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Purpose: To clarify the role of bone morphogenetic proteins (BMP-2,-4,-5) in sclera remodeling during myopia induction
and their effect on sclera fibroblasts in cell culture.

Methods: Reverse transcription and polymerase chain reaction (RT-PCR) as well as immunofluorescence were used to
detect the expression of the BMPs in human and guinea pig posterior sclera. In guinea pig form-deprivation myopia (FDM)
model, RT-PCR and western blotting were used to investigate changes of BMP expression in the posterior sclera. Human
sclera fibroblast (HSF) was primarlly cultured and treated with various doses of BMP-2. Cell proliferation was evaluated
by the MTT assay. RT-PCR and western-blot were used to determine the changes of collagen I, aggrecan, and possible
activated signal pathway. Cell phenotype and activated signal pathway, especially for a-smooth muscle actin (a-SMA)
and phospho-smad1/5/8 were then further investigated by cytoimmunofluorescence staining.

Results: Both human and guinea pig sclera express BMP-2, —4, and —5. In FDM eyes, BMP-2 and BMP-5 expression
were reduced in the posterior sclera. Cell proliferation increased significantly (p<0.05) and more cells differentiated into
myofibroblast when incubated with 100 ng/ml BMP-2 . The expressions of collangen I, aggrecan, and phospho-smad1/5/8
significantly increased (p<0.05 respectively) as well.

Conclusions: Various BMPs were expressed in human and guinea pig sclera. In the posterior sclera, the expressions of
BMP-2 and BMP-5 decreased in FDM eyes. BMP-2 might be able to promote HSF proliferation and differentiation, as
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well as to help extracellular matrix synthesis potentially through classical Smad pathway.

Myopia is the most common visual disorder which affects
approximately half of the world's young adult population
[1-4]. The prevalence of myopia and the degree of severity is
rapidly increasing, especially in some Asian communities
[5]. Despite years of intensive research, the precise
mechanisms which control ocular growth and development of
refractive errors are still not well known. Postnatal scleral
growth, like other connective tissues, is under the control of
growth hormone or its downstream effectors, and there is a
net loss of matrix in myopic sclera [6,7]. The role of
transforming growth factor beta (TGF-f) in myopia was well
investigated [8-12] during the past fifteen years. Bone
morphogenetic protein (BMP), which belongs to transforming
growth factor-beta superfamily, might play an important role
in myopia development. BMPs were found in several ocular
tissues and play an important role in eye development and
differentiation [13]. Their other cellular functions, such as
morphogenesis, cell proliferation, apoptosis, extracellular
matrix synthesis etc., were reported [13] as well. However, to
our best knowledge, the role of BMPs in homeostasis of the
sclera has not been fully documented. The relationship
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between BMPs and axial elongation in myopia also remains
obscure.

It is well known that sclera remodeling occurs during
axial elongation in myopia [14,15] and scleral fibroblasts are
the key cells in this process. The thinned posterior scleral in
high myopia is associated with a general loss of type I collagen
and aggrecan which accounting for most of scleral extra
cellular matrix (ECM) [6,16]. Studies suggested that scleral
cells comprised a subset of myofibroblasts [12,17]. One study
showed that cultured with TGF-B brings about a rapid
differentiation of sclera fibroblasts into a-smooth muscle actin
(a-SMA)-expressing myofibroblasts [12].

In this study, we aim to clarify the role of BMPs (BMP-2,
—4, and —5) by examining any changes during myopia
induction in guinea pigs sclera, and in vitro the effect of BMPs
on sclera fibroblasts differentiation, ECM, and its potential
signal pathway.

METHODS

Animals: All experiments undertaken conformed to the
ARVO Statement for the Use of Animals in Ophthalmic and
Vision Research and the United States NIH document “Guide
for the Care and Use of Laboratory Animals 1996” were
followed. Twenty pigmented guinea pigs (approx-
(imately 10~15 days old) were reared as previously
reported [ 18]. Animals were housed in groups in a temperature
controlled room (25 °C) in open topped cages, on a 12 h light
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(provided by ceiling fluorescent tubes 36W) and 12 h dark
cycle, with free access to food (guinea pig pellets and fresh
vegetables) and water.

Experimental design and myopia induction: The animals were
randomly assigned to 2 groups: diffusers (n=10) and normal
controls (n=10). Diffuser-wear techniques employed in our
experiments are similar to McFadden’s techniques [18]. The
diffusers (white translucent hemispheric occluder with a
diameter of 12 mm) were mounted on a matching plastic ring
and glued to the periorbital fur of the eye for the whole two-
week period of this experiment. The deprived eye in diffusers
was randomly selected among animals and the fellow eye was
untreated as a contralateral control.

Biometric measurements: Biometric measurements include
streak retinoscopy and ultrasonography. Retinoscopy was
performed in a dark room by using a streak retinoscope and
trial lenses when the eyes had been fully cyclopleged with 2
drops of tropicamide for approximately 15 min. The refraction
was recorded as the mean value of the horizontal and vertical
meridians. Axial length of the eye was measured under topical
anesthesia by an A-scan ultrasonagraph with 11 MHz which
had been used by Lu et al. [19]. Ocular refraction and axial
length were collected at the beginning and end of the
experiment.

Tissue preparation. Human scleral tissues were excised from
healthy adult human donor eyes (n=3; ages of 18, 19, and 25
years) obtained from the Eye Bank of the Affiliated Hospital
of Medical College, Qingdao University, with the approval of
Ethics Committee of Qingdao University (Qingdao, China)
and complied with the tenets of the Declaration of Helsinki
for biomedical research involving human subjects. Then each
sclera was cut into equal halves along the optic disc and
macula. The head of the optic nerve was discarded. One half
was embedded with Optimum Cutting Temperature
Compound (OTC; Sigma, St. Louis, MO), and cut into 8 um
sections at —20 °C. The other half was stored at —80 °C and
used for RT-PCR. Sections were subsequently tiled onto
slides (Corning Ltd, Tokyo, Japan), fixed with cool acetone
for 15 min, air-dried, and kept frozen at —20 °C until use.
Normal (n=10) and form deprived (n=10) guinea pigs were
killed by overdoses of Chloral Hydrate. The eyeballs were
removed and cut into halves about 1 mm posterior to the ora
serrata on the ice plate. The anterior segment of the eye was
discarded. The posterior sclera was excised by using a 6 mm-
diameter trephine around the head of the optic nerve. The head
of the optic nerve was discarded. The left sclera was flapped
and stored at —80 °C.

Human scleral cell isolation and culturing: Human scleral
tissues were excised from surgical specimens collected during
treatment for retinoblastoma (n=2, ages of 1.5 and 2 years)
under signed informed consent obtained from donors and was
also approved by the Ethics Committee of Qingdao University
(Qingdao, China) and complied with the Tenets of the
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Declaration of Helsinki for biomedical research involving
human subjects. The scleral tissue was cut into small pieces
(about 1 mm?®) and cultured in 25 mm? flasks in Dulbecco’s
modified Eagle’s medium (DMEM; Invitrogen, Carlsbad,
CA)/Nutrient mixture FI12 (1:1) with high glucose
supplemented, 10% fetal bovine serum (FBS; Gibco) and
incubated at 37 °C in a humidified incubator containing 5%
COs. When achieve a heavy primary monolayer, the cells were
trypsinized for 3 min at room temperature in 0.25% trypsin/
EDTA solution in phosphate buffered saline (PBS, Gibco) and
subcultured at a split ratio of 1:3 in a 25 mm? flask (Corning
Ltd., Lowell, MA). The third passage of fibroblasts was used
for this experiment.

Cell proliferation assays: Cell proliferation was measured by
3-(4, S5-dimethylthiazol-2-yl) —2,5- diphenyltetrazolium
bromide (MTT, Gibco) assay. Cells were plated in 96 well
plates (Corning Ltd) with DMEM in 10% FBS at a 4x10%/
cm? density. Before treated with BMP-2, cells were
synchronized by replacing the medium with serum-free
medium for 24 h. Then cells were incubated with different
concentrations (1 to 100 ng/ml) of BMP-2 at 37 °C for 1 to 6
successive days. This dose range of BMP-2 was commonly
used in culture for in vitro studies although the normal
physiologic levels are lower in bone at 1 to 2 ng/g. The
medium was semi-replaced daily. On the seventh day, cells
were washed twice with 10 mmol/l PBS (pH 7.2) and
incubated with 0.5 mg/ml MTT at 10 pl/well for the last 4 h
before the reaction was terminated with the addition of
150 pl dimethyl sulfoxide (DMSO, Sigma). The absorbance
was determined at 490 nm using an enzyme linked
immunosorbent assay (ELISA) reader (BIO-TEK
Instruments, Winooski, VT).

Total RNA isolation, reverse transcription and polymerase
chain reaction (RT-PCR): Human sclera cells were seeded in
6-well culture plates at 4x10° cells/well and cultured for 24 h.
After synchronized with serum-free DMEM for another 24 h,
cells were incubated in DMEM containing BMP-2 (100 ng/
ml). The culture without BMP-2 acted as controls. On day 2,
the culture media was changed with the same concentration
of BMP-2 in each well. After 72 h incubation, cells were
harvested for RNA extraction. Sclera was grinded in liquid
nitrogen. Total RNA were extracted from sclera (normal
human sclera n=3;normal guinea pigs sclera n=3; form
deprived guinea pig sclera n=5; contralateral control sclera
n=5) and cells with TRIzol reagent (TaKaRa, Dalian, China)
and contaminating DNA was digested using DNase [
(Promega, Madison, WI) according to the manufacturer's
protocol, and quantified using ultraviolet spectrophotometry
by measuring OD260 and OD280 (optical density 260/280
higher than 1.9). cDNA was synthesized with 5 pg total RNA,
2 pl random 6 mers, 0.5 pl Oligo dT Primer, 2 pul
PrimeScriptTM Buffer, and 0.5pl PrimeScript™ RT Enzyme
Mix I (TaKaRa) at 37 °C for 15 min. The reaction was
suspended at 85 °C for 5 s. Conditions for PCR were 95 °C
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TABLE 1. SEQUENCES, ANNEALING TEMPERATURES (TM), AND PREDICTED PRODUCT SIZES OF THE PRIMERS USED.

Gene Upstream primer Downstream primer Tm (°C) Size (bp) NCBI accession number
(rat and human)
BMP-2 GCGGAAACGCCTTAAGTCCA GTGGAGTTCAGATGATCAGC 55 156 NM_017178.1,
NM_001200.2
BMP-3 TTGGCTGGAGCGAATGGATTA GCTCAGGAATCCCAGAGACGAC 56 159 NM_017105.1,
NM_001201.2
BMP-4 TTTGTTCAAGATTGGCTCCCAAG AAACGACCATCAGCATTCGGTTA 55 101 NM_012827.2,
BC020546.2
BMP-5 TCCACAGAACAATTTGGGCTTACA ACCATGAACGGCTGCTTTGAC 55 120 NM_001108168.1,
NM_021073.2
BMP-6 CGCCTTCCTCAACGACCGCGG GGAATCTGGGATAAGTTGAA 55 120 NM_013107.1,
NM_001718.4
BMP-7 TCCGGTTTGATCTTTCCAAGA CCCGGATGTAGTCCTTATAGATCCT 55 81 NM_001191856.1,
NM_001719.2
BMPR-IA GCCGTTTTGAAGCTGATGTCA TCTTTGCGAGCGTCTTCTTGA 55 88 S75359.1,
NM_004329.2
BMPR-IB TGGCTGACATGTACAGCTTTGG GGCACTCGTCACTGCTCCAT 56 198 NM_001024259.1,
D89675.1
BMPR-11 ACTGCAGATGGACGCATGG AATCTCGATGGGAAATTGCAG 55 199 NM_080407.1,
NM_001204.6
Smad1 CTCCAATGTTAACCGGAACTCCAC CTCTGCACGAAGATGCTGCTG 56 129 NM_013130.2,
U59423.1
Collagen I TGCTGGCAAGAATGGCGATC CTGTCTCAGCCTTGTCACCAC 55 122 NM_000088.3,
AF169346.1
aggrecan GAAGTGATGCATGGCATTGAGG ATGATGGCGCTGTTCTGAAGG 55 146 NM_022190.1,
BC036445.1
B-actin GGCACCACACTTTCTACAATG GGGGTGTTGAAGGTCTCAAAC 55 133 NM_031144.2,
NM_001101.3

for 30 s, 35 cycles of 95 °C for 5 s, 55 °C (56 °C for BMP-3,
BMPR-IB, and Smadl, respectively) for 30 s, and 72 °C for
30 s. The final extension step was at 72 °C for 7 min. The PCR
products were then electrophoresed on a 2% agarose gel
containing 10x Gelred reagents in parallel with 50 bp DNA
markers. The nucleotide sequences of the primers used in the
experiments are denoted in Table 1. B-actin (Acth) was used
as an internal control. All band intensities were evaluated by
densitometry (Gel-Pro Analyzer 4.5; Gel-Pro, Bethesda,
MD). The ratio of a target gene versus Actb was computed as
a series of numbers where there might be the smallest number.
To make the expression trend clear, the value in the figures
was the ratio of the series of numbers versus the smallest one.
Because guinea pigs nucleotide sequences haven’t been
reported, we designed probes to cover regions where the
human and rat BMP sequences show high homology. It is
therefore reasonable to expect that our primers specifically
recognize the examined BMPs. To prove the identity, all the
experiments were performed at least 3 times and the products
were sequenced by TaKaRa.

Western blot analysis: Human sclera cells were treated as
described in RNA extraction. After incubated with 100 ng/ml
BMP-2 for 72 h, cells were harvested for protein extraction.
Form deprived guinea pig sclera (n=5) and contralateral
control sclera (n=5) were grinded in liquid nitrogen. Cells and
sclera tissues were homogenized separately in ice-cold
extraction buffer (0.01 M Tris-HCl at pH 7.4, 0.15 M NaCl,
1% w/v Triton X-100, 0.1% SDS, 1% deoxycholic acid, ImM
EDTA) as well as protease inhibitors (1uM pepstatin, 1pg/ml
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leupeptin, and 0.2mM PMSF). After homogenization,
samples were placed on ice for 30 min and centrifuged at 4 °C
12,000% g for 15 min. The supernatant was decanted and the
precipitate was discarded. Protein concentrations were
determined according to the BCA method using an Enhanced
BCA Protein Assay Kit (Boster, Wuhan, China). Each protein
sample (30 pg) was mixed with 5x sample buffer for SDS
PAGE. The mixture was boiled for three min, electrophoresed
on a 10% SDS polyacrylamide gel, and transferred to
nitrocellulose membranes (Pall Corporation, East Hills, NY).
Protein loading and transfer efficiency were monitored by
staining the membranes with 1% Ponceau S. The membranes
were washed three times with TBST (pH 7.6) and soaked in
a blocking solution (5% w/v skim milk powder in 2.5 mM
Tris-HCI and 14 mM NaCl plus 0.05% Tween-20) for 1 h at
room temperature. The membranes were incubated overnight
with primary antibodies at a 1:100 dilution (rabbit anti
BMP-2, —4, and —5; 0.2ml; Boster, Wuhan, China) and 1:500
dilution (rabbit anti phospho-Smad1/5/8; 0.1 ml; , Millipore,
Billerica, MA) at 4 °C in blocking solution. The membranes
were then washed three times with TBST and incubated with
a horseradish peroxidase-conjugated secondary antibody
(goat anti-rabbit) at a 1:1,000 dilution (0.4 pg/ml; Boster) for
another 1 h at room temperature. The membranes were again
washed three times with TBST. The reaction products were
visualized with BeyoECL Plus western blotting detection
reagents (Beyotime Institute of Biotechnology, Haimen,
China). Images were captured with a Fuji Film LAS3000
imaging system and analyzed with MultiGauge software (Fuji
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Film, Tokyo, Japan). B-actin (Kang Chen, China) was used as
a housekeeping protein to normalize the protein load.
Immunofluorescent staining: The slides were washed three
times with PBS, nonspecific bindings were blocked by
incubation in 10% (v/v) goat serum in PBS for 30 min at room
temperature. Then the slides were incubated at 4 °C overnight
with primary antibodies against BMP-2, —4, and-5 (BA058S5;
BA0662; BA0663; 1:200 dilution; Boster) diluted in PBS. The
antibody-treated and negative control slides were washed with
PBS three times at room temperature, then incubated with
FITC labeled goat anti-rabbit IgG antibodies (BA1105;
Boster) diluted in PBS at room temperature for 1 h.
Fluorescent signals were detected using a fluorescent
microscope (TS-100; Nikon, Tokyo, Japan).

Cells grown on 96-well plates were fixed with 4% (v/v)
paraformaldehyde for 30 min and then made permeable with
0.1% Triton X-100 in PBS for 10 min. Nonspecific binding
was blocked by incubation in 10% (v/v) goat serum in PBS
for 30 min at room temperature. Following incubation of the
cells with primary antibody against phospho-Smad1/5/8
(AB3848; Millipore), a-SMA (BM0002; Boster) diluted in
PBS at 4 °C overnight. Cells were then probed with FITC-
labeled (BA1105; Boster) or Cy3-labeled goat anti-rabbit
(BA1032; Boster) secondary antibodies diluted in PBS and
incubated at the room temperature for another 1 h. Nuclear
staining with DAPI was applied. Fluorescent signals were
detected using a fluorescent microscope (TS-100; Nikon).

Statistical analysis: Data were expressed as meantstandard
deviation (SD). Differences between the groups were
compared by using a one-way ANOVA (ANOVA) with a
Tukey post hoc test or Bonferroni Correction. The Student’s
t-test was performed for statistical analysis of cytometry
between the experiment and control groups. Statistical
analysis was performed using the SPSS 15.0 statistical
software (IBM, Chicago, IL). The results were considered to
be statistically significant at p<0.05.

RESULTS

Expression of BMPs and BMP receptors in human and guinea
pig sclera: In normal human and guinea pig sclera, BMP-2,
—4, =5, and all the BMPRs could be detected after RT-PCR
(Figure 1A). The relative expression level of BMP-5 was
strongest, followed by BMP-2 and BMP-4. The expression of
BMPR-IA and BMPR-IB were higher than that of BMPR-II.
The expression of BMPs in human sclera were further
confirmed by immunofluorescence (Figure 1B).

The expression of BMPs in guinea pig sclera of form-
deprivation myopia model: The differences between the two
eyes of each animals in axial length were not significant for
the two groups at the beginning (p=0.794, one-way ANOVA
with Bonferroni correction, Figure 2). At the 14th day,
monocularly deprived eyes had myopia of —0.48+0.51 D and
an axial length of 8.29+0.05 mm which was significantly more
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myopic and longer than either the contralateral control eyes
(+3.2240.34 D; t=-12.814,df=18, p<0.001; 8.05+0.06 mm,
t=7.23,df=18 p<0.001) or age-matched normal eyes
(+3.07+0.54 D, t=-11.878, df=18, p<0.001; 8.06+0.06 mm,
t=9.084, df=18, p<0.001, independence samples test, Figure
2).

The relative expression levers of FDM eyes were
significantly lower than contralateral control eyes for BMP-2
(p=0.017) and BMP-5 (p=0.028). However, the expression of
BMP-4 was not significantly altered in FDM eyes (p=0.162;
Figure 3A). The identity of PCR products was confirmed by
sequence analysis of vector-cloned cDNA fragments.
Negative control experiments without template did not yield
any products. The protein expressions of BMP-2, —4 and —5
could be detected by western blot (bands at about 13 kDa and
15 kDa, Figure 3B). After 14 days of visual deprivation,
significant decrease was shown for BMP-2 (—32.65%,
p=0.026) and BMP-5 (—25.11%, p=0.034) compared with the
contralateral control eyes of the same animals, while no
significant changes shown for BMP-4 (p=0.158; Figure 3B).
The effect of BMP-2 on HSF in vitro: The scleral cells began
growing out from pieces of sclera tissue after almost 10 days
in culture. They exhibited a fibroblast-like spindle shape or
polygonal shape in morphology for scleral cells, which grew
in a vortex pattern cultured in monolayer. After exposed with
various concentrations of BMP-2 (0, 1, 10, and 100 ng/ml) for
one to seven days, cells proliferation was significantly higher
on day 6 with 100 ng/ml BMP-2 (Figure 4A) than other
concentrations, and the shape of cells was polygonal (Figure
4B,C). And there was a rapid differentiation of fibroblasts into
a-SMA-expressing myofibroblasts with the addition of 100
ng/ml BMP-2 in cell cultures (Figure 4D,E).

As shown in Figure 5A,B, the expressions of aggrecan

and collagen I as well as their protein expression levels were
significantly increased when being cultured with 100 ng/ml
BMP-2 for 72 h. The time point was selected according to Hu
et al. [20] and Yoon et al. [21].
Potential signal pathway of BMP effects in vitro: The
expression of BMPR-IA, -IB, -II, Samdl, and BMP-2
significantly increased in vitro (Figure 6A) after cells were
exposed with100 ng/ml BMP-2 for 24 h. The expression level
of BMPR-IA and BMPR-IB were higher than BMPR-II.

To confirm the effect of BMP-2 on signal pathway in
vitro, cells were stained with immunofluorescence labeled
Smad1/5/8 and detected by western blotting also. After
incubated with100 ng/ml BMP-2 for 1 h, it showed more
marked fluorescent signals localized in the nucleus of the
treated cells than untreated cells (Figure 6B). Western blots
also showed a higher phospho-Smad1/5/8 protein level in the
treated cells (Figure 6C).

DISCUSSION
In this study, the expression of selected BMPs were
investigated in human and guinea pig sclera as well as in form-
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Figure 1. Expressions of BMPs and
BMP receptors in human and guinea pig
sclera. A: Semi-quantitative RT-PCR
analysis of total RNA from 3 normal
human sclera and 3 normal guinea pig
sclera using specific primers for
BMP-2 to BMP-7, BMPR-IA, BMPR-
IB, and BMPR-II normalized to Actb at
35 cycles (M: molecular size marker).
B: Distribution of the BMPs in human
sclera by indirect immunofluorescence
(FITC marked the secondary antibody).

deprivation myopia sclera of guinea pigs. To our best
knowledge, this is the first report about the expression and
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functional role of BMPs in guinea pigs sclera, and particularly
for a form-deprivation myopia model.
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The present study showed that both human and guinea
pig sclera expressed BMP-2, —4, and —5. The additional
expression of BMP receptors (BMPR-IA, -IB, and -II) in
sclera indicates that BMPs play a role in normal sclera
homeostasis. In the following study, there is a significant
downward regulation of BMP-2 and —5 in the scleral
remodeling during myopia induction, especially BMP-2.
BMP-2 is expressed in the human cornea and is considered to
be a heparin-binding cytokine that can modulate corneal
fibroblast apoptosis [22]. It was also found to promote sclera
fibroblast proliferation in vitro [20]. McGlinn et al. [23]
reported that chicks following 6 h and 3 days of diffuser-wear,
BMP-2 mRNA levels were significantly down-regulated in
the retina and RPE. These research works show that there
could be an additional role for BMP-2 in eye tissue. In a study
[24]of possible mechanisms of scleral remodeling in the
development of myopia found that there were mechanical
stresses induced BMP-2 mRNA expression in human scleral
fibroblasts after 30 min and 24 h. Another study [25] also
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reported that variations in the BMP2K gene are strongly
correlated with high myopia in the Taiwanese population. In
our study, BMP-2 was decreased in posterior sclera of myopia
eyes, which would further indicate the BMP-2 is involved in
the growth of human sclera.

It is reported that BMP-5 is also expressed in adult cornea
[26]. BMP-5 expression increases during chondrocyte
differentiation both in vivo and in vitro and this could promote
proliferation and cartilage matrix synthesis through
smad1/5/8 and p38 MAP kinase pathway [27]. In synovial
tissue of patients with osteoarthritis and rheumatoid arthritis,
the expression of BMP-5 was decreased [28]. In our study,
there is a very high expression of BMP-5 in normal guinea
pigs sclera and a significantly decreased expression in FDM.
The decreased expression of BMP-5 indicates that BMP-5
was involved in sclera remodeling during myopia induction.

Other studies found BMP-4 could block the induction of
fibronectin by TGF-B2 in TM cells [29]. In primary open angle
glaucoma, elevated BMP antagonist expressed by TM cells
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Figure 4. The effect of BMP-2 on HSF
in vitro. A: MTT Assay of the effect of
BMP-2 on HSF proliferation at different
concentration on 6th day. Absorbance
value at a wavelength of 490 nm. HSF
proliferation in the presence of BMP-2
(100 ng/ml) was significantly higher on
day 6 than BMP-2 with other
concentrations or controls (p<0.05,
n=06). The asterisk *stands for p<0.05.
The morphology of primary cultured
human scleral cells (B) the cells not
i . exposed with BMP-2; (C) the cells
- B 2 cultured with 100 ng/ml BMP-2 on day
: & | 6. Cultured scleral fibroblasts were
incubated without (D) or with (E)
BMP-2(100ng/ml) for 6 days. The
expression of the myofibroblast-
marker, 0-SMA was assessed using
fluorescent immunocytochemistry
(FITC-labeled the second anitibody).

100

inhibits BMP-4 antagonism of TGF-B2 and this inhibition
leads to increased ECM deposition and elevated IOP [13]. In
humans, mutations in BMP-4 [30] and BMP-7 [31] have been
reported to be associated with eye and brain developmental
anomalies, including the development of myopia in specific
families. However, in our study, it did not show significant
changes in BMP-4 expression during myopia induction.
Further research should be focused on the relationship of
BMP-4 and its antagonist with the effect of TGF-f in sclera
ECM remodeling.
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It was reported that HSF proliferation and scleral
extracellular matrix remodeling events result in changes in
biomechanical properties of the sclera and subsequent
changes in axial length [24,32,33]. FDM significantly
decreased total cell numbers in the region between the optic
nerve and 10 degrees nasal (equivalent to myopic crescent
location in humans) compared with control or normal eyes
[34]. In our study, we used BMP-2 to clarify the effect of
BMPs on HSF differentiation, extracellular matrix synthesis
and its potential signal pathway in human sclera cells in vitro.
It showed that BMP-2 significantly promoted HSF cell
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T
Figure 5. Effect of BMP-2 on
production of collagen I and aggrecan.
The mRNA (A) and protein (B)
expression levels for collagen I and
aggrecan were significantly increased
with 100 ng/ml BMP-2, 72 h in vitro.
Bar graphs revealed changes in mRNA
and protein  expressions (mean
+standard error of the mean) where
values were stated as relative expression
levels. C: control group, T: BMP-2
treatment group. The asterisk stands for
p<0.05 and the double asterisk stands
for p<0.01.

—— — Aggrecan

Aggrecan

proliferation. Cell morphology and organization were also
changed with the increasing concentration of BMP-2. The
highest concentration of BMP-2 we had conducted is 100 ng/
ml, for it is the most concentration used in vitro. For cell
aggregation and polygonal could related to rapidly increasing
cell differentiation and expression of more adhesion
molecules. The increasing expression of a-SMA suggested
that several HSF had differentiated into myofibroblasts.
Myofibroblasts are generally defined as highly contractile
cells that express smooth muscle protein, a-SMA [35] and
comprise as a subset of scleral cells. One study suggested an
age-dependent increase in the proportion of myofibroblasts
[14,36]. Exposure of sclera cells to the reduced levels of TGF-
B which was found in form-deprivation myopia sclera will
decrease cell-mediated contraction and reduce o-SMA
expression [12]. Myofibroblasts are capable of modifying
their extracellular environment both through contraction and
production of new extracellular matrix. Our result of increased
myofibroblasts indicates that there are increased cell-
mediated contractions with BMP-2.

Type I collagens constitute the majority of the collagens
(approximately 99%) in human sclera and aggrecan is a major
component of sclera proteoglycans [6]. In myopia, the
posterior sclera remodeling was characterized by physical loss
of the scleral extracellular matrix which were mainly due to
the reduced production and increased degradation of type I
collagen and aggrecan [6,37]. Previous studies had shown an
increased expression of tissue inhibitor of matrix
metalloproteinase (TIMP-2) and a decreased expression of
MMP-2 in HSF after incubation with BMP-2 [20]. It implies
that BMP-2 could decrease the degradation of the
extracellular matrix of sclera. In this study, we observed
significantly increased expression of aggrecan and collagen
when cells incubated with 100 ng/ml BMP-2. This is different
from previous studies which BMP-2 could not change mRNA
of Type I collagen at any doses in osteoinductive cells such
as intervertebral disc cells or chondrocyte [38,39]. Our results
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further suggested that there was an increased extracellular
matrix production with 100 ng/ml BMP-2, which were similar
to the results of Seko et al. [40].

BMPs exert their biologic effects through binding to the
cell-surface serine-threonine kinase receptors BMP-RI and
BMP-RII. This activation leads to phosphorylation of
intracellular signaling molecules including Smadl, Smad5,
and Smad§ [41,42]. Smad1/5/8 are receptor-activated Smads
(R-Smads) which were phosphorylated by BMP type 1
receptors. After phosphorylation, R-Smads are released
rapidly from the Type-I receptor to interact with Co-Smads
(Smad4) and form hetero-oligomeric complexes which then
translocate into the nucleus to regulate the transcription of
various target genes [43]. In our study, BMPRs were known
to be functional because Smadl/5/8 phosphorylation was
observed following addition of BMP-2 (100 ng/ml).

A increased expression of mRNA for Smadl and protein
levels of phospho-Smad1/5/8 indicate a classic Smad signal
pathway might be activated in HSF with BMP-2 stimulation.
To further prove it, more experiments should be done as other
proteins may be involved in the effects of activated BMP
receptors on cell proliferation or matrix synthesis.

During myopia development, the biomechanical
properties of the sclera are altered. Although scleral matrix
remodelling was considered to be the sole determinant of this
kind of change, but the importance of scleral cells, particularly
scleral myofibroblasts should not be overlooked [7]. Our data
suggest that BMP-2 could influence fibroblast proliferation
and differentiation as well as extracellular matrix synthesis,
which contributes to the development of human myopia.
Future research is needed to investigate how BMP-2 controls
ocular growth in animal models and influences on the
remodeling of the sclera.

In conclusion, BMP-2, -4, and -5 are expressed in human
and normal guinea pigs sclera. For myopia induction, the
changes of their expression were found in posterior sclera of
guinea pig. It suggests that BMPs might play an important role
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in sclera homeostasis and be potential candidates for myopia
control.
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