ĝ0 and ĝ90, the corresponding water-equivalent path
lengths of the ellipse are calculated as d�=a� ĝ� /�w, where
�w is the linear attenuation coefficient of water at a given
energy, 0.18 cm−1, �=0° and 90°, and a, 0�a�1, is a scal-
ing parameter. The transition from fFBP�x ,y� to water and
from water to zero is smoothened as follows: f0�x ,y�= �1
−w�x ,y��� f inside�x ,y�+w�x ,y�� foutside�x ,y� with w�x ,y�
=0 if b1=��x /rx1�2+ �y /ry1�2�1, w�x ,y�=1 if b2

=��x /rx2�2+ �y /ry2�2�1, and w�x ,y�=3t2−2t3 and t= �b1

FIG. 1. �a� The image reconstructed by the CT scanner, f truth. A solid circle
indicates the �350 mm ROI covered by the moderately truncated detector;
a dashed circle indicates the �199 mm ROI covered by the severely trun-
cated detector. A rectangle indicates a priori region P �21 mm�21 mm�.
��b�–�e�� Images generated in steps 1–5 with the moderately truncated de-
tector. Window width and level of images are 0.05 and 0.17 cm−1 or 300
and 0 HU. The image reconstructed by the proposed method, fDBP, showed
very little bias throughout the ROI except near the edge of the ROI, while
the image appeared very similar to that reconstructed by the CT scanner,
f truth.
−1� / �b1−b2� otherwise.
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In step 4, the TV-min alternates the following two steps:
�1� An update of the image by using OS-SART to enforce the
data fidelity constraint and �2� the steepest decent steps in
order to minimize the TV of the image.2 The pseudocode is
available in Ref. 2. Projections are chosen using a constant
angular interval of 137.5078°, based on the golden angle, to
derive a quasiuniform angular distribution within a subset
and nonsystematic, interlaced angular samplings between
subsets.7 The angle of the first projection of the first subset is
randomized for every iteration.

In step 5, differentiated projections are calculated using
Katsevich’s original scheme,8 i.e., differentiating the adja-
cent parallel rays, which are backprojected onto the image
space to reconstruct a Hilbert transformed object image. A
truncated Hilbert inverse transform is then performed using
the POCS-2 algorithm of Ref. 1 to reconstruct two interme-
diate images, followed by a shift-variant weighted summa-
tion of the two images described as follows. Let xps, xpe, yps,
and ype be the x and y coordinates of the four corners of the
rectangular subregion P. First, the truncated Hilbert inverse
transform is performed along the y axis to reconstruct a sub-
set of the ROI, fy�x ,y�, using fP�x ,y�, x� �xps ,xpe�, y
� �yps ,ype�, as a prior. The pixel values of subregion P are
then over-ridden by performing the Hilbert inverse transform
after the iteration is completed, and thus, a potential subtle
discontinuity at the boundary of the subregion P can be
avoided. Then, the entire ROI image, fyx�x ,y�, is recon-
structed using the truncated Hilbert inverse transform along
the x axis using fy�x ,y�, x� �xps ,xpe�, as a prior. The pixel
values of fy�x ,y� are replaced by those obtained via the Hil-
bert inverse transform. Similarly, we perform POCS-2 twice,
first along the x axis and then along the y axis, to obtain
fxy�x ,y�. Finally, a weighted summation is applied to obtain
the final image fDBP�x ,y�= �1−w�x ,y��� fxy�x ,y�+w�x ,y�
� fyx�x ,y� with w�x ,y�=0 if 0� t�cos �2, t= �x� /�x2+y2,
w�x ,y�=1 if cos �1� t�1, and w�x ,y�=3s2−2s3 with s= �t
−cos �2� / �cos �1−cos �2�. We will discuss the reason for
this shift-variant weight in Sec. V.

III. EVALUATION METHODS

We evaluated the performance of the proposed method
using clinical CT data obtained using a commercial x-ray CT
system �SOMATOM Definition; Siemens Healthcare, Forch-
heim, Germany�. The original detector, with 672 channels,
covered a circular field of view with a diameter of 503 mm.
We truncated the projection data either moderately to limit
the detector coverage to �350 mm with 460 channels or
severely to limit the detector coverage to �199 mm with
258 channels. The abdomen of a 59-yr-old male patient was
scanned utilizing a circular, step-and-shoot scanning mode
with the following settings: 1152 projections per rotation, a
gantry rotation speed of 500 ms/rotation, a tube current of
570 mA, and a tube voltage of 140 kV. The projection data
�line integrals� and image data were archived and the evalu-
ation was performed off-line. The image reconstructed by the

scanner, f truth�x ,y�, shown in Fig. 1�a� was used as the gold
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standard after the unit of pixel values was converted to the
linear attenuation coefficient using �w=0.18 cm−1.

Parameters and settings used in this study were as fol-
lows. In step 1, the Shepp–Logan filter was used and the
image f�x ,y� had a matrix size of 640�640 with a pixel size
of 1 mm�1 mm. In step 2, the specified small subregion P
had a size of 21 mm�21 mm centered at ��34.5 mm, 34.5
mm�. In step 3, the scaling parameter a was 0.9, and the
ellipse and the smoothing range were defined for both mod-
erate and severe truncations by the following parameters:
rx1=258.0 mm, rx2=268.8 mm, ry1=237.9 mm, and ry2

=247.9 mm. The parameters for the transition from
fFBP�x ,y� to water were as follows: rx1=ry1=105.0 mm and
rx2=ry2=115.0 mm for the moderately truncated data and
rx1=ry1=55.0 mm and rx2=ry2=75.0 mm for the severely
truncated data. In step 4, projections were split into 55 sub-
sets; there were 21 projections in each subset except the last
subset, which had 18 projections. The number of global it-
erations was 10, resulting in a total of 550 image updates for
the OS-SART part. The other parameters were identical to
those described in Ref. 2. The distance-driven forward and
backprojectors9 were used. In step 5, the object support �t
= 	1 in Ref. 2� was assumed to be an on-center circle with
a diameter of 600 mm. The parameters for the weighted sum
were �1=30° and �2=60°, which were chosen to divide a
90° range into equally sized three regions. The iteration of
POCS-2 was terminated when the iterations reached a prede-
termined number for each filtering line, which is the number
of pixels within the ROI along the line.

Prior to the following analyses of results, a 5�5 boxcar
filter was applied to the images to decrease the noise. A root
mean square error �RMSE�, as a function of the distance
from the isocenter, was calculated between a target image
and the gold standard image, f truth. A RMSE at a radius r was
then calculated from image pixels within a donut-shaped re-
gion at r with a width of 3 mm.

IV. EVALUATION RESULTS

Results for the moderate truncation are shown in Figs.
1–3. fFBP suffered from cupping artifacts near the edge of the
ROI �Fig. 1�b��, while the bias near the isocenter was as
small as that of fTV �Figs. 2 and 3�. We could easily identify
a region with a relatively small pixel value variation for the
subregion P. fTV had pixel values very close to the truth
�Figs. 2 and 3�, and the RMSE values remained small for a
much larger region than they did for fFBP. However, the im-
age fTV appeared somewhat patchy and apparently different
from f truth. Notice that images are presented with a narrow
window width; the bias that resulted in bright or dark pixel
values near the bottom or top of fTV �Fig. 1�d��, respectively,
was not too large, as can be seen in Fig. 2. The TV-min
method, fTV, provided accuracy sufficient to obtain a prior
for the DBP-POCS algorithm, while even the filtered back-
projection, fFBP, may be sufficient at this level of truncation
if a region with a small pixel value variation can be found
near the isocenter. The proposed method provided the image

with correct pixel values throughout the entire ROI except
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near the edge of the ROI �see Figs. 2 and 3�; the subjective
impression of the image was very similar to that of the gold
standard image. Difference images from f truth generally pre-
sented the same results as in Fig. 3 and, thus, are not shown.
The coefficient of variation �COV�, i.e., the ratio of the
RMSE to the mean of pixel values presented in percentages,
was less than 2.0% for distances up to 160 mm and 7.8% for
distances up to 170 mm. Considering that the moderately
truncated detector covered a radius of 175 mm, the COV
values were sufficiently small within the entire ROI, except
near the edge.

Results with the severe truncation are shown in Figs. 4–6.
There were significant amounts of cupping artifacts and bias
in fFBP even near the isocenter �Figs. 5 and 6�. In this case,
filtered backprojection was not sufficient to obtain a priori
knowledge of the object, P. With adjustments of the window
level, however, we could confirm that the subregion P had a
relatively small pixel value variation. Again, the fDBP pro-
vided correct pixel values throughout the entire ROI except
for at the very edge of the ROI �Figs. 5 and 6�, and the
appearance of the image was similar to that of the gold stan-
dard image. The COV was less than 4.5% for distances up to
86 mm and 8.6% for distances up to 92 mm, while the de-
tector covered a radius of 100 mm. With a given significant
amount of truncation �see Fig. 1�a��, the achieved accuracy
was considered satisfactory.

V. DISCUSSION AND CONCLUSION

We have proposed and validated the five-step method that
sequentially performs FBP, TV-min, and DBP-POCS to re-
construct the ROI image. When the object f�x ,y� is not
piecewise constant, the prior knowledge of the object on
which TV-min is based is inaccurate. It is then not guaran-

FIG. 2. Vertical profiles of images shown in Fig. 1 along x=27 mm.

FIG. 3. RMSE values of images shown in Fig. 1 as a function of radial

distances from the isocenter.
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teed that TV-min will converge into a solution that approxi-
mates an arbitrary object with piecewise constant functions
in a least-squares sense, especially with the presence of
noise. Images reconstructed by DBP-POCS using imperfect
a priori knowledge obtained from images reconstructed by
TV-min are not exact because of the imperfect prior. Never-
theless, the experimental results demonstrate that the pro-
posed method reconstructs interior ROI images of clinical
CT data with sufficient accuracy even though noise was
present in the projection. To the best of our knowledge, this
was the first time either the TV-min method or the DBP
method was evaluated using clinical CT projection data.

The most challenging of the five steps is the TV-min pro-
cess �step 4�. The balance of the two alternating parts, the
TV-min part and the data fidelity constraint part, is critical to
obtaining reasonable results. After we attempted other imple-
mentations with no success, we concluded that to make step
4 robust, it is critical to use OS-SART—which slows down
the convergence and makes updated images not projection
angular dependent—and to perform the TV-min step after
every image update. We applied the parameters used in Ref.
2 to two significantly different degrees of truncation and ob-
tained good results. Sidky and Pan10 proposed a method to
adaptively balance the strength of the two alternating parts,
which worked well with the incomplete data set obtained
from a circular cone-beam scan. Adapting their approach to
the interior ROI reconstruction may be necessary to handle
various clinical data with different conditions.

The DBP-POCS step should improve in terms of filtering
directions and discontinuities across filtering lines. We used
two sets of the two-step filtering, one for x→y and the other
for y→x, and used a shift-variant weighted summation of the

FIG. 4. Images generated in steps 1, 4, and 5 with the severely truncated
detector. A solid yellow circle indicates the �199 mm ROI. Window width
and level of images are 0.05 and 0.17 cm−1 or 300 and 0 HU.
two intermediate images. This approach was easy to imple-
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ment and allowed us to avoid filtering with few image pixels
within the ROI but was computationally expensive. Filtering
along polar directions will improve the efficiency.

Subtle discontinuities were observed across filtering lines
in the reconstructed images. Potential causes include noise
and inconsistency �e.g., beam-hardening effect� in the projec-
tion data and a suboptimal termination of the iteration. The
data constraint step �projection P4� of POCS-2 uses a projec-
tion obtained along the filtering line. Although we employed
a weighted summation of adjacent discrete projection rays,
the interpolated projection values were not consistent from
one filtering line to another, which may be the cause of the
discontinuity. The iteration of POCS-2 was terminated sub-
optimally when the number of iterations reached a predeter-
mined number. We observed that the convergence speed of
POCS-2 varied strongly, depending on various factors such
as the number of pixels within the ROI, the number of pixels
within the a priori region P, and the mass and the profile of
the truncated and measured parts of the object. We used the
number of pixels within the ROI along the filtering line as
the number of iterations, which produced fewer discontinui-
ties than did a fixed number of iterations. Other approaches
to enforce continuity across filtering lines may be necessary
as well.

The criteria on how to select the small subregion P re-
main an open question. Various factors, including the size,
the location, and the degree of pixel value variations as well
as those of ROI and truncated data, seem to have different
effects on TV-min and DBP-POCS. For example, a subre-
gion with a larger pixel value variation, which yields Hilbert
transformed data with more distinct profiles, seems to work
better with DBP-POCS than that with a smaller variation

FIG. 5. Vertical profiles of images shown in Fig. 4 along x=27 mm.

FIG. 6. RMSE values of images shown in Fig. 4 as a function of radial

distances from the isocenter.
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does. In contrast, a subregion with a larger pixel value varia-
tion is not piecewise constant, thus, violates the assumption
TV-min method uses. The properties of the two methods
need to be further investigated to clarify the effects. Once the
selection criteria have been established empirically or theo-
retically, one should develop an automatic scheme to identify
subregion P in step 2. The optimal parameter settings and the
accuracy of the resulting images may depend on the above-
mentioned various factors as well as the rest of ROI and
truncated data. Our preliminary experiments �not shown� in-
dicated that the accuracy of images might degrade signifi-
cantly when the subregions were too small �e.g., 5 mm
�5 mm�; however, more systematic, thorough assessments
of each factor are necessary to better understand and estab-
lish the criteria on the selection of the small subregion.

We focused on the accuracy of the pixel value and, in so
doing, did not present the results of the spatial resolution or
the noise present in images in this paper. We did not observe
a noticeable difference between the results for FBP and
DBP-POCS even with subtraction images because the pixel
size was as large as 1 mm. One can improve the spatial
resolution of DBP-POCS images comparable to that of FBP
images using a newly developed method to calculate differ-
entiated projections.8 We shall leave these to future studies.

The extension to three-dimensional image reconstruction
from cone-beam projections may not be trivial, depending on
the scan orbit. The DBP-POCS method in step 5 requires that
a filtering line connects two points on the orbit. It is thus
straightforward to apply the proposed method to orbits that
satisfy the requirement such as a helical scan or a circle-plus
scan. For other orbits that do not satisfy the requirement such
as a circular scan, one could neglect the cone angle11 at the
expense of cone-beam artifacts.
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