
Original article

Quality assurance for the query and
distribution systems of the RCSB Protein
Data Bank

Wolfgang F. Bluhm1,*, Bojan Beran1, Chunxiao Bi1, Dimitris Dimitropoulos1, Andreas Prlić1,
Gregory B. Quinn1, Peter W. Rose1, Chaitali Shah1, Jasmine Young2, Benjamin Yukich1,
Helen M. Berman2 and Philip E. Bourne1,3

1San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive, Mail code 0743, La Jolla, CA 92093-0743, 2Department of

Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-8087, USA and 3Skaggs School

of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, Mail code 0743, La Jolla, CA 92093-0743, USA

*Corresponding author: Tel: +1 858 534 8346; Fax: +1 858 822 0873; Email: wbluhm@ucsd.edu

Present address: Chaitali Shah, XIFIN Inc., 3394 Carmel Mountain Road, San Diego, CA 92121, USA.

Submitted 7 December 2010; Accepted 8 February 2011

...

The RCSB Protein Data Bank (RCSB PDB, www.pdb.org) is a key online resource for structural biology and related scientific

disciplines. The website is used on average by 165 000 unique visitors per month, and more than 2000 other websites link to

it. The amount and complexity of PDB data as well as the expectations on its usage are growing rapidly. Therefore,

ensuring the reliability and robustness of the RCSB PDB query and distribution systems are crucially important and increas-

ingly challenging. This article describes quality assurance for the RCSB PDB website at several distinct levels, including:

(i) hardware redundancy and failover, (ii) testing protocols for weekly database updates, (iii) testing and release procedures

for major software updates and (iv) miscellaneous monitoring and troubleshooting tools and practices. As such it provides

suggestions for how other websites might be operated.

Database URL: www.pdb.org

...

Introduction

The RCSB Protein Data Bank (RCSB PDB) (1) is a member of

the worldwide PDB (wwPDB) (2) and one of its data distri-

bution sites. In 2009, the website (www.pdb.org) was used

by an average of 165 000 unique visitors each month who

viewed 12.7 million web pages and downloaded nearly one

terabyte of data via HTTP. In addition, data were being

downloaded from the RCSB PDB via FTP and rsync at a

rate that averaged more than seven files per second over

the course of the year and nearly 87 files per second during

the single busiest day. A recent analysis showed that over

2000 other websites provide links to the RCSB PDB website.

Given the apparent importance of RCSB PDB services to the

structural biology community and related scientific discip-

lines, we need to ensure quality of service. This article is

about providing such quality of service.

Concurrently, the size and complexity of the PDB are

ever increasing. The number of structures in the PDB has

roughly doubled in the last 5 years, and the RCSB PDB web-

site bandwidth (the amount of data transferred) has almost

doubled in the last 3 years. The growth in content acceler-

ates over time: about 50 new structures were released per

week in the year 2000, now that rate has nearly tripled with

close to 150 new structures each week. In addition, data

growth is not merely quantitative, but the data are also

becoming more complex. For example, very large structures

such as ribosomes are now being released on a much more

...

� The Author(s) 2011. Published by Oxford University Press.
This is Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://
creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited. Page 1 of 11

(page number not for citation purposes)

Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003
...

http://

routine basis; there are more methods of determining

structures and even cases where hybrid methods were

used during a single structure determination.

User expectations are also rising. Increased network

speeds and improvements in browser technology have

raised the standards of ‘acceptable’ website performance.

Data are also accessed through an increasing number of

protocols and services: 10 years ago FTP and HTTP were

the only online services offered (we also had CD-ROM dis-

tributions); now, in addition, rsync, web services using SOAP

or RESTful protocols and RSS feeds are offered. Users in-

creasingly expect Web 2.0 type functionality implying

social bookmarking, video and other services. Similarly,

smart cell phones and other mobile devices constitute a

growing number of clients.

To meet the growing scientific expectations, significant

feature enhancements continue to be added (3) such as

pair-wise and all-against-all structural alignments (4) and

the integration of open access literature (5). Structure visu-

alization is becoming more sophisticated, for example, with

regards to viewing extremely large structures or protein–

ligand interactions. There are higher expectations for inte-

gration with other web resources and for the enablement

of workflow solutions rather than simple data downloads.

In summary, growth, complexity and user expectations

speak to the challenge of keeping up with quality

assurance.

Regardless of these specific challenges, quality assurance

in information technology is generically a difficult problem.

Why is that so? There are many components to quality as-

surance when maintaining a website, as we shall see, but

perhaps the most readily identified issue is software test-

ing. Whitaker explored the question of why software test-

ing is hard (6). Among the reasons he offers are software

complexity, nearly infinite variations of usage scenarios,

many different user interfaces and operating environments

and a lack of time and resources to test everything. Of

course, quality assurance is much more than testing (7).

While testing might be seen as a quality control measure

to detect problems—so that they can subsequently be cor-

rected—quality assurance is also concerned with prevent-

ing problems in the first place. Furthermore, running a

biological database and website obviously involves both

hardware and software, and both aspects will be addressed

in this article.

PubMed searches show that the literature on quality as-

surance for biological databases and associated websites is

relatively sparse. A number of publications have examined

the quality of biological data (8–12). However, few publi-

cations describe the quality of services that allow data to

be accessed and explored. A survey of quality assurance

practices in biomedical open source projects (13) focused

primarily on software testing and peer review. There is,

of course, a much larger body of literature on software

quality assurance in the computer science field, including

for example an entire journal dedicated to the subject, the

Software Quality Journal (www.springerlink.com/content/

0963-9314). However, much of this literature is not indexed

in PubMed, and therefore less accessible to the bioinfor-

matics community.

This article is not about quality assurance of PDB data,

since this has been described extensively elsewhere (14–16).

Instead, we describe here the practices we use to assure

the quality of services associated with distributing and

querying these data. In the major sections that follow in

this article, we address several areas of quality assur-

ance at the RCSB PDB: (i) hardware redundancy and fail-

over; (ii) weekly database updates; (iii) software releases;

(iv) monitoring and troubleshooting tools and practices. As

the number of biological web resources continues to grow

at a rapid rate, and some projects mature in relevance

and prominence, it is our hope that this case study of qual-

ity assurance at the RCSB PDB website will be helpful to

other biological databases and websites in developing or

expanding their own set of ‘best practices’.

Redundancy and failover

Here, we focus our attention on the hardware and soft-

ware that host and provide critical RCSB PDB services such

as the database, website and FTP site. It is only common

sense that for any single piece of infrastructure the ques-

tion is not if it will fail, but when. Such failures might be

physical equipment breakdowns (e.g. a hard drive or

motherboard) or interruptions of services running on the

hardware (e.g. a hung Apache Tomcat process serving the

website). Should such a failure result in the interruption

of a critical production service, we need to provide

redundant solutions, along with the logistics to manage

failover from a failed piece of hardware or software to a

working one. We strive for 100% uptime regardless of

maintenance needs, planned or unplanned power outages,

database or software updates, natural disasters, etc., and

realistically achieve better than 99.9% uptime. We utilize

multiple layers of physical and logistical redundancy to

achieve this goal.

Multiple levels of hardware redundancy

The live website (www.pdb.org) and FTP site (ftp.wwpdb

.org) are served by multiple load balanced servers at any

one time. The reasons not only include the aforementioned

need for redundancy, but also the fact that a single server

might not be able to sustain peak traffic loads. The website

is normally served by five Dell PowerEdge 2950 servers,

each with two quad core 2.66 GHz Intel Xeon processors

and 32 GB of RAM. The FTP site is served by three Dell

Power Edge 1950 servers, each with two quad core

2.5 GHz Intel Xeon processors and 8 GB of RAM.

...

Page 2 of 11

Original article Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003
...

The eight servers as just described constitute the live pro-

duction cluster that is hosted in the machine room of the

San Diego Supercomputer Center (SDSC) at the University

of California, San Diego (UCSD). Two smaller clusters are

maintained in two separate physical locations (consisting

of two web servers and one FTP server each). One such

cluster is maintained at the Skaggs School of Pharmacy

and Pharmaceutical Sciences (SSPPS) at UCSD, the other

one on the campus of Rutgers University in New Jersey.

These clusters can provide failover services during mainten-

ance or power outages at SDSC, or in case of a cata-

strophic disaster that might affect one or both of the

UCSD locations (Figure 1). A second SDSC cluster, identical

in configuration to the live production cluster, primarily

serves for advanced staging of weekly updates, and

would only be used for failover in the most extenuating

circumstances.

In addition, there is yet one more level of redundancy of

serving PDB data in its most fundamental form: the distri-

bution of the PDB archive via FTP is duplicated at the PDB

Europe (PDBe) and the PDB Japan (PDBj), according to the

charter agreement of the wwPDB (2).

Load balancer

Each of the two SDSC production clusters is managed by a

single Cisco CSS 11506 load balancer. The two load balan-

cers are configured to automatically take over from each

other in case one of them fails. Incoming traffic is distrib-

uted round-robin between the servers in the cluster. Sticky

session management guarantees that all traffic received

from the same IP address within a certain amount of time

is directed to the same server which facilitates some web-

site usage such as query refinements and paging through

results. Once every 30 s, the load balancer probes the

services of machines in the pool with ‘keep-alive’ tests.

For HTTP services, this involves requesting a special web

page that performs a database query, so that the successful

return of this page confirms that the Tomcat web server

and the MySQL database are operational. For FTP services,

the load balancer attempts an anonymous FTP login, and

for rsync it pings the port.

When a keep-alive test of a particular service fails three

times in succession, the load balancer removes the server in

question from the active pool and sends a notification to

email addresses and pagers (cell phones) of several RCSB

PDB staff members. Traffic to the failed server is reassigned

to other servers in the pool. For most practical purposes, this

failover is transparent to the user apart from the delay ne-

cessary to detect persistent failure and remove the affected

server from the pool (up to 2 min). For example, a unique

identifier and description of the user’s most recent query on

a web server is shared in memory via memcached (www.

memcached.org) between all servers in the pool. This

allows such operations as query refinements or moving to

the next page of query results even if the user’s traffic has

failed over from one server to another. Once the staff has

investigated the failure and restored the service to a healthy

state (or the service has recovered on its own), the load

balancer will automatically add the server back into the

active pool following the first successful keep-alive test.

Figure 1. Schematic representation of hardware redundancy and DNS failover. There are four clusters in three separate geo-
graphical locations: San Diego Supercomputer Center (SDSC) and Skaggs School of Pharmacy and Pharmaceutical Sciences
(SSPPS), both at the University of California, San Diego (UCSD), and Rutgers, the State University of New Jersey. Each cluster
contains multiple load balanced Web and FTP servers. A third party DNS provider is used to manage the DNS entries for the
website (www.pdb.org) and the FTP site (ftp.wwpdb.org) including failover in case the primary cluster fails.

...

Page 3 of 11

Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003 Original article
...

DNS management and failover

DNS management and failover for critical production

services (HTTP, FTP, rsync) are outsourced to a third party

DNS provider. Active failover records consist of priori-

tized lists of IP addresses for each service which point to

the load balancers of the four clusters in the following

order: primary SDSC production cluster, backup cluster

at SSPPS, backup cluster at Rutgers University and finally

the backup SDSC production cluster (Figure 1). Weekly

data updates are released to the public at 00:00 UTC on

Wednesdays in a coordinated fashion between the

wwPDB partners. The RCSB PDB starts this weekly update

internally on the previous Friday to allow sufficient time

for running all components of the update (including, for

example, about 1 million structure alignments), appropri-

ate testing (as described in the next major section) and

resolution of any contingencies. In order to make the

update live to the public, the DNS failover records are

edited to switch the primary and backup SDSC clusters.

This serves the purpose of instantly making live an update

that is well tested (as described below), without the risk of

publicly exposing an incompletely updated resource or data

with untested integrity.

Every 2 min, the DNS provider also checks from multiple

locations in the USA whether a test page is successfully re-

turned from each of the clusters. When it is not, the status

of that cluster is changed to ‘failure’. Any web server that is

in the process of running the weekly update is automatic-

ally removed from public service and its traffic is redirected

to a specified peer. Hence, this ‘failure’ of clusters being

updated is expected. This situation only applies to backup

clusters in the failover stack, and the DNS provider sends

just a notification of the event. However, when a failure of

the active cluster is detected, the DNS record is switched to

the next available cluster in the failover stack. This might

happen, for example, because of a networking problem

affecting traffic to the primary cluster, or because the

load balancer of the primary cluster has detected problems

with all servers in its cluster, hence removing all of them

from the pool. Notifications are sent to key staff members

via email and cell phone text messages to alert them of

the DNS failover. As soon as the primary cluster has

become active again, DNS is automatically switched back

to the primary cluster.

Failures of individual servers, as described in the previous

section, are relatively common and may occur weekly.

Strictly speaking, though, such ‘failures’ in many cases

merely represent server performance that has fallen

below acceptable levels, at which point it is taken out of

the cluster until the problem has been resolved. On the

other hand, a DNS failover due to failure of an entire clus-

ter has not occurred for the past several years.

Weekly database updates

Every Wednesday at 00:00 UTC, a weekly data update of

new and modified entries is released to the public on the

web and FTP sites. The timely and accurate distribution of

these data updates is one of our most mission critical tasks.

Over the past 10 years, the RCSB team has maintained a

near-perfect record of meeting the published deadline for

updating the site. The sole exception was one week when

the update was internally completed, but a mistake in

changing the public DNS entries went undetected for sev-

eral hours past the deadline, resulting in the update not

being visible to the public on time. Additional testing pro-

cedures were put in place to prevent any recurrence. In the

next sections, we describe the procedures followed to con-

sistently ensure the timely execution and delivery of these

weekly database updates.

Synchronization and testing of data archives

Weekly updates of new and modified entries are prepared

by RCSB PDB staff at Rutgers University on Fridays. As part

of this process, internal master copies of the public FTP

archive and the so-called ‘sandbox’ are updated. The sand-

box is another view of the archive that is only used for

internal update purposes, with practically the same content

as the public FTP site, but organized differently.

Following the update of the FTP and sandbox master

copies, propagating it to the public sites is in the hands

of the RCSB PDB staff at UCSD. Tasks that include synchro-

nizing various copies of FTP and sandbox archives and run-

ning the weekly updates on the database/web servers

are performed on a total of 26 servers in four clusters

over the course of the week. To reduce tedium and the

possibility for human error, all of these processes are

launched from one central server, which then sends the

necessary commands over ssh connections to the appropri-

ate sets of servers. FTP and database updates of the four

clusters are staggered throughout the week to balance the

needs for advanced staging of updates and the availability

of failover clusters matching the content of the live cluster

(Figure 2).

First, all sandbox servers (since they are only used intern-

ally) and the FTP servers of the backup SDSC cluster are

synchronized to their respective master copies via rsync.

Rsync is first run in silent mode, recording to a log all

changes that would have occurred, without actually

making any of those changes. A Python script then analyzes

this silent rsync log to ensure the integrity of the weekly

update. By referencing separate lists of new and modified

files, these integrity checks answer such questions as

‘Would the rsync have transferred all expected files for

new and modified PDB IDs?’ and ‘Would no unexpected

files have been modified?’ If all tests pass, the rsyncs are

repeated in live mode. Another validation script then

...

Page 4 of 11

Original article Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003
...

checks the total holdings: ‘Does the previous count of

entries, minus obsolete entries, plus new entries, add up

to the new count?’ ‘Is this count consistent between the

internal sandbox and various directory paths of the public

FTP site?’

Selenium test suite

The next step of the weekly update procedure is to run a

database update on each of the web servers of the backup

SDSC cluster (this is repeated on the other three clusters

over the following few days). The details of this database

update are beyond the scope of this article. Briefly, the

structure files in mmCIF format (17) of all new and modified

entries are parsed and loaded into the database, derived

data are calculated and related content from several dozen

external databases is imported. Problems with any of the

more than 50 loader classes are logged in the database and

emailed to staff.

A new software build is created from a stable produc-

tion branch of the software and deployed to the updated

web servers. While this update may occasionally contain

critical bug fixes, changes in site functionality on the

production site are generally reserved for carefully

orchestrated software releases as described in the next

section. News items and other so-called static web content

are now maintained in a separate content management

system (CMS) that was developed in-house. This further

diminishes the changes in the deployed builds and thus

contributes to the stability of the production site’s

software.

A key piece of quality assurance for the weekly data up-

dates is an extensive Selenium test suite. Selenium is a suite

of tools for testing web applications (seleniumhq.org).

Selenium IDE, one of the Selenium projects, is a plug-in

that runs in the Firefox web browser. It records and replays

tests of any website in Firefox. We have developed an

extensive suite of tests for the RCSB PDB website contain-

ing over 1300 steps (‘go to this URL’, ‘click this link’, ‘enter

this search term’, ‘wait for the page to return’, etc.). Of

these, more than 350 commands are assertions or verifi-

cations such as ‘does the page contain certain text?’,

‘does a number on a page match a number previously

stored during the test?’, etc. (Figure 3). Test coverage of

site functionality was primarily decided based on site

usage as indicated by AWStats log analysis and Google

Analytics traffic analysis.

Figure 2. Staggered weekly update schedule of the Web and FTP servers. The overall aim is to balance the need for advanced
staging of the update (red and orange) with as much failover to current data (green) as possible at any given time. The update
cycle begins on Friday with the second SDSC cluster (SDSC 2). Two more clusters are updated on Monday and Tuesday.
On Wednesday at 00:00 UTC, the update is made public by switching the DNS entry between the two SDSC clusters (thick
outlines). A few hours are allowed for the DNS change to propagate until the update on the final and now out of date cluster
(blue) is started. Green with thick outlines shows ‘‘live’’ clusters serving data to the public. Other clusters in green have the same
current content. Clusters in red are being updated. Orange denotes a cluster with a finished update that contains ‘‘staged’’ data
not yet available for public release. Blue shows a cluster whose data are out of date compared with the live public site.

...

Page 5 of 11

Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003 Original article
...

This test suite is run on every web server of every cluster

after it has been updated. The suite has several overall

goals. It tests key elements of the user interface, such as

keyword searches and structure summary pages for a single

entry. It checks the integrity of the weekly update, for

example, by asserting that the total number of structures

returned on the website matches the holdings in the

FTP archive. Furthermore, it ensures that each server in a

load balanced cluster returns the same results for a number

of queries by comparing the results from the server

being tested to that of a dedicated master server. Once

the public DNS entries have been switched to make the

update live, another shorter Selenium test suite is run

against the public URLs (rather than individual servers),

simply to ensure that the public site has been successfully

updated.

Figure 3. Screenshot of fully executed Selenium IDE test suite in a Firefox browser. We have developed an extensive suite of
testing scripts with several goals such as checking key elements of the user interface, verifying the integrity of the weekly
update, and comparing results between multiple servers. The top-left panel shows the list of test scripts. The top-middle panel
shows as an example the script for verifying that keyword searches are up to date. It selects the first entry ID from the weekly
release, extracts a keyword from its title, and then performs a search for this keyword and asserts that the search results include
the given entry ID. The top-right panel contains the controls for executing tests and shows the test results. The bottom panel
is a regular browser window that shows the web pages being loaded by the scripts.

...

Page 6 of 11

Original article Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003
...

Software releases

Another major target of quality assurance is the software

that powers the RCSB PDB website. Written in Java, it con-

sists of over 2000 classes with roughly 200 000 lines of

source code. The RCSB PDB staff at UCSD maintaining the

site currently consists of eight full-time employees, of which

half are full-time developers, and the other half divide their

time between development, project management and

system administration. New software versions with major

new features are released on the production site about

four times a year. This is a medium-sized software project

with enough complexity to make good software practices a

considerable yet essential task. This section contains short

descriptions of the tools and practices used to monitor code

quality and site performance and to ensure the stability of

new software releases.

Code maintenance

All code is kept in a Subversion (subversion.tigris.org) ver-

sion control repository. Each programmer has at least one

development clone running the latest trunk version of

the code. Code development is performed in the Eclipse

(eclipse.org) integrated development environment. New

feature requests, as well as bug reports and other tasks

are logged in a private JIRA bug tracker (www.atlassian.

com/software/jira/) that is intended for RCSB PDB staff use

only. The resolution of a JIRA ticket by one programmer is

verified by a second developer before the issue is closed. If

a bug report or feature request came from an outside user,

an email is sent to the user to describe the action that was

taken. Subversion check-ins are linked to JIRA ticket num-

bers which is helpful in evaluating and tracing code

changes.

Questions sent to the electronic help desk are also auto-

matically logged, and manually linked to bug reports

where appropriate. We prefer receiving this feedback

through the Contact Us web form (www.pdb.org/pdb/

home/contactUs.do). It helps reduce spam, but more im-

portantly it automatically provides us with the results of a

browser compatibility check, which states the browser ver-

sion and confirms proper JavaScript, cookies and popup

settings. There is also a direct link to this browser compati-

bility check on the home page.

Programmers are strongly encouraged to use a number

of available tools to ensure clean code. The tools most com-

monly used by the RCSB PDB website developers are listed

in Table 1.

Every night, a dedicated build machine automatically

checks out the entire project de novo from the source

repository, builds it and deploys it on a web server. This

helps detect code that does not compile, build or deploy

properly (e.g. because some dependencies were not cor-

rectly checked into the code repository). A notice regarding

the success or failure of this nightly build is emailed to all

developers. Following the nightly build, a regression test

suite written in Selenium RC is executed, and its results

are also emailed. Selenium RC provides popular language

wrappers (in our case Java) around the Selenium testing

language, which adds a lot of flexibility over Selenium

IDE, and greatly expands the scope of what it can

accomplish.

Table 1. Code maintenance and troubleshooting tools most commonly used by RCSB PDB website developers

Software tool URL Description

Code maintenance tools

JUnit junit.org Java unit testing framework

TestNG testng.org ‘Next Generation’ Java testing framework

FindBugs findbugs.sourceforge.net Program for finding bugs in Java code

FireBug getfirebug.com Firefox extension for web development

UCDetector ucdetector.org Eclipse plugin for finding unnecessary Java code

Troubleshooting tools

JConsole download.oracle.com/javase/6/docs/technotes/tools/

share/jconsole.html

Java monitoring and management console

LambdaProbe lambdaprobe.org Tomcat monitoring and management tool

jstack download.oracle.com/javase/6/docs/technotes/tools/

share/jstack.html

Java utility for monitoring stack traces

jmap download.oracle.com/javase/6/docs/technotes/tools/

share/jmap.html

Java utility for monitoring memory utilization

hprof java.sun.com/developer/technicalArticles/Programming/

HPROF.html

Java utility for heap and CPU monitoring

...

Page 7 of 11

Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003 Original article
...

Site performance

In addition to avoiding or fixing bugs, we also put consid-

erable effort into optimizing the performance of the web-

site. Performance enhancements can be achieved at a

number of different levels, such as caching backend data

access, compressing content delivered over the network

and reducing web browser rendering times by optimizing

CSS and JavaScript. The Firefox plug-in YSlow from yahoo

.com (developer.yahoo.com/yslow) can be particularly help-

ful in website performance tuning. We also check perform-

ance from multiple clients around the world using website

monitoring services such as host-tracker.com.

Apart from some content maintained in the CMS, data

on the website are only subject to change with the weekly

updates. Hence, many data objects or even entire pages can

be stored in memcached (www.memcached.org), a distrib-

uted caching system. On the SDSC production clusters,

memcached is allocated 32 GB of memory shared between

eight servers. Following the Friday weekly data update,

and prior to the public release of the new data at 00:00

UTC on Wednesdays, cached data objects and pages

for every PDB entry are loaded into memcached by a seed

script. Therefore, most data accessed by public users already

reside in memory, which reduces database access and

results in faster data delivery to the users.

To compare site performance between software releases,

a load test script is run to request web pages for 2000 PDB

entries. This script is run first without the use of mem-

cached, and then again with data already seeded in

cache. Performance is compared to the previous release,

and any obvious degradation is investigated. Occasionally,

other stress tests are run as well, such as simulations

of many concurrent users performing similar queries.

Recently, this was used to evaluate a new caching layer

for queries.

Staging of software changes

The stability of the software running the production web-

site is obviously of critical importance. Here we describe

the processes used to control and test the roll-out of new

software releases, which occur roughly quarterly.

Apart from occasional critical bug fixes, code changes are

propagated from development to production in a carefully

controlled fashion through multiple stages. Programmers

develop new features and fix non-critical bugs in the

code from the Subversion trunk. An automated nightly

build provides a first check on compiling and deploying

the latest code. When major new features are deemed

stable enough for public testing, they are made available

on a public beta server (betastaging.rcsb.org) with a

disclaimer that this site may not behave the same as the

production site.

The RCSB PDB team at UCSD periodically holds testing

sessions to review newly developed features and to verify

bug fixes. A few weeks prior to producing a new software

release, staff at Rutgers University performs functional test-

ing of the entire website with a focus on new features.

After all serious issues reported in this latter testing session

have been addressed, a new branch is created in

Subversion, which becomes the next release candidate for

the production site. At least one weekly data update is per-

formed on a beta server with code built from the new pro-

duction branch. The weekly Selenium test suite is updated

as necessary to reflect any changes in site design and

functionality.

Finally, during the first week of a new software release

on the production site, only the two SDSC clusters are con-

verted to the new build. The backup clusters at SSPPS and

Rutgers University still run the previous release. In the un-

likely case that a highly critical bug or performance prob-

lem is discovered only through public usage of the site, we

can quickly fail back to the previous release by switching

DNS to one of the failover clusters. The following week,

assuming no serious issues surfaced, the remaining clusters

are also converted to the new build.

Monitoring and troubleshooting
tools

Even the best upfront efforts to ensure a high performance

website with a minimal number of bugs do not eliminate

the need for monitoring of hardware and software. Some

monitoring and notification practices such as load balancer

and DNS failover alerts have already been described. Here

we outline additional tools used for monitoring and

troubleshooting.

Monitoring tools

ServerStalker is a tool developed in-house to monitor the

current hardware status of all production servers and the

services they provide. In addition to simple ICMP ping tests

to all servers, items monitored for web servers include the

percentages of CPU and hard drive space used, the amount

of RAM used by the Java process, the number of PDB

entries and the status of the MySQL database. In addition,

a summary of the update status is provided for each server

and cluster to indicate whether they contain current data,

are currently being updated or have a completed update

staged for future public release. For FTP servers, a quick

confirmation of the availability of FTP and rsync services is

given. The overall goal of ServerStalker is to provide a quick

glance at the current health of each production server. We

intend to open source ServerStalker in the future.

In addition, we use Cacti (www.cacti.net) to graphically

present status information gathered over time (Figure 4).

...

Page 8 of 11

Original article Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003
...

Parameters such as internal and external traffic, CPU and

memory usage, thread counts and Tomcat session counts

are collected every few minutes and presented in graph

form for each server or cluster. This is particularly useful

for retroactively investigating server crashes or perform-

ance bottlenecks. For example, if a user were to report a

complex query returning too slowly, Cacti might help in

discerning where MySQL or Tomcat might have been the

bottleneck at the time.

Server logs, of course, need to be meticulously gathered

and archived. Web, FTP and rsync logs are analyzed by

AWStats (awstats.sourceforge.net) and website traffic is

further analyzed by Google Analytics (www.google.com/

analytics). Besides providing basic usage statistics, these

analyses can also help discern usage patterns including

the adoption of new features. However, a full discussion

of such analyses is outside the scope of this article.

Troubleshooting tools

The RCSB PDB web application is complex enough that

troubleshooting of bugs and performance problems can

be quite involved. A host of tools are at our disposal to

help with the process, depending on the nature of the

problem.

Figure 4. Screenshot of Cacti monitoring tool (www.cacti.net). Parameters such as internal and external traffic, CPU and memory
usage, thread counts and Tomcat session counts are collected every few minutes and presented in graphical form for each server
or cluster. The time window starts after the cluster had just been reinstalled with a new quarterly software release and shows
the server load during successive Selenium tests on each server. Server names are redacted for security reasons.

...

Page 9 of 11

Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003 Original article
...

For bug reports, the first step is to try to reproduce the

issue. To zero in on the root cause of non-trivial bugs, a

developer might reproduce the use case in his or her own

development clone in the Eclipse debug mode. Various

levels of increasingly verbose logging can also be easily

configured in the web application.

Server crashes and performance issues (‘the site seems

really slow’) can be among the most difficult problems to

investigate, because it is often far from trivial to reproduce

the issue or to pinpoint an underlying cause. Tedious de-

tective work is often required, but a number of tools are

available to help (Table 1). Recently, for example, jmap

helped us identify the cause of infrequent server crashes

that were related to a third party package for exporting

data in Excel spreadsheet format. For excessively large

tabular reports, so many objects were created that garbage

collection could not keep up, and server CPU was maxi-

mized, making the affected server inaccessible.

In summary, troubleshooting requires the right tool for

the job, depending on the exact nature of the issue at

hand. The most difficult part is often reproducing the

issue, especially when the problem may be related to

heavy server load. Finally, it always bears remembering

one of the golden rules of customer support, no matter

how trivial it may sound: the inability to readily reproduce

an issue reported by a user does not imply that the issue

is not real.

Discussion and summary

The RCSB PDB strives to provide a quality resource with

highly reliable service. This implies uninterrupted access 7/

24/365 regardless of maintenance needs, power outages,

etc.

Over more than a decade of managing the PDB, the

RCSB PDB has generally enjoyed very favorable user com-

ments regarding the reliability and performance of the site.

However, one lesson learned is that users do not necessarily

tell us about problems they experience, but possibly just

leave the site. Over one recent year, the site was accessed

from roughly one million unique IP addresses, but only

about 1600 different users wrote to the electronic help

desk with comments, questions or concerns. While these

numbers leave room for various interpretations, personal

interactions with users, for example at conferences, also

sometimes reflect reluctance to voice perceived problems.

Some users have said they simply assumed that they were

doing something wrong and did not consider the possibility

of a bug on the site. While it is of course always desired to

discover issues internally before outside users experience

them, the tendencies just described raise the burden of

doing so.

The question of how much to test, and how, is not a

simple one to answer. Time and resources simply do not

permit us to test everything, so priorities have to be set.

The question of automated versus manual testing is also an

interesting one. While complete testing automation may

naively seem like an obvious goal, we have found that it

cannot fully replace manual testing, and that a proper bal-

ance is required. Another interesting psychological aspect

is an inherent danger of over testing. The more assertions

are included in a test script, the higher the chance that one

of them fails. Isn’t this always a good thing? Yes, as long as

the failure indeed reflects a real problem. However,

increased testing also increases the chance of false error

reports, and in our experience this brings with it a danger

of developing complacency on the part of the tester (‘I’ve

seen that fail before, I won’t worry about that’). All tests

should be conceived and implemented such that a fail-

ure indeed reflects a real problem that warrants further

investigation.

Selenium IDE as a testing environment has a number of

advantages. It is easy to get started writing tests using the

GUI test editor, and at the same time the HTML formatted

source code of the tests is easily edited by hand. There are

multiple ways of addressing HTML elements on pages, incl-

uding relative and absolute placement in the document ob-

ject model (DOM) via the powerful XPath query language.

Arbitrary JavaScript can be embedded in the Selenium

commands, allowing for the evaluation of mathematical

constructs and adding limited ways of including logic in

the assertions. However, a shortcoming of Selenium IDE

(at least without the use of third party add-ons) is the

lack of true flow control or looping, making some repeti-

tive tests a bit awkward (e.g. ‘for each of the structural

genomics centers, test the number of structures returned’).

The strongest point of using Selenium IDE, in our opin-

ion, is that the execution of the tests in a real browser

constitutes a testing environment that most closely resem-

bles the end user’s real experience of interacting with the

website. Unit testing and regression testing are important

components of a comprehensive quality assurance strategy.

However, the ultimate goal is not to have every class pass a

unit test, but for all website functionality to perform as de-

signed and expected. A web browser is the most common

interface to the RCSB PDB for most users, making Selenium

IDE an appropriate choice for integration testing of the

application as it is experienced by the user.

We have developed our quality assurance practices over

the course of several years. While many of these could be

considered fairly standard industry practices, we continually

revise and refine them as necessary. Hardware redundancy,

in particular, brings with it necessary trade-offs, such as the

overhead of data synchronization, inefficient utilization of

hardware, financial constraints, limits on scalability, etc. For

example, multiple copies of databases that are updated

independently from each other may for one reason or

...

Page 10 of 11

Original article Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003
...

another diverge in content over time. We intend to im-

prove on this with a future hardware re-design.

Another area in which we could improve is the use of

regression tests. While the regression test suite covers a

decent amount of site functionality, it is not comprehen-

sive. Furthermore, an ideal goal might be that for every

bug discovered and fixed, a test is added to the regression

suite to avoid any undetected future occurrence of the

same issue. Clearly, this would have to be balanced against

the run time of the full test suite.

We have outlined tools and practices used for software

maintenance in this article. The original design of the soft-

ware and database was described elsewhere (18). The PDB

website offers enough functionality that maintaining all of

the code in a single web application becomes increasingly

difficult. In order to address the mounting risks that code

changes for one aspect of the site adversely affect other

functionality, we are increasingly modularizing the code.

Some components of the code base are already available

through the BioJava (19) project.

In summary, we have described the quality assurance

efforts for the RCSB PDB query and distribution systems

in general, and for the RCSB PDB website in particular.

Through multiple layers of redundancy we strive for

100% uptime and nearly achieve it. Weekly database up-

dates and roughly quarterly software releases are carefully

staged and tested before making them publicly available.

Finally, we have outlined a number of tools and practices

used to investigate problems that do occur despite our best

efforts to avoid them in the first place.

Acknowledgements

The RCSB PDB is a team effort, and the contributions to

quality assurance by all staff members in general and the

annotation team in particular are greatly appreciated. A

full listing of current RCSB PDB staff members is available at

www.pdb.org/pdb/static.do?p=general_information/

about_pdb/contact/pdb_members.html.

Funding

National Science Foundation (NSF DBI 0829586); National

Institute of General Medical Sciences (NIGMS); Office of

Science, Department of Energy (DOE); National Library of

Medicine (NLM); National Cancer Institute (NCI); National

Institute of Neurological Disorders and Stroke (NINDS);

and the National Institute of Diabetes and Digestive and

Kidney Diseases (NIDDK). The RCSB PDB is managed

by two members of the RCSB: Rutgers University and

UCSD. Funding for open access charge: National Science

Foundation (NSF DBI 0829586).

Conflict of interest. None declared.

References
1. Berman,H.M., Westbrook,J., Feng,Z. et al. (2000) The Protein Data

Bank. Nucleic Acids Res., 28, 235–242.

2. Berman,H., Henrick,K. and Nakamura,H. (2003) Announcing the

worldwide Protein Data Bank. Nat. Struct. Biol., 10, 980.

3. Rose,P.W., Beran,B., Bi,C. et al. (2011) The RCSB Protein Data Bank:

redesigned web site and web services. Nucleic Acids Res., 39,

D392–D401.

4. Prlić,A., Bliven,S., Rose,P.W. et al. (2010) Pre-calculated protein

structure alignments at the RCSB PDB website. Bioinformatics, 26,

2983–2985.

5. Prlić,A., Martinez,M.A., Dimitropoulos,D. et al. (2010) Integration of

open access literature into the RCSB Protein Data Bank using BioLit.

BMC Bioinformatics, 11, 220.

6. Whittaker,J.A. (2000) What is software testing? And why is it so

hard? Software, IEEE, 17, 70–79.

7. Feldman,S. (2004) Quality assurance: much more than testing.

Queue, 3, 26–29.

8. Brenner,S.E. (1999) Errors in genome annotation. Trends Genet.,

15, 132–133.

9. Devos,D. and Valencia,A. (2001) Intrinsic errors in genome annota-

tion. Trends Genet., 17, 429–431.

10. Gilks,W.R., Audit,B., De Angelis,D. et al. (2002) Modeling the per-

colation of annotation errors in a database of protein sequences.

Bioinformatics, 18, 1641–1649.

11. Nilsson,R.H., Ryberg,M., Kristiansson,E. et al. (2006) Taxonomic re-

liability of DNA sequences in public sequence databases: a fungal

perspective. PLoS ONE, 1, e59.

12. Bidartondo,M.I. (2008) Preserving accuracy in GenBank. Science,

319, 1616.

13. Koru,G., El Emam,K., Neisa,A. et al. (2007) A survey of quality

assurance practices in biomedical open source software projects.

J. Med. Internet Res., 9, e8.

14. Bhat,T.N., Bourne,P., Feng,Z. et al. (2001) The PDB data uniformity

project. Nucleic Acids Res., 29, 214–218.

15. Westbrook,J., Feng,Z., Jain,S. et al. (2002) The Protein Data Bank:

unifying the archive. Nucleic Acids Res., 30, 245–248.

16. Henrick,K., Feng,Z., Bluhm,W.F. et al. (2008) Remediation

of the protein data bank archive. Nucleic Acids Res., 36,

D426–D433.

17. Westbrook,J.D. and Bourne,P.E. (2000) STAR/mmCIF: an ontology

for macromolecular structure. Bioinformatics, 16, 159–168.

18. Desphande,N., Addess,K.J., Bluhm,W.F. et al. (2005) The RCSB

Protein Data Bank: a redesigned query system and relational data-

base based on the mmCIF schema. Nucleic Acids Res., 33,

D233–D237.

19. Holland,R.C.G., Down,T., Pocock,M. et al. (2008) BioJava: an

open-source framework for bioinformatics. Bioinformatics, 24,

2096–2097.

...

...

Page 11 of 11

Database, Vol. 2011, Article ID bar003, doi:10.1093/database/bar003 Original article
...

