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ABSTRACT: To date, molecular genetic analyses have
identified over 500 distinct DNA variants in five disease
genes associated with familial Parkinson disease;
a-synuclein (SNCA), parkin (PARK2), PTEN-induced
putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-
rich repeat kinase 2 (LRRK2). These genetic variants
include �82% simple mutations and �18% copy number
variations. Some mutation subtypes are likely under-
estimated because only few studies reported extensive
mutation analyses of all five genes, by both exonic
sequencing and dosage analyses. Here we present an
update of all mutations published to date in the literature,
systematically organized in a novel mutation database
(http://www.molgen.ua.ac.be/PDmutDB). In addition, we
address the biological relevance of putative pathogenic
mutations. This review emphasizes the need for compre-
hensive genetic screening of Parkinson patients followed
by an insightful study of the functional relevance of
observed genetic variants. Moreover, while capturing
existing data from the literature it became apparent that
several of the five Parkinson genes were also contributing
to the genetic etiology of other Lewy Body Diseases and
Parkinson-plus syndromes, indicating that mutation
screening is recommendable in these patient groups.
Hum Mutat 31:763–780, 2010. & 2010 Wiley-Liss, Inc.
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Introduction

Parkinson disease (PD) is the second most common progressive
neurodegenerative brain disorder. It affects 1 to 2% of the
population above 65 years and its prevalence increases to
approximately 4% in those above 85 years. As these demographic
age groups are growing rapidly due to general aging of the
population and increasing lifespans, neurodegenerative diseases
will represent an ever-growing social and economic burden for

society. Through time, the scientific view on PD etiology has
changed dramatically. Due to the observation that only 15 to 20%
of PD patients have a clear positive family history of PD,
researchers predicted that the majority of the PD patients have a
complex etiology, including both a genetic and environmental
component. During the last 2 decades, molecular genetic analyses
in PD families provided important insights in disease mechanisms
underlying PD pathology. Nine genes that contribute to the
genetic etiology of familial PD were identified through positional
cloning strategies in inherited PD patients and families [Bonifati
et al., 2003; Di Fonzo et al., 2009; Kitada et al., 1998; Lautier et al.,
2008; Paisan-Ruiz et al., 2004, 2009; Polymeropoulos et al., 1997;
Ramirez et al., 2006; Valente et al., 2004a; Zimprich et al., 2004a].
Two more PD genes, UCH-L1 and HTRA2, were identified based
on the functional relevance of their corresponding protein to PD
pathogenesis [Leroy et al., 1998a, b; Strauss et al., 2005]. Although
follow-up genetic studies are inconsistent for some of these genes
or conclusive data are still pending, ample evidence for a causal
association was obtained for PD with five genes, that is,
a-synuclein (SNCA; MIM] 163890), parkin (PARK2; MIM]
602544), PTEN-induced putative kinase 1 (PINK1; MIM] 608309),
DJ-1 (PARK7; MIM] 602533), and Leucine-rich repeat kinase 2
(LRRK2; MIM] 609007). Extensive mutation screening of these five
causal genes revealed both simple mutations (missense, nonsense,
silent, splice site, and untranslated region (UTR) mutations, small
insertions and deletions (indels), and copy number variations
(CNVs) leading to PD. Approximately 330 confirmed or possible
pathogenic mutations in over 1,900 families have been identified so
far (Supp. Tables S1–S5; PDmutDB database: http://www.molgen.
ua.ac.be/PDmutDB). Possible pathogenic mutations include non-
synonymous variants, splice site variants or variants in UTRs that
were not observed in control individuals. In this mutation update
we present the DNA variants identified so far and elaborate on their
clinical and biological relevance. We also discuss the importance of a
new publicly available and extensively curated database PDmutDB,
and the implications of these analyses for mutation analyses in a
diagnostic setting.

Major Genes and Proteins

Autosomal Dominant PD Genes

a-Synuclein

SNCA was the first causal PD gene identified segregating a
pathogenic missense mutation—p.Ala53Thr—in a large Italian
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family (‘‘Contursi’’) (MIM 163890) [Polymeropoulos et al., 1996,
1997] (Table 1 and Fig. 1). The 144aa SNCA protein encoded by
the three different SNCA transcripts is typically found as a natively
unfolded, soluble protein in the cytoplasm or associated with lipid
membranes [Davidson et al., 1998] (Table 2). The exact biological
function of SNCA in brain is still not fully understood, although
there is evidence that implicates SNCA in neurotransmitter release
and vesicle turnover at the presynaptic terminals [Abeliovich et al.,
2000; Liu et al., 2004].

Mutations in SNCA are rather rare and explain disease in
�2.5% of known unrelated affected carriers (see Supp. Tables S1-1
and S1-2 for mutations, PDmutDB for all references: http://
www.molgen.ua.ac.be/PDmutDB). Apart from the Italian Con-
tursi family, p.Ala53Thr was also identified in several families of
Greek descent [Athanassiadou et al., 1999; Papadimitriou et al.,
1999; Polymeropoulos et al., 1996, 1997; Spira et al., 2001]. More
recently, p.Ala53Thr was also detected in two other unrelated
families from Asia and Sweden [Choi et al., 2008; Ki et al., 2007;
Puschmann et al., 2009] as well as in one seemingly sporadic PD
patient of Polish origin [Michell et al., 2005]. With only two other
missense mutations identified in SNCA—p.Ala30Pro [Kruger
et al., 1998] and p.Glu46Lys [Zarranz et al., 2004] (see Supp. Table
S1-1)—both also located in the N-terminus of the protein, the
missense mutation frequency of SNCA in different populations
remains very low. In 2003, a triplication of the wild-type SNCA
locus was observed in a large multigenerational family [Singleton
et al., 2003], instigating the discovery of SNCA multiplications in
several other families with PD and related LBD disorders (see
Supp. Table S1-2 for mutations, PDmutDB for all references:
http://www.molgen.ua.ac.be/PDmutDB) [Chartier-Harlin et al.,
2004; Fuchs et al., 2007; Ibanez et al., 2004, 2009; Ikeuchi et al.,
2008; Nishioka et al., 2006, 2009; Nuytemans et al., 2009]. Several
of these dosage studies attempted to delineate the boundaries of
the multiplicated genomic region identified in families or shared
between unrelated carriers. Most SNCA multiplicated regions
appeared in different genomic sizes (see Supp. Table S1-2),
suggestive of independent mutational events. Few studies,
however, reported equally sized duplicated or triplicated regions
surrounding SNCA amongst different families or within branches
of the same family [Fuchs et al., 2007; Nishioka et al., 2009]. Of
interest is that SNCA duplications were also reported in four
apparently sporadic PD patients [Ahn et al., 2008; Nishioka et al.,
2009; Nuytemans et al., 2009].

Leucine-rich repeat kinase 2 or dardarin

The leucine-rich repeat kinase 2 gene (LRRK2) was the second
causal gene linked to autosomal dominant inherited PD (MIM]
609007) [Funayama et al., 2002; Paisan-Ruiz et al., 2004; Zimprich
et al., 2004a, 2004b] (Table 1 and Fig. 2). Its transcript contains 51
exons coding for the LRRK2 protein [Paisan-Ruiz et al., 2004]
(Table 2). LRRK2 comprises several functional domains suggestive
of on the one hand a kinase activity dependent on the GTPase
function of the Roc domain and on the other hand a scaffold
protein function implied by the multiple protein–protein inter-
action regions (Fig. 2). Of interest is that LRRK2 was shown to
form dimers under physiological conditions [Greggio et al., 2008].
The exact biological function of LRRK2 remains largely unknown,
because no physiological substrates have been identified so far.

The first two publications of PD associated mutations in LRRK2
described four different pathogenic missense mutations segregating
in families of European and North-American origin [Paisan-Ruiz Ta
bl
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et al., 2004; Zimprich et al., 2004a]. Subsequent mutation analyses
identified about 80 discrete missense mutations in over a 1,000
families and sporadic patients worldwide (see Supp. Table S2 for

mutations, PDmutDB for all references: http://www.molgen.
ua.ac.be/PDmutDB). This corresponds to about 50% of all
reported unrelated carriers of mutations in the five major genes,

t1 t2

t3

genome

t2

t3

t1

transcriptome

2000bp

100bp

122kb

1543bp

Figure 1. Representation of SNCA on genomic and transcript level. All three transcripts coding for the same protein SNCA are depicted (t1:
NM_001146055.1 /t2: NM_000345.2 /t3: NM_007308.2). On transcript level exons are colored alternately.

Table 2. Features of the Proteins Coded by the Five Major Genes

Gene Protein Number of aa Functional domains (Putative) function

SNCA a-synuclein 144 aa — Neurotransmitter release

LRRK2 LRRK2 2,527 aa Ank (ankyrin-like), LRR (leucine

rich repeat), Roc (Ras-of-

complex proteins), COR (C-

terminal of Roc), Kinase, WD40

—

PARK2 Parkin 465 aa UBL (ubiquitin-like), RING1, IBR

(in-between-ring), RING2

Target proteins for degradation,

maintenance mitochondrial

function

PINK1 PINK1 581 aa Target sequence, kinase Oxidative stress response,

maintenance mitochondrial

function

PARK7 or DJ-1 DJ-1 189 aa — Redox sensor, antioxidant

ex10 ex11 ex20 ex21 ex30 ex31 ex40 ex41 ex50 ex51

Ankyrin LRR Roc COR Kinase WD40

690 860 984 1278
1335

1510 1511 2138 2142 2496

genome

2000bp

transcriptome

100bp

proteome

50aa

144kb

9225bp

2527aa

1878 1879

Figure 2. Representation of LRRK2 on genomic and transcript level and the functional domains of the LRRK2 protein. On transcript level
exons are colored alternately (NM_198578.2). (LRR: leucine-rich repeat; Roc: Ras-of-complex protein; COR: C-terminal of Roc.)
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making LRRK2 the most frequently mutated PD gene so far
(Table 3 and PDmutDB: http://www.molgen.ua.ac.be/PDmutDB).
The 80 missense mutations are located over the entire LRRK2
protein and affect all predicted functional domains. Some
mutations, though, have much higher frequencies than others,
for example, p.Gly2019Ser and mutations altering codon Arg1441.
Unfortunately, because of the large number of coding exons, only a
minority of studies performed mutation analyses of the complete
coding region. Most studies focused instead on those exons coding
for functional relevant protein domains, namely, Roc, COR, and
kinase domains (Fig. 2). Only three studies included dosage
analyses aiming at detecting CNVs but did not detect LRRK2
multiplications or deletions [Mata et al., 2005b; Nuytemans et al.,
2009; Paisan-Ruiz et al., 2008]. Nonetheless, rare CNVs of LRRK2
or parts thereof cannot be excluded, before more dosage studies
have been performed for LRRK2.

An important observation is that the LRRK2 mutation frequency
is seemingly dependent on the ethnicity of the population analysed.
For example, the most frequent mutation with a strong founder
effect—p.Gly2019Ser—was reported worldwide with an average
frequency of 1% in PD patients [Paisan-Ruiz, 2009]. But, in Arab
Berber and Ashkenazi Jewish populations the p.Gly2019Ser
frequency was significantly higher (20 and 40%, respectively)
[Lesage et al., 2006; Ozelius et al., 2006], whereas in the first
comprehensive screening of a Belgian population, p.Gly2019Ser was
apparently absent [Nuytemans et al., 2008]. Other codons in LRRK2
are also frequently mutated as a consequence of numerous
independent mutational events. The p.Arg1441 codon constitutes
a mutation hotspot with three different codon substitutions:
p.Arg1441Cys, p.Arg1441Gly, and p.Arg1441His. The relatively high
mutation frequencies of these mutations should be approached with
some caution though, because underlying founder effects have been
reported. The most frequent mutation p.Gly2019Ser is observed on
a limited number of haplotypes. Also, p.Arg1441Gly was transmitted
from a common founder in the Basque population [Gaig et al.,
2006; Gonzalez-Fernandez et al., 2007; Gorostidi et al., 2009; Mata
et al., 2005c; Paisan-Ruiz et al., 2004; Simon-Sanchez et al., 2006]
while p.Arg1441Cys was observed worldwide on several different
founder haplotypes [Di Fonzo et al., 2006a; Gaig et al., 2006;
Goldwurm et al., 2005; Gosal et al., 2007; Haugarvoll et al., 2008;
Hedrich et al., 2006b; Nuytemans et al., 2008; Pankratz et al., 2006a;
Tan et al., 2006a]. Additionally, several missense mutations seemed
to be (nearly) private mutations for Asian populations: p.Arg1628-
Pro, p.Pro755Leu, and p.Gly2385Arg [An et al., 2008; Di Fonzo
et al., 2006b; Farrer et al., 2007; Fung et al., 2006b; Ross et al., 2008;
Tan et al., 2007, 2008, 2009; Tomiyama et al., 2008].

In contrast to other PD genes, mutations in LRRK2 have a
relatively high frequency of up to 2% in sporadic, late-onset PD
patients [Di Fonzo et al., 2005; Gilks et al., 2005; Nichols et al.,
2005; Tomiyama et al., 2006]. The high mutation frequency in
both familial and sporadic patients makes LRRK2 the most
frequently mutated gene of the five major PD genes. Some
prudence in interpreting data is warranted though. Some of the
missense mutations have also been reported in healthy control
individuals, raising questions on the biological role of these rare
variants in disease [Meeus et al., 2010]. The highly variable onset
ages associated with LRRK2 mutations [Hernandez et al., 2005;
Kachergus et al., 2005; Paisan-Ruiz et al., 2005; Zimprich et al.,
2004a], the presence of LRRK2 mutations in unaffected indivi-
duals [Carmine Belin et al., 2006; Di Fonzo et al., 2006a; Gaig
et al., 2006; Hernandez et al., 2005; Kay et al., 2005; Khan et al.,
2005b; Latourelle et al., 2008; Nichols et al., 2005; Zimprich et al.,
2004a], and the high frequency in sporadic patients render the
assessment of pathogenicity of the identified variants extremely
difficult as these issues complicate segregation analyses. To date,
pathogenicity supported by segregation analyses has only been
demonstrated for six LRRK2 mutations (p.Arg1441Cys,
p.Arg1441Gly, p.Tyr1699Cys, p.Gly2019Ser, and p.Ile2020Thr).

Autosomal recessive PD genes

PARK2 or parkin

The first of three recessive PD genes identified is PARK2 (MIM
602544), which was linked with disease in a nuclear Japanese
consanguineous family [Kitada et al., 1998] (Table 1 and Fig. 3).
PARK2 spans approximately 1.38 Mb and encodes the protein
parkin. The 456 amino acid protein harbors four major functional
domains corresponding to its function as an E3 ubiquitin ligase
(Table 2) [Imai et al., 2000; Shimura et al., 2000; Zhang et al.,
2000]. Its role in the ubiquitin proteasome system (UPS)
comprises of tagging dysfunctional or excessive proteins for
degradation. Further, it was shown that under physiological
conditions parkin is involved in mitochondrial maintenance
[Deng et al., 2008a; Exner et al., 2007; Park et al., 2009; Poole et al.,
2008; Weihofen et al., 2009] and might induce subsequent
autophagy of dysfunctional mitochondria [Narendra et al., 2008,
2009].

The first mutation reports indicated a wide spectrum of loss-of-
function mutations in PARK2 including simple mutations like
nonsense, missense and splice site mutations, indels, as well as
CNVs of the promoter region and single or multiple exons

Table 3. Relative Frequencies of Mutation Categories Dependent on Ethnicity and Familial History

SNCA (%) LRRK2 (%) PARK2 (%) PINK1 (%) PARK7 (%)

Ethnic origin Classic CNV Classic CNV Classic mixed CNV Classic CNV Classic CNV

Caucasian F 4.13 2.07 67.36 0 10.12 3.51 7.44 3.93 0.21 0.83 0.41

S 0.99 0.33 52.48 0 18.15 2.97 11.88 10.89 0.33 0.99 0.66

Asian F 1.01 8.08 9.09 0 10.10 10.10 42.42 17.17 0 3.03 0

S 0 3.13 10.42 0 28.13 1.04 38.54 17.71 1.04 0 0

Arab F 0 0 88.61 0 1.27 1.27 3.80 3.80 1.27 0 0

S 0 0 97.06 0 1.47 0 0.74 0 0 0.74 0

Latin-American F 0 0 57.14 0 14.29 4.76 23.81 0 0 0 0

S 0 0 41.67 0 41.67 0 8.33 0 8.33 0 0

Ashkenazi Jews F 0 0 100.00 0 0 0 0 0 0 0 0

S 0 0 98.04 0 0 0 0 0 0 1.96 0

(%) Number of unrelated mutation carriers with this category of mutation/total number of unrelated mutation carriers (for each ethnicity and familial history). Each row of
this table equals 100%.
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(Table 2) [Hattori et al., 1998a, b; Kitada et al., 1998]. PARK2
mutations were identified spread across the entire gene in either
homozygous, compound heterozygous or heterozygous state in
familial and sporadic patients from different ethnicities (see Supp.
Table S3-1 and S3-2 for mutations, PDmutDB for all references:
http://www.molgen.ua.ac.be/PDmutDB). Heterozygous PARK2
variants have also been observed in healthy control individuals,
making assessment of pathogenicity for these variants quite
complex. Approximately 40% of unrelated mutation carriers were
reported to harbor a mutation in PARK2 (Table 3 and PDmutDB:
http://www.molgen.ua.ac.be/PDmutDB). Of these, close to 8%
carry both a simple mutation as a CNV, whereas carriers of only
simple mutations or CNVs are almost equally common (43.8% vs.
47.9%). Investigation of the haplotypes on which frequent PARK2
mutations reside, showed that most CNVs are independent events,
whereas point mutations were more commonly transmitted from
common founders [Periquet et al., 2001]. This suggests that the
high mutation frequency in PARK2 is only partly due to small
founder effects.

P-TEN-induced putative kinase 1

Homozygosity mapping in PARK2 negative European families
led to the identification of the second autosomal recessive gene,
P-TEN induced putative kinase 1 (PINK1; MIM] 608309) [Valente
et al., 2001, 2002, 2004a] (Table 1 and Fig. 4). The PINK1 protein
is a putative serine/threonine kinase involved in mitochondrial
response to cellular and oxidative stress [Valente et al., 2004a]
(Table 2). This response is likely mediated by regulation of the
calcium efflux, influencing processes such as mitochondrial
trafficking [Wang and Schwarz, 2009; Weihofen et al., 2009],
ROS formation, mitochondrial respiration efficacy [Liu et al.,
2009], and opening of the mitochondrial permeability transition
pore [Gandhi et al., 2009] as well as by interaction with cell death
inhibitors and chaperones [Plun-Favreau et al., 2007; Pridgeon
et al., 2007; Wang et al., 2007]. In addition, PINK1 is an important
player in the alleged PINK1/parkin pathway, regulating mitochon-
drial morphology and functionality in response to stressors

[Deng et al., 2008a; Exner et al., 2007; Park et al., 2009; Poole et al.,
2008; Weihofen et al., 2009].

The PINK1 mutation spectrum involves nonsense and missense
mutations, indels, and whole-gene or single/multiple exon CNVs
(Table 2) located across the entire gene. Mutation analyses in
familial as well as sporadic patients identified homozygous and
compound heterozygous mutations (see Supp. Table S4-1 for
mutations, PDmutDB for all references: http://www.molgen.
ua.ac.be/PDmutDB). Approximately 6.5% of known mutation
carriers carry a mutation in PINK1 (Table 3). Again, many
putative pathogenic mutations were also observed in heterozygous
state in familial and sporadic patients as well as in healthy control
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Figure 3. Representation of PARK2 on genomic and transcript level and the functional domains of the parkin protein. On transcript level
exons are colored alternately (NM_004562.2). (UBL: ubiquitin-like; IBR: in-between-ring.)

2000bp

genome

transcriptome

100bp

proteome
1 77

94
110 156 511

50aa

18kb

2660bp

581aa

kinase

TM

tr
an

si
t

Figure 4. Representation of PINK1 on genomic and transcript level
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individuals [Abou-Sleiman et al., 2006; Bonifati et al., 2005;
Brooks et al., 2009; Choi et al., 2008; Djarmati et al., 2006; Fung
et al., 2006a; Healy et al., 2004; Klein et al., 2005; Kumazawa et al.,
2008; Mellick et al., 2009; Nuytemans et al., 2009; Rogaeva
et al., 2004; Tan et al., 2005, 2006b; Valente et al., 2004b; Weng
et al., 2007]. With the current available mutation data, it seems
that CNVs in PINK1 are less common than simple loss-of-
function mutations (see Supp. Table S4-2). But at this stage we
cannot exclude that this observation represents an ascertainment
bias because many studies did not perform PINK1 dosage analyses
and therefore might have missed CNVs in their patient groups.

PARK7 or DJ-1

The third autosomal recessive PD gene, PARK7 (or DJ-1; MIM
602533) was identified by homozygosity mapping in an extended
Dutch family with multiple consanguinity loops [Bonifati et al., 2003;
van Duijn et al., 2001] (Table 1 and Fig. 5). The DJ-1 protein was
found to be H2O2 responsive suggesting that DJ-1 represents a sensor
for oxidative stress, for example, dopamine toxicity [Lev et al., 2009],
and acts as an antioxidant [Mitsumoto and Nakagawa, 2001] (Table 2).
It was further hypothesized that DJ-1 could be part of a novel E3 ligase
complex together with parkin and PINK1 [Xiong et al., 2009].

Mutation analyses identified homozygous, compound heterozy-
gous as well as heterozygous [Bonifati et al., 2003; Clark et al., 2004;
Hague et al., 2003; Hedrich et al., 2004a; Nuytemans et al., 2009]
missense mutations and CNVs in patients (see Supp. Tables S5-1 and
S5-2 for mutations, PDmutDB for all references: http://www.
molgen.ua.ac.be/PDmutDB). Also for PARK7, heterozygous variants
were observed in control individuals. Mutations in PARK7 are
reported near 1% of all known mutation carriers (Table 3). Current
mutation data indicates that CNVs in PARK7 are less frequent than
simple mutations. But, because of the rarity of mutations in PARK7,
most studies have not analysed their PD patient groups, making it
highly likely that putative pathogenic mutations have been missed and
that the current mutation frequency of PARK7 is an underestimate.

Clinical Implications

Clinical features of PD patients typically include tremor,
bradykinesia, rigidity, good levodopa response, and/or postural

instability. Interestingly, PD is part of a wide Lewy Body Diseases
(LBD) spectrum made up by closely related clinical phenotypes
characterized by variable manifestation of parkinsonism and
dementia (PD, PD with dementia [PDD], Dementia with LB
(DLB), LB variant of Alzheimer’s disease [AD] and AD). On the
other hand, parkinsonism can be accompanied by additional
atypical features defining the parkinson-plus syndromes, like
multiple system atrophy (MSA; dysautonomia and/or cerebellar
signs), progressive supranuclear palsy (PSP; impaired vertical eye
movements and prominent postural instability) and corticobasal
degeneration (CBD; apraxia). The clinical features reported in
literature are mostly typical for disorders of the LBD spectrum. In
some cases, however, more atypical features indicative of other
related diseases, such as the Parkinson-plus syndromes were
observed. This indicates there is a high variability in phenotypes
associated by mutations in SNCA, LRRK2, PARK2, PINK1, and
PARK7.

Here we summarize typical and atypical presentations of
specific mutation groups and discuss some of its implications.
This and more detailed information on familial, individual, and
clinical data can be found in the newly constructed and publicly
available PDmutDB database (http://www.molgen.ua.ac.be/
PDmutDB).

SNCA is the only one of the five genes in which an obvious

correlation can be made between distinct missense mutations or

distinct CNVs and the resulting different phenotypes. The

majority of the familial PD patients carrying the SNCA missense

mutations p.Ala53Thr or p.Ala30Pro typically present with

bradykinesia and rigidity at an early onset age (o55years)

[Bostantjopoulou et al., 2001; Ki et al., 2007; Kruger et al., 1998;

Papapetropoulos et al., 2001, 2003; Puschmann et al., 2009; Spira

et al., 2001]. The sporadic Polish patient carrying p.Ala53Thr,

however, showed typical PD features, that is, late onset at 74 years,

rigidity, progressive bradykinesia, and mild tremor [Michell et al.,

2005]. Also, clinical features in carriers of the third SNCA

missense mutation p.Glu46Lys are atypical in such that these

carriers present with symptoms at later age and suffer from

dementia within several years after PD onset [Zarranz et al., 2004].

Brain pathology in one p.Glu46Lys carrier showed diffuse LB

consistent with a diagnosis of DLB confirming the atypical clinical

presentation [Zarranz et al., 2004]. Also, patients carrying SNCA

genome

transcriptome

2000bp

100bp
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Figure 5. Representation of PARK7 on genomic and transcript level. On transcript level exons are colored alternately (NM_007262.4).
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multiplications present with atypical forms of the disease. A direct

correlation between phenotype and number of SNCA copies was

consistently observed among different studies. Most duplication

carriers present with late-onset parkinsonism [Chartier-Harlin

et al., 2004; Fuchs et al., 2007; Ibanez et al., 2004, 2009; Nishioka

et al., 2006, 2009], which can be accompanied by a later onset

cognitive decline (PDD) [Nishioka et al., 2006, 2009; Nuytemans

et al., 2009]. Triplication carriers however seem to be more

severely affected suffering from a more aggressive form of

dementia despite their shorter disease duration (DLB) [Farrer

et al., 2004; Ibanez et al., 2009; Singleton et al., 2003]. Also,

asymptomatic carriers have been reported in families of both

seemingly sporadic and familial PD patients [Ahn et al., 2008;

Ibanez et al., 2009; Nishioka et al., 2006, 2009]. Only few of

these carriers have exceeded the onset age of the proband [Ibanez

et al., 2009; Nishioka et al., 2009], indicating variable onset ages

or reduced penetrance for this mutation. When considering

all unaffected duplication carriers that are older than the

average onset age of the affected carriers as true asymptomatic

individuals a crude estimate of 85% penetrance could be obtained

from the information in PDmutDB (http://www.molgen.ua.ac.be/

PDmutDB). Interestingly, one study describing both duplication

and triplication of SNCA in two separate branches of the same

family, also reported clinical features reminiscent of MSA

(orthostatic hypotension and poor levodopa response) in both

branches [Fuchs et al., 2007].

Typically, patients carrying LRRK2 missense mutations present

with clinical features similar to those of idiopathic PD, that is,

asymmetrical late onset, bradykinesia, rigidity, tremor, and good

l-dopa response. The incidence of tremor, however, seems to be

elevated in LRRK2 carriers indicating that LRRK2 mutations most

likely lead to tremor-dominant disease [Haugarvoll et al., 2008;

Nuytemans et al., 2008; Paisan-Ruiz et al., 2004]. On the other hand,

isolated studies have also reported LRRK2 mutations in carriers with

a clinical diagnosis of sporadic PD with late-onset AD as well as

CBD, PSP, or frontotemporal dementia (FTD) [Chen-Plotkin et al.,

2008; Santos-Reboucas et al., 2008; Spanaki et al., 2006].
Clinical features of PARK2 homozygous mutation carriers are

generally indistinguishable from those of idiopathic PD patients
with the exception of a clear drop in onset age. Typically PARK2
patients present with disease onset before the age of 50 years and a
slow disease progression [Abbas et al., 1999; Khan et al., 2005a;
Lucking et al., 2000]. Although they respond well to levodopa
treatment they are more likely to develop treatment-induced
motor complications earlier in the treatment [Deng et al., 2008b;
Khan et al., 2005a; Lucking et al., 2000]. Further, PARK2
mutations were also identified in patients with a clinical diagnosis
of PSP, PD plus essential tremor (ET), as well as ET and restless
legs syndrome (RLS) [Adel et al., 2006; Deng et al., 2007;
Limousin et al., 2009; Pellecchia et al., 2007; Pigullo et al., 2004;
Sanchez et al., 2002].

Homozygous PINK1 mutation carriers are clinically indis-
tinguishable from homozygous PARK2 mutation carriers [Benti-
voglio et al., 2001; Valente et al., 2004a]. Although rare, PINK1
mutations were also associated with late-onset PD, RLS with
parkinsonism, and dopa-responsive dystonia [Gelmetti et al.,
2008; Leutenegger et al., 2006; Tan et al., 2005, 2006b]. Further, a
few PINK1 homozygous mutation carriers also presented with
cognitive and psychiatric problems in addition to parkinsonism
[Ephraty et al., 2007; Reetz et al., 2008; Savettieri et al., 2008].

Clinical features of carriers with a homozygous mutation in the
recessive PARK7 gene are also similar to those of homozygous

PARK2 and PINK1 carriers [Bonifati et al., 2003]. Also here,
clinical heterogeneity with a wide range of clinical phenotypes
among unrelated and related carriers was reported. For example,
in one family segregating two distinct homozygous variations were
diagnosed with early onset parkinsonism, dementia, and amyo-
trophic lateral sclerosis (ALS) [Annesi et al., 2005]. In addition,
the initially reported 14 kb deletion of the 50 region of PARK7
linked to typical PD was also observed heterozygously in two
dementia patients without signs of parkinsonism [Arias et al.,
2004].

The available clinical data showed us that mutations in these
five PD genes are not only present in patients but also in patients
diagnosed with related disorders. Some clinical features are known
to overlap between these disorders, so clinical diagnoses may not
always be accurate or different disorders might share a common
etiology. In both cases, it might be worthwhile screening for
mutations in ‘‘PD-associated-genes’’ in larger groups of patients
with clinical diagnoses related to PD to further explore the
genotype–phenotype correlations. Alternatively, no information
was provided on mutation analyses of additional genes so other
currently unknown mutations might still explain this range of
clinical features for these patients.

When discussing genotype–phenotype correlations, one needs
to take into account that at times it can be difficult to comprehend
the clinical implications of some genetic variants. Although
homozygous mutations in the recessive genes have a penetrance of
100% with only two carriers older than the onset age of affected
relatives reported in literature (PARK2 p.Trp74fsCysX8 [Pineda-
Trujillo et al., 2001] and PARK7 p.Glu64Asp [Hering et al., 2004]),
the effect of heterozygous mutations is far less clear. The presence
of these mutations in PARK2, PINK1, and PARK7 has instigated a
debate on the role of heterozygous recessive mutations as risk
factors for disease. In many studies the prevalence of these
heterozygous rare variants is (significantly) higher in patients than
in control individuals (PARK2: [Brooks et al., 2009; Clark et al.,
2006; Lesage et al., 2008; Nuytemans et al., 2009; Sun et al., 2006]/
PINK1: [Abou-Sleiman et al., 2006; Bonifati et al., 2005; Brooks
et al., 2009; Marongiu et al., 2008; Rogaeva et al., 2004; Valente
et al., 2004b]), implying that the presence of a heterozygous
recessive mutation might increase the carrier’s susceptibility to
develop PD. In addition, several families reported affected
heterozygous family members of a homozygous proband creating
a false impression of dominant inheritance and indicating a
possible predisposition of PARK2 or PINK1 variants to PD
(PARK2: [Maruyama et al., 2000; Munhoz et al., 2004; Tan et al.,
2003]/PINK1: [Criscuolo et al., 2006; Djarmati et al., 2006;
Hedrich et al., 2006a; Ibanez et al., 2006]). Investigation of clinical
features in patients with digenic combinations of heterozygous
mutations might provide us with more insight in the effects of
these variants (Table 4). For example, the clinical presentation and
onset of PD does not differ between patients carrying a
heterozygous LRRK2 mutation and patients carrying a digenic
combination of LRRK2 and PARK2 mutations [Bras et al., 2008;
Ferreira et al., 2007; Gao et al., 2009; Illarioshkin et al., 2007;
Lesage et al., 2006; Marras et al., 2010]. Illiaroshkin and
coworkers, though, reported early occurrence of dyskinesias
during treatment, more common in PARK2 mutation carriers,
in a LRRK2/PARK2 digenic mutation carrier [Illarioshkin et al.,
2007]. Reports of carriers with digenic mutations of two recessive
genes are rare, mostly because many mutation studies reported so
far have not analyzed all five PD genes. One study describing
patients carrying a single heterozygous PINK1 mutation on top of
a homozygous PARK2 mutation indicated, nevertheless, that these
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patients present with a significant earlier onset age than patients
carrying only PARK2 mutations [Funayama et al., 2008]. This
suggested that heterozygous PINK1 mutations might indeed effect
the development of PD, although more research into their
biological role is warranted.

Biological and Pathological Relevance

The pathology in PD brain generally consists of progressive
neuronal depigmentation and dopaminergic cell loss in the
substantia nigra, accompanied by presence of LB in the residual
neurons (Table 5). Interestingly, the LB are common to all
disorders in the LBD spectrum, although their location in the
patient’s brain can help specify the exact disorder. In nondemented
PD patients the LB are usually confined to the brainstem, whereas
more widespread cortical LB point to PDD or DLB. It is not fully
understood yet how mutations in the causal PD genes might cause
such pathology. Because SNCA is the main constituent of LB [Baba
et al., 1998], many studies have tried elucidating the biological
processes that trigger SNCA aggregation. Direct investigation of
SNCA itself has provided evidence that mutant SNCA has a greater
tendency to acquire a misfolded conformation [Conway et al.,
2000; Cookson, 2005; Kazantsev and Kolchinsky, 2008], stabilized
by oligomerisation [Uversky et al., 2001a, b]. But overexpression of
wild-type SNCA produces the same effect by triggering a shift from
natively unfolded SNCA to small oligomers due to concentration
burden [Kazantsev et al., 2008; Uversky et al., 2001b]. Aggregation
of SNCA has been shown to be neurotoxic for the cell through the
formation of intermediate aggregates called protofibrils [Conway
et al., 2000; Spillantini et al., 1998]. Because of their conformation
these protofibrils can bind lipid membranes and cause membrane

permeabilization. It is suspected that LB sequester these proto-
fibrils as part of a defense mechanism of the cell against toxic
effects [Bodner et al., 2006; Kazantsev and Kolchinsky, 2008].
Although a few studies reported the presence of LRRK2 in
ubiquitin-positive inclusion bodies [Greggio et al., 2006; Perry
et al., 2008], it is generally perceived that LRRK2 does not reside in
LB in affected brains. Interestingly though, associated LRRK2
pathology comprises variable lesions; (diffuse) LBs and/or PSP-like
tau aggregation or none of the above [Zimprich et al., 2004a],
suggesting that LRRK2 dysfunction might be an upstream event in
neurodegeneration and causing disturbances in different pathways.
The biological function of LRRK2, however, is still largely
unknown. Mutations in the kinase domain of LRRK2 (i.e.,
p.Gly2019Ser and p.Ile2020Thr) were reported to increase kinase
activity [Anand et al., 2009; Gloeckner et al., 2006; Greggio et al.,
2006; Guo et al., 2007; Imai et al., 2008; West et al., 2005, 2007],
but these results were based on autophosphorylation or phosphor-
ylation of heterologous substrates, warranting caution in inter-
preting these data. The mutations in the Roc domain, the GTPase
regulating the kinase domain, are suspected to impair the function
of the GTPase, therefore inducing sustained kinase activity of
LRRK2 [Guo et al., 2007; Lewis et al., 2007; Li et al., 2007].
Furthermore, mutations like the substitutions at codon p.Arg1441
and p.Arg1442Pro are located at key positions for the formation of
functional LRRK2 dimers; possibly also resulting in a decreased
GTPase activity [Gotthardt et al., 2008]. As the exact functions of
the other domains in LRRK2 in relation to kinase activity are
unclear, it is difficult to assess the impact of mutations in these
domains.

The proteins encoded by the recessive PD genes are all involved
in the cell’s response mechanism to cellular and oxidative stress,

Table 4. Relative Frequencies of Homozygotes or Compound Heterozygotes and Digenic Combinations Dependent on Ethnicity and
Familial History

Ethnic origin Homozygotes (%) Compound heterozygotes (%) Digenic combinations (%)

Caucasian F 10.33 LRRK2, PARK2, PINK1, and DJ-1 8.06 LRRK2, PARK2, and PINK1 0.20 LRRK2-PARK2

S 8.58 PARK2, PINK1, and DJ-1 6.60 LRRK2, PARK2, and PINK1 1.65 LRRK2-PARK2

Asian F 41.41 SNCA, PARK2, PINK1, and DJ-1 22.22 PARK2 and PINK1 1.01 PINK1-DJ-1

S 38.54 PARK2, and PINK1 6.25 PARK2 0

Arab F 50.63 LRRK2, PARK2, and PINK1 1.27 PARK2 0

S 13.97 LRRK2, PARK2, and DJ-1 0 0

Latin-American F 23.81 PARK2 14.29 PARK2 0

S 16.67 LRRK2 and PINK1 25.00 PARK2 0

(%) Number of unrelated mutation carriers with this category of mutation/total number of unrelated mutation carriers (for each ethnicity and familial history).

Table 5. Overview of Pathology Associated with Mutations in the Five Different PD Genes

Gene Pathology Reference(s)

SNCA Typical LB disease [Spira et al., 2001]

Brainstem and cortical LB and neuritic staining [Farrer et al., 2004; Fuchs et al., 2007; Gwinn-Hardy et al., 2000;

Ikeuchi et al., 2008; Obi et al., 2008; Wakabayashi et al., 1998;

Waters and Miller, 1994; Zarranz et al., 2004]

LRRK2 Typical LB disease [Giasson et al., 2006; Giordana et al., 2007; Papapetropoulos

et al., 2006]

Tau-positive pathology without LB [Gaig et al., 2007; Rajput et al., 2006; Zimprich et al., 2004a]

Nigral degeneration, with neither LB nor NFT [Dachsel et al., 2007; Gaig et al., 2008; Giasson et al., 2006]

PARK2 Loss of dopaminergic neurons in SN and LC without LB or NFT

pathology

[Gouider-Khouja et al., 2003; Hayashi et al., 2000; Kitada et al.,

1998; Sasaki et al., 2004]

Typical LB disease [Pramstaller et al., 2005]

PINK1 Typical LB disease [Samaranch et al., 2010]

PARK7 or DJ-1 Remains to be determined

LB, lewy body; NFT, neurofibrillary tangles; SN, substantia nigra, LC, locus ceruleus.
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implying cell dysfunction or increased vulnerability to neurode-
generation in patients carrying mutations in these genes.
Mutations in PARK2 were reported to impair the E3 ubiquitin
ligase activity of parkin [Shimura et al., 2000], which resulted in
insufficient protein clearance and the subsequent formation of
protein aggregates. On the other hand, PINK1 mutations were
shown to interfere with its protein stability and kinase activity
[Sim et al., 2006], possible causing disrupted mitochondrial
trafficking [Wang and Schwarz, 2009; Weihofen et al., 2009],
reduced performance of the electron transport complexes [Gandhi
et al., 2009; Liu et al., 2009] and elevated ROS formation [Gandhi
et al., 2009] due to disturbed calcium homestasis, as well as
activation of cell death proteins [Plun-Favreau et al., 2007;
Pridgeon et al., 2007; Wang et al., 2007]. Together parkin and
PINK1 are thought to be involved in the same pathway upstream
of the mitochondrial fission/fusion machinery and mutations in
both have been shown to result in an increase of mitochondrial
fission in mammalian cells [Exner et al., 2007; Weihofen et al.,
2009]. In addition, parkin was shown to be recruited to
dysfunctional mitochondria pointing toward a possible role of
parkin in the induction of mitophagy [Narendra et al., 2008,
2009]. Mutations in PARK2 might impair this function and
eventually result in increased cellular toxicity. This hypothesis was
supported by a parkin null Drosophila model, which showed
mitochondrial defects and elevated oxidative stress rather than
UPS impairment [Greene et al., 2003; Pesah et al., 2004], implying
that parkin’s involvement in mitochondria might be its primary
activity. Nonetheless, more studies are needed to investigate the
contribution of parkin to this pathogenic pathway.

In light of this, it seems plausible that digenic combinations of
heterozygous mutations in PARK2 and PINK1 could be sufficient
to cause disease as they might enhance each other’s pathogenic
effect by concomitant partial loss of function of two important
enzymes active in the same pathway. Further, mutations in PARK7
were suspected to contribute to neuronal death through loss of
antioxidant activity of DJ-1 and subsequent increase in oxidative
stress of the cell [Moore et al., 2003; Ramsey and Giasson, 2008;
Taira et al., 2004]. It is not clear yet how the PARK7 mutations can
lead to this impaired functionality. As concomitant deficits in
mitochondrial function and UPS activity have been observed, one
might suspect a feedback loop between both cellular processes
ultimately resulting in cell death and protein excess and
aggregation.

Diagnostic Relevance

The past decade has been very exciting for molecular genetic
research of PD. Genetic variants in at least 11 genes have been
associated with increased risk for PD, and study of the
corresponding proteins has been critical for our knowledge of
the disease mechanisms underlying PD pathogenesis. For five
genes there is extensive evidence of causality but screening all five
of them for diagnostic or research purposes is a laborious
undertaking. Therefore, mutation studies have been often
restricted to sequence analyses of the two most frequently mutated
genes—LRRK2 and parkin—and sometimes even further re-
stricted to sequences coding for functional domains within these
genes. Therefore, we have incomplete data to calculate the precise
contribution of mutations in different PD genes together with an
underestimation of more complex mutations like CNVs.

Ideally mutation analyses of the five major PD genes should
include both sequence analysis and dosage analyses to detect
CNVs. We investigated 310 Flanders-Belgian patients [Nuytemans

et al., 2009], and showed high frequencies of heterozygous variants
in PARK2 (9.0%) and LRRK2 (6.1%) and low contributions for
SNCA, PINK1, and PARK7 mutations (0.3, 0.3, and 0.6%,
respectively). In contrast to other populations, we did not observe
the most frequent mutation in LRRK2, p.Gly2019Ser.

It is difficult to compare mutation frequencies between patient
groups of different ethnic background because even the more
recent and extensive mutation analyses in Brazilian, Dutch,
Korean, Australian, or Portugese patient groups [Aguiar et al.,
2008; Bras et al., 2008; Camargos et al., 2009; Choi et al., 2008;
Macedo et al., 2009; Mellick et al., 2009] employed different study
setups (selection of patients, genes of interest, domains of interest,
etc.). Here, we provided a comprehensive presentation of the
mutation frequencies, based on the published studies (Tables 3
and 4 PDmutDB: http://www.molgen.ua.ac.be/PDmutDB). When
analyzing these data it became clear that, as in our Flanders-
Belgian study, the contributions of SNCA, PINK1, and PARK7 are
relatively low. Remarkably, the mutation burden of PINK1 was
increased almost twofold in Asian patient groups. LRRK2 remains
the most frequently mutated gene, even when heterozygous
PARK2 mutation carriers were included in the equation. These
data reinforced the guidelines on molecular diagnosis of PD that
were proposed by the European Federation of Neurological
Sciences (EFNS) [Harbo et al., 2009]. It is important to stress
that the frequency data depicted here were extracted from
reported studies only, and therefore is likely biased because
SNCA, PINK1, and PARK7 analyses were often incomplete or even
absent.

Influences of ethnicity on mutation frequencies as well as
founder effects have been documented for several PD genes.
Consequently, only a complete mutation analysis of these genes
will allow the identification of all relevant mutations both for the
individual patient as well as a population of interest. In addition,
it is important to go on with the genetic characterization of
patients even if they have been shown to carry a mutation in one
gene, because unexpected digenic combinations might explain
some atypical clinical presentations of individual PD patients.
Despite the fact that not all studies implemented CNV analyses the
observed CNV frequencies are higher than expected, implying that
gene dosage is a major feature of the genetic etiology of PD. For
PARK2, for instance, in approximately 50% of mutation carriers,
deletions or duplications of (single) exons were identified. For
SNCA, multiplications were observed not only in familial (�88%)
but also in seemingly sporadic patients (�12%), resulting in
higher CNV frequencies than originally anticipated. These data
indicate that dosage analysis should be considered in all mutation
screenings. On the other hand, when performing extensive
mutation analyses, problems with pathogenicity assessment can
occur for some types of mutations. For example, genetic variants
appearing in LRRK2 domains with unclear biological function or
heterozygous PARK2 mutations. The current efforts aiming at
developing novel functional assays should be helpful in obtaining
sufficient evidence to support a pathogenic role—and thus clinical
implication—of individual mutations in the near future.

A PD Mutation Database (PDmutDB)

A huge amount of information on genetic variability in SNCA,
PARK2, PINK1, PARK7, and LRRK2 and corresponding clinical
phenotypes is present in the scientific literature, though,
contained within numerous articles published over the last 2
decades. In addition, the data provided is often incomplete,
fragmented, or sometimes even hard to interpret because, for
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example, clinical and genetic data of one family or group of
patients are reported in separate articles and/or in different
formats. Some of the current mutation databases do not
systematically provide information on clinical features, familial
history, and so on, whereas others are maintained by the goodwill
of the researchers themselves, and consequently, are often
incomplete or not up to date. Therefore, we decided to construct
a novel PD mutation database, called PDmutDB (http://
www.molgen.ua.ac.be/PDmutDB). This database will be publicly
available and will hold information of reported variants with
correct nomenclature and references to original studies. To allow
for genotype-phenotype correlations, we added detailed familial
and clinical data. Importantly, all informative family members are
linked to their individual clinical features and identified variants
in multiple genes with indication of zygosity. Also, we make an
effort to provide an indication of pathogenicity for each variant,
whenever sufficient data are available.

Data from new publications will be included in the database
whenever they contain sufficient genetic information to correctly
link each individual to the respective mutations. Individual
researchers can submit genetic and/or clinical information using
an additional file when their publications do not permit excessive
tables. Contact: PDmutDB@molgen.vib-ua.be.

Conclusion and Future Prospects

During the last 2 decades molecular genetic research has lead to
the identification of five important PD genes bearing approxi-
mately 500 different DNA variants. These variants make up a wide
mutation spectrum including different simple mutations as well as
genomic rearrangements. Gathering this information from
literature is very laborious because it is scattered across many
publications and different studies employ different study designs.
Here we present a novel publicly available mutation database
PDmutDB (http://www.molgen.ua.ac.be/PDmutDB). Next to the
systematic organization of all DNA variants, this database provides
information on family history, clinical features, and mutation
zygosity. At this time, data on approximately 1,900 families of
sporadic and familial patients are available. Data meta-analysis
indicated both high genetic and clinical heterogeneity among
mutation carriers. Mutations have been identified in patients with
PD but also clinically related disorders such as LBD and
Parkinson-plus syndromes. These data underline the complex
genetic nature of these neurodegenerative diseases linking them
together in spectrum disorders. As only few studies have included
patients with PD-related disorders in their mutation analyses, the
exact contribution of PD genes to the etiology of other
neurodegenerative diseases remains unclear. Even for PD itself,
this assessment is not straightforward as most mutation reports
present fragmented data on only one or few PD genes. Because
more recent data support that dosage plays a major role in PD
pathogenesis (e.g., higher frequency of multiplications for SNCA
than missense mutations and significant contribution of dosage
effects in recessive genes), a lot of attention is drawn to gene
expression regulation. Noncoding sequence variants in the
promoter and UTR regions of PD genes are all potential disease
associated variants. Indeed, variants in the SNCA promoter and
UTR regions (both 50 and 30) were reported to be associated with
increased risk for PD [Brighina et al., 2008; Farrer et al., 2001b;
Hadjigeorgiou et al., 2006; Izumi et al., 2001; Kay et al., 2008;
Maraganore et al., 2006; Mizuta et al., 2006; Mueller et al., 2005;
Myhre et al., 2008b; Pals et al., 2004b; Parsian et al., 2007; Ross
et al., 2007; Tan et al., 2004; Winkler et al., 2007]. Moreover, recent

genome-wide association studies (GWAS) in PD patient and
control groups confirmed the SNCA region as a major player in
PD susceptibility [Pankratz et al., 2009; Satake et al., 2009; Simon-
Sanchez et al., 2009]. Also, variants located upstream of LRRK2
were identified to be associated with increased risk for PD,
suggesting that variants causing transcriptional upregulation of
LRRK2 might be part of PD etiology [Satake et al., 2009; Simon-
Sanchez et al., 2009]. Given that not all is known about the cell’s
transcription and translation mechanisms, variants detected in
previously unexplored genomic regions might turn out to
represent a novel group of pathogenic variations. It is clear that
the research field should keep an open mind when performing
mutation analyses and interpreting its results as exemplified by the
variants in the promoter and UTR regions that were previously
overlooked. Unfortunately, it is difficult to assess the pathogenic
nature of these new subtypes of genetic variants without relevant
functional assays. This concern already exists for several other
groups of mutations in known PD genes. For example, we do not
have unambiguous information on the actual involvement of
PARK2 heterozygotes in PD pathogenicity or on the implications
of mutations in LRRK2 regions with less known functionality.
Even the current functional analyses of putative pathogenicity of
LRRK2 mutations might be misleading because no physiological
substrate has yet been identified. These concerns signify the urgent
need of the molecular genetics field to invest more time and
efforts in the development of relevant functional assays.

For the novel PDmutDB database to be usable in the broader
research field, data on other genes associated with PD will be
added in the near future. Functional data will also be included in
the database when these data become available. This way we strive
to develop a valuable, easy accessible, and up-to-date instrument
for future research or diagnostic purposes.

In conclusion, it is clear that our knowledge on underlying
genetics of PD gathered in the last 2 decades has provided
researchers with incredible amounts of information on the
different biological pathways involved in the pathogenesis of PD.
There are still a large number of unanswered questions residing
among the few solved mysteries, which will need further attention
to fully understand PD in all its facets.
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