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Abstract
Multiple testing corrections are an active research topic in genetic association studies, especially
for genome-wide association studies (GWAS), where tests of association with traits are conducted
at millions of imputed SNPs with estimated allelic dosages now. Failure to address multiple
comparisons appropriately can introduce excess false positive results and make subsequent studies
following up those results inefficient. Permutation tests are considered the gold standard in
multiple testing adjustment; however, this procedure is computationally demanding, especially for
GWAS. Notably, the permutation thresholds for the huge number of estimated allelic dosages in
real data sets have not been reported. Although many researchers have recently developed
algorithms to rapidly approximate the permutation thresholds with accuracy similar to the
permutation test, these methods have not been verified with estimated allelic dosages. In this
study, we compare recently published multiple testing correction methods using 2.5M estimated
allelic dosages. We also derive permutation significance levels based on 10,000 GWAS results
under the null hypothesis of no association. Our results show that the simpleM method works well
with estimated allelic dosages and gives the closest approximation to the permutation threshold
while requiring the least computation time.
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Introduction
An area of interest in statistical methodology for genetic association studies is the optimal
genome-wide multiple testing correction threshold [Dudbridge and Gusnanto 2008; Hoggart,
et al. 2008; Pe'er, et al. 2008; Risch and Merikangas 1996]. With the ubiquity of genome-
wide association studies (GWAS), which test from hundreds of thousands to millions of
markers, the issue of multiple comparison adjustment has major implications for the
efficiency of GWAS studies and subsequent follow-up studies in large collections of
samples. Failure to adjust for multiple testing can mask true signals, or lead to false positive
results and cause resources to be expended following up SNPs where the null hypothesis is
true. Recently, researchers have begun to use imputed, or estimated, allelic dosages, to
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conduct GWAS. Imputed allelic dosages are the estimated counts of reference alleles at each
SNP. While genotype imputation is now a vital tool in GWAS, the multiple testing issues on
imputed allelic dosages have largely been ignored.

The Bonferroni correction is a simple multiple testing correction method. If m tests are
conducted and we want to control the experiment-wise error rate (EWER) at a nominal
significance level α, we need to adjust the point-wise error rate (PWER) using the
Bonferroni formula α/m. However, due to the linkage disequilibrium (LD), this correction is
known to be too conservative when large numbers of densely spaced SNPs are evaluated for
association with traits. Numerous GWAS and meta-analyses using 2.5M estimated allelic
dosages have been reported recently and no study used the Bonferroni correction, 0.05/2.5M
= 2×10−8, as the significance level.

In contrast to the Bonferroni correction, permutation tests can give the optimal exact
threshold and are considered the gold standard in multiple testing adjustments for genetic
association studies. However, this procedure is computationally intensive and this burden
can be prohibitive for a large number of random shuffles using millions of SNPs. As a
result, researchers have proposed approximation methods to alleviate the computing burden
of permutation tests.

To date, there have been three major classes of approximation methods: 1) the effective
number of independent tests (Meff); 2) asymptotically multivariate normal distribution
(MVN) for the set of all the commonly used association statistics [Lin 2005]; 3)
computational optimization. The Meff based methods use dimension reduction methods to
filter out the correlation among SNPs so that the denominator in the Bonferroni correction
formula can be adjusted correctly. Several Meff methods were designed and tested using
limited numbers of genetic markers [Cheverud 2001;Li and Ji 2005;Nyholt 2004]. Recently,
Meff methods that target GWAS were also proposed and compared, i.e. simpleM [Gao, et al.
2008] and Keff [Moskvina and Schmidt 2008]. simpleM was reported to perform
significantly better than other Meff methods [Gao, et al. 2010;Gao, et al. 2008]. Because the
distribution of commonly used association statistics over a set of genetic markers follow
multivariate normal (MVN) asymptotically [Lin 2005;Seaman and Müller-Myhsok 2005],
some researchers proposed methods to simulate the joint distribution of test statistics in
order to avoid permutation [Conneely and Boehnke 2007;Han, et al. 2009;Lin 2005;Seaman
and Müller-Myhsok 2005], among which SLIDE showed the best performance on a
genome-wide scale [Han, et al. 2009]. There are also methods that optimize the permutation
procedure through computational techniques, such as RAT [Kimmel and Shamir 2006] and
PRESTO [Browning 2008]. SLIDE was shown to perform better than other MVN methods
and RAT [Han, et al. 2009]. A comparison among simpleM, SLIDE and PRESTO using
estimated allelic dosages has not been reported yet.

In this work, we compare the performance of simpleM with SLIDE using 2.5M estimated
allelic dosages from the NHLBI Family Heart Study. To our knowledge, PRESTO requires
both alleles for a SNP to be known, which limits its function only to discrete genotypes.
Additionally, other methods have been evaluated in previous publications [Gao, et al. 2010;
Gao, et al. 2008; Han, et al. 2009]. simpleM does not require the underlying distribution of
joint statistics to be known and is thus a non-parametric method. SLIDE relies on the
assumption of MVN and is a parametric method. Therefore, a comparison between simpleM
and SLIDE is also a comparison between non-parametric and parametric methods in
multiple testing corrections using estimated allelic dosages on a genome-wide scale. We
further validate the results using permutation thresholds derived from 10,000 random
shuffles × 2.5M GWAS tests of these estimated allelic dosages. To our knowledge, this is
also the first report of permutation-based significance level in real data sets for this amount
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of estimated allelic dosages. The extensive evaluation and permutation can provide
guidelines for the study design and the evaluation of GWAS significance using estimated
allelic dosages.

Data
We used data from the NHLBI Family Heart Study [Higgins, et al. 1996]. The data was
genotyped using the Illumina 550, 610 and 1M chips. We used HapMap Phase II CEU
individuals as a reference panel and imputed genotypes to ~2.5 million SNPs. The
imputation software, MACH v1.0.16 [Li and Abecasis 2006], was used and imputed
genotypes were coded as allelic dosages (fractional counts ranging from 0 to 2). Seven
hundred and sixty two unrelated Caucasian individuals were used for evaluating the multiple
testing methods. Only SNPs with minor allele frequency (MAF) ≥ 0.01 were utilized and the
number of SNPs is shown in Table 1.

Methods
simpleM [Gao, et al. 2008] is a principal component analysis (PCA) based approach that
calculates the effective number of independent tests, Meff, for a given data set. Then, it uses
Meff as the denominator in the Bonferroni correction formula. simpleM uses composite LD
to capture the correlation among SNPs and infers the Meff using the number of principal
components that jointly contribute to 99.5% of variation in the SNPs. The method has been
verified to give multiple correction cut-offs similar to those estimated from the permutation
null distribution using data from common SNPs chips [Gao, et al. 2010].

SLIDE [Han, et al. 2009] relies on the assumption that commonly used association statistics
for a set of SNPs follow multivariate normal (MVN) distribution asymptotically. SLIDE
uses a sliding-window Monte-Carlo approach, which takes into account all the local LD
along the genome, to approximate the MVN. One problem, however is that the MVN can be
inaccurate in the tails of the true null distribution. SLIDE scales the approximated MVN to
overcome the inaccuracy in the tails. A bigger window size may generally yield more
accurate results than a smaller window but at the price of increased computing time. In this
work, we used a window size of 100 markers (w = 100) and 10K samplings as reported in
the original publication.

We also performed permutation tests on the NHLBI Family Heart Study 2.5M estimated
allelic dosages. We set the EWERs at 0.05 and derived corresponding PWERs. We
conducted permutation tests [Churchill and Doerge 1994; Gao, et al. 2008] with 10,000
random shuffles using the score test for testing the global null hypothesis of beta = 0 in the
logistic regression as implemented in SAS v9.2 (SAS Institute, Cary, NC, USA). In each
permutation shuffle, half of the samples were randomly assigned as cases and the other half
were assigned as controls. We recorded the smallest p-value from each permutation. The
smallest p-values were arranged in descending order and the 100α percentile was the
permutation-based PWER for the overall significance level of α. We used a nominal value
of α = 0.05. Permutation tests were carried out on the computer cluster (800 nodes) of the
Division of Statistical Genomics at the Washington University School of Medicine.

Results
Results for each chromosome (chromosome-wide EWER = 0.05) and at the genome-wide
scale (genome-wide EWER = 0.05) are shown in Table 1 for the estimated allelic dosages.
The PWERs derived from the simpleM, SLIDE and permutation tests are denoted as αG, αS
and αperm, respectively. simpleM gives Meff output. The corresponding αG was derived using
the formula, αG = 0.05/Meff. SLIDE gives both Meff and αS output. Comparing αG and αS to
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αperm, we see that simpleM gives the best approximation to the permutation thresholds while
SLIDE is rather conservative. To help visualization, pair-wise plots taking permutation
thresholds as the reference for chromosome 1 to 22 are plotted in Figure 1. simpleM ×
permutation and SLIDE × permutation pair-wise values are indicated as open circles and
triangles, respectively. A perfect match with permutation estimates would fall on the
diagonal line, y = x. The closer the approximation thresholds to the diagonal line the better.
SLIDE thresholds are farther off the diagonal line than simpleM. On a genome-wide scale,
the permutation threshold is 8.52×10−8 with 95% confidence interval (CI) as (7.86×10−8,
9.44×10−8), while simpleM and SLIDE give 9.25×10−8 and 6.58×10−8, respectively. It is
clear that the simpleM gives the closest approximation to the permutation. The SLIDE
estimate, 6.58×10−8, is outside of the 95% CI of the permutation significance level. The
corresponding type I error rates for the simpleM and SLIDE thresholds are 0.053 and 0.039,
respectively.

Instead of comparing derived PWERs, we can also compare the Meff estimates. The
minimum p-values from permutation tests follow a beta distribution [Gao, et al. 2010].
Using maximum likelihood estimation (MLE), we inferred the permutation genome-wide
Meff as 590043. The simpleM Meff estimation, 540818, gave a much closer approximation to
the MLE estimate than the SLIDE Meff, 759554.

We also compared the runtime for each approximation method (see Table 2). We ran each
method on the chromosome 1 data with 185,487 SNPs using our desktop computer (Intel
Core2 2.4G CPU with 3GB memory, Redhat Linux operating system). simpleM and SLIDE
took 2 minutes 45 seconds and 9 minutes 30 seconds, respectively. We then compared the
runtime on the genome-wide level. simpleM took about 36 minutes and SLIDE took about
126 minutes to finish. simpleM was applied to the allelic dosages directly. In order to run
SLIDE on the allelic dosages, the data had to be preprocessed into covariance band matrixes
(SLIDE user’s manual), which took a considerable among of time. The runtime for SLIDE
was recorded after the data was preprocessed. It took SAS >40 minutes to carry out 10,000
logistic tests on our desktop computer. For permutation tests, we needed to do 10,000×2.5M
tests and impractical to carry out on a single PC. All the permutation tests were done using
our 800-node computer cluster. Among all the methods tested, simpleM required the least
computing time.

Discussion
With the availability of the HapMap data and the sequence data from the 1000 genomes
project, researchers are now using SNP imputation and estimated allelic dosages to conduct
GWAS. These innovations pose two main challenges to multiple testing correction methods:
1) do they perform well when SNPs are represented by allelic dosages with uncertainty in
SNP calling built in? 2) do they perform well when the number of SNPs are increasing?
Here, we have shown that the simpleM method for multiple testing correction gives the
closest approximation to the permutation method, and does so in the shortest amount of
time.

simpleM and SLIDE are based on two completely different ideas and are implemented in
two different languages, i.e. in R and C, respectively. simpleM is platform-independent.
SLIDE is currently available only on Linux. simpleM is the fastest and provides the closest
approximation to the permutation significance levels. Even though SLIDE is much faster
than the permutation tests, it still requires a considerable number of samplings to achieve
accuracy. Moreover, in order to run SLIDE on allelic dosages, the data have to be
preprocessed into covariance band matrixes.

Gao Page 4

Genet Epidemiol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



With the advance of our understanding of the human genome and the endeavor of searching
for the missing heretibility, a natural question is how to apply simpleM (essentially the PCA
idea) to copy number variants (CNVs) and rare variants. CNVs inferred from microarray
intensity data are represented by segments of either discrete copy numbers, e.g. from
PennCNV [Wang, et al. 2007], or fractional counts, e.g. from Partek®

(http://www.partek.com/). It is not immediately clear how users should do statistical tests
and adjust for multiple comparisons with copy number segments. A simple solution is to
map the segments back to the microarray matrix with the rows and columns representing
locus and individual IDs, and cell values as the inferred copy numbers. Since only a limited
number of regions harbor CNVs, all the regions without CNVs (i.e. only show the normal 2
copies for all individuals) can be skipped, which can greatly reduce the multiple comparison
burden. Then, simpleM can be applied to this matrix of copy numbers. For rare variants,
data analysis usually requires collapsing of neighboring multiple rare mutations into “super”
loci [Li and Leal 2008; Madsen and Browning 2009]. simpleM can be easily applied to these
“super” loci, which may be represented as fractional counts and weighted by allele
frequencies. In the analysis of sequence variations, analyses may be conducted using data
from the extremes of the phenotype distribution, e.g. the upper and lower 5% of the
phenotype distribution [Cohen, et al. 2004], where small sample sizes are likely to occur and
test statistics based on asymptotic theory do not hold. Fisher’s exact and permutation tests
can be applied to these situations. Permutation tests may not be formidable in small sample
sizes situations as compared to GWAS, which require thousands of individuals.

Multiple testing correction has been a challenging topic in genetic association studies.
Though permutation is considered the gold standard, it is computationally intensive,
especially for large genetic datasets, and can be impractical for routine analysis using
standard statistics software. This problem is likely to grow worse, as the data from the 1000
genomes project becomes available for imputation, and next-generation sequencing data
generates more densely spaced genetic variants. Many methods have been proposed to
provide approximations of the thresholds for significance from permutation tests. It may be
challenging for non-experts to choose among all these methods. Moreover, the permutation
thresholds for current commonly used genome-wide imputed SNPs in real data sets have not
been reported possibly due to the excessive computing time and resources required. This
work can provide end-users with guidelines for choosing the appropriate significance levels
and approximation method for addressing multiple testing issues using imputed SNPs and
estimated allelic dosages.

Acknowledgments
This research was conducted in part using data and resources from the NHLBI Family Heart Study supported in
part by NIH grant 5R01HL08770002. Drs. Todd Edwards and Joshua Starmer gave advice in manuscript
preparation. We thank anonymous reviewers for providing constructive feedback for this work.

References
Browning BL. PRESTO: rapid calculation of order statistic distributions and multiple-testing adjusted

P-values via permutation for one and two-stage genetic association studies. BMC Bioinformatics
2008;9:309. [PubMed: 18620604]

Cheverud JM. A simple correction for multiple comparisons in interval mapping genome scans.
Heredity 2001;87(1):52–58. [PubMed: 11678987]

Churchill GA, Doerge RW. Empirical Threshold Values for Quantitative Triat Mapping. Genetics
1994;138(3):963–971. [PubMed: 7851788]

Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles
contribute to low plasma levels of HDL cholesterol. Science 2004;305(5685):869–872. [PubMed:
15297675]

Gao Page 5

Genet Epidemiol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.partek.com/


Conneely KN, Boehnke M. So Many Correlated Tests, So Little Time! Rapid Adjustment of P Values
for Multiple Correlated Tests. American journal of human genetics 2007;81(6):1158–1168.

Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans.
Genetic Epidemiology 2008;32(3):227–234. [PubMed: 18300295]

Gao X, Becker LC, Becker DM, Starmer JD, Province MA. Avoiding the high Bonferroni penalty in
genome-wide association studies. Genet Epidemiol 2010;34(1):100–105. [PubMed: 19434714]

Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies
using correlated single nucleotide polymorphisms. Genetic Epidemiology 2008;32(4):361–369.
[PubMed: 18271029]

Han B, Kang HM, Eskin E. Rapid and accurate multiple testing correction and power estimation for
millions of correlated markers. PLoS Genet 2009;5(4):e1000456. [PubMed: 19381255]

Higgins M, Province M, Heiss G, Eckfeldt J, Ellison RC, Folsom AR, Rao DC, Sprafka JM, Williams
R. NHLBI Family Heart Study: objectives and design. Am J Epidemiol 1996;143(12):1219–1228.
[PubMed: 8651220]

Hoggart CJ, Clark TG, De Iorio M, Whittaker JC, Balding DJ. Genome-wide significance for dense
SNP and resequencing data. Genet Epidemiol 2008;32(2):179–185. [PubMed: 18200594]

Kimmel G, Shamir R. A fast method for computing high-significance disease association in large
population-based studies. Am J Hum Genet 2006;79(3):481–492. [PubMed: 16909386]

Li B, Leal SM. Methods for detecting associations with rare variants for common diseases: application
to analysis of sequence data. Am J Hum Genet 2008;83(3):311–321. [PubMed: 18691683]

Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation
matrix. Heredity 2005;95(3):221–227. [PubMed: 16077740]

Li Y, Abecasis GR. Mach 1.0: Rapid haplotype reconstruction and missing genotype inference. Am J
Hum Genet 2006;S79

Lin DY. An efficient Monte Carlo approach to assessing statistical significance in genomic studies.
Bioinformatics 2005;21(6):781–787. [PubMed: 15454414]

Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum
statistic. PLoS Genet 2009;5(2):e1000384. [PubMed: 19214210]

Moskvina V, Schmidt KM. On multiple-testing correction in genome-wide association studies. Genetic
Epidemiology 2008;32(6):567–573. [PubMed: 18425821]

Nyholt DR. A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in
Linkage Disequilibrium with Each Other. American journal of human genetics 2004;74(4):765–
769. [PubMed: 14997420]

Pe'er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide
association studies of nearly all common variants. Genet Epidemiol 2008;32(4):381–385.
[PubMed: 18348202]

Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science
1996;273(5281):1516–1517. [PubMed: 8801636]

Seaman SR, Müller-Myhsok B. Rapid Simulation of P Values for Product Methods and Multiple-
Testing Adjustment in Association Studies. American journal of human genetics 2005;76(3):399–
408. [PubMed: 15645388]

Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. PennCNV: an
integrated hidden Markov model designed for high-resolution copy number variation detection in
whole-genome SNP genotyping data. Genome Res 2007;17(11):1665–1674. [PubMed: 17921354]

Gao Page 6

Genet Epidemiol. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Pair-wise plots of the approximation and permutation thresholds derived from the
allelic dosage
The x-axis denotes the permutation significance levels. The y-axis is the derived
significance levels from each approximation methods. If the derived thresholds match with
the permutation thresholds perfectly, they would fall on the diagonal line, y = x. simpleM ×
permutation and SLIDE × permutation are represented by open circles and triangles,
respectively.
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Table 2

Runtime for each multiple testing correction method.

number of
SNPs simpleM SLIDE

chromosome 1 185487 2 min 45 sec 9 min 30 sec†

genome-wide 2450330 ~36 min ~126 min†

min: minutes.
sec: seconds.

†
This is the runtime after the allelic dosages were preprocessed into the covariance band matrix format, which took a considerable amount of time.

simpleM does not require this step.
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