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Hypertension, diabetes, and proteinuria are well-recognized risk factors for progressive kidney function loss. However, despite
excellent antihypertensive and antidiabetic drug therapies, which also often lower urinary protein excretion, there remains a
significant reservoir of patients with chronic kidney disease who are at high risk for progression to end-stage kidney disease.
This has led to the search for less traditional cardiovascular risk factors that will help stratify patients at risk for more rapid kidney
disease progression. Among these are noninvasive estimates of vascular structure and function. Arterial stiffness, manifested by the
pulse wave velocity in the aorta, has been established in a number of studies as a significant risk factor for kidney disease progression
and cardiovascular endpoints. Much less well studied in chronic kidney disease are measures of central arterial pressures. In this
paper we cover the physiology behind the generation of the central pulse wave contour and the studies available using these
approaches and conclude with some speculations on the rationale for why measurements of central pressure may be informative
for the study of chronic kidney disease progression.

1. Introduction

The presence of chronic kidney disease (CKD) enhances the
likelihood of cardiovascular disease (CVD) hospitalizations
and death [1]. Even modest kidney function impairment is
associated with a significant increase in cardiovascular risk
[2]. The relationship of traditional factors for CVD such
hypertension, diabetes, and proteinuria also contribute, to
progressive renal function decline. However the significantly
higher risk of CVD in patients with CKD is not fully
explained by traditional factors; thus, there remains interest
in investigating the association of less traditional risk factors,
such as central blood pressure measurements, with both
CVD and the progression of CKD [3].

The last three decades have witnessed a remarkable
increase in the usage of invasive and noninvasive methods
to estimate central blood pressure profiles [6]. Many of
these approaches are based on tonometric assessment of
waveforms or the velocity of pulse wave travel in the aorta.
A recent meta-analysis of the usefulness of central pressure
measurements for predicting CVD events concluded that
the augmentation index provided independent CVD predic-
tive utility when modeled together with traditional blood

pressure measures for this outcome [7]. These devices have
facilitated the incorporation of measures of central blood
pressure into a number of observational prospective studies
in the CKD population. Several studies in the end-stage
kidney disease (ESKD) population have testified to the value
of central pressure measurements for CVD events but less
research has focused on the predialysis CKD population, par-
ticularly with CKD progression as the outcome of interest.
This paper will focus on cross-sectional and longitudinal
associations between central blood pressure measurements
in the predialysis CKD population and specifically directed
toward CKD outcomes. Several approaches have been taken
to study arterial structure and function. These are generally
categorized as:

(1) those that measure large artery function as reflected
by determinations of large artery stiffness which is
usually assumed to be represented by the velocity of
pulse wave travel in the vessel(s) of interest [8]

(2) those that measure the effects of aspects of wave
reflection such as augmentation index, central sys-
tolic and central pulse pressure [8].
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Figure 1: Changes in arterial pressure wave contour between ascending aorta and femoral artery (adapted from reference [4]).
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Figure 2: Pictorial representation of summation (right) effects on the arterial pressure waveform resulting from forward (left) and backward
(i.e., “reflected”; middle) wave integration.
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Figure 3: Pictorial representation of central vessel waveform. P1
represents the pressure effected by the forward traveling wave. P2
minus P1 represents the amount of systolic pressure augmentation
attributed to the reflected wave. P2 minus the diastolic blood
pressure (DBP) is the central pulse pressure. The augmentation
pressure (P2-P1) divided by the central pulse pressure is the
Augmentation Index. The shaded area in the waveform estimates
the effect of the reflected wave form on systolic workload.

This paper will focus mainly on investigations using the
second approach. In some studies both have been used, but
these tend to be exceptions rather than the rule.

2. Wave Reflection

Before reviewing studies using technology that quantify the
effect of wave reflection on the central circulation it is
important to review, briefly, the physiology of wave reflection
and define the terms used in this area of research.

The shape, and the magnitude of the arterial waveform
changes as the wave travels from the heart to the periphery
as shown in Figure 1. For the purpose of the current
paper note that the pulse pressure (defined as the systolic

pressure—diastolic pressure) increases as the pressure wave
travels to the periphery. This phenomenon is termed pulse
pressure augmentation and results from the interaction of
the forward and backward traveling pressure waves which,
summate algebraically as shown in Figure 2. Depending
on where the measurement is made in the circulation the
waveform will vary in shape and magnitude depending on
its relative location to wave reflecting sites. Wave reflection
results from changes in vascular impedance (defined as the
relationship of pressure divided by flow). Things that change
vascular impedance include branching, plaque, and changes
in vascular caliber for example. If there were no changes
in vascular impedance, each pressure wave would simply
assume the shape of a flow wave. Since there are changes
in vascular impedance, their effect modifies the forward
traveling pressure wave as shown in Figure 3. The change
in systolic contour in the shaded area of Figure 3 represents
the effect of wave reflection. This is usually quantified either
by determining the difference between the peak systolic
pressure (P2) divided by the central pulse pressure (called the
augmentation index, (AIx)) or by determining the degree of
augmented pressure by subtracting P1 from P2 (called the
augmentation pressure, (AP)). The rest of Figure 3 depicts
the terminology used for a representative central pressure
waveform. Figure 4 shows typical waveforms obtained from
the radial artery with corresponding aortic pressure profiles
illustrating the effects of age on waveform reflection (in a
CKD cohort). Other determinants of wave reflection include
heart rate [9], height/gender [4, 10], medications [11], and
various comorbidities such as hypertension, diabetes, and
other standard CVD risk factors [12]. Several reviews are
available to consult for a more in depth study of reflected
wave physiology [13–15].
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Figure 4: Continued.
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Figure 4: Representative wave forms showing the effect of aging on the radial (left) and aortic (right) pulse contours from subjects studied
in the CRIC.

3. Studies of Central Pressure:
Profiling CKD Progression

One of the earliest investigations of arterial waveform
analysis and CKD progression was undertaken by Takenaka
et al. in a Japanese cohort of nondiabetic CKD patients using
radial artery tonometry [16]. In 41 patients with a mean
baseline creatinine clearance of 52 mL/min they reported
that a higher radial AIx value, along with higher baseline
urine protein excretion were the only significant factors in
their multiple regression analysis for the decline in creatinine
clearance 1 year later.

Taal et al. building on the Takenaka study, expanded the
relevant variables studied in a slightly smaller sample size
(n = 35) of stage 4 and 5 CKD patients and pursued the
endpoint of ESKD defined as commencing dialysis more than
30 days after enrollment [17]. Over a period of slightly more
than one year 22 of the 35 study participants commenced
dialysis. Baseline eGFR, urine protein excretion, cigarette
usage, higher PWV and an AIx above the median value
(of 43%) were all shown to be independent predictors for
progression onto dialysis.

The chronic renal insufficiency cohort (CRIC) ancillary
study has measured central aortic PP (CPP) using radial
tonometry since 2005. One of the aims of the study was

to determine clinical factors independently associated with
CPP in CKD and to evaluate how well brachial PP correlates
with CPP in a large ethnically diverse population of CKD.
The CRIC study measured central pulse pressure cross-
sectionally in 2531 participants in the CRIC study to deter-
mine correlates of the magnitude of central pulse pressure
in the setting of CKD. In the cross-sectional analysis central
pulse pressure measurements tertiles were <36 mmHg, 36–
51 mmHg and >51 mmHg with an overall mean CPP of
46 mmHg and a mean brachial PP of 57 mmHg. An increas-
ing proportion of those subjects within each worsening CKD
stage had a central pulse pressure≥ 50 mmHg (Figure 5) [5].

Data from the CRIC study were analyzed longitudinally
to determine which central hemodynamic measure (central
systolic pressure, AIx, AP, and central pulse pressure) had
the best predictive potential for death and kidney function
decrement endpoints. To date the following data have only
been presented in abstract form [18].

Approximately half of the CRIC participants were
females with a mean age of 60 years and a mean eGFR of
41 mL/min/1.73 m2. The events analyzed were (1) death, (2)
ESKD (n = 99) or (3) a 50% reduction in eGFR from
baseline or ESKD (“RENAL1” endpoint; n = 129). Death
was treated as a censoring event for the renal events. Figure 6
(redrawn from the abstract [18]) displays the hazard ratios
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Figure 5: Increasing prevalence of central pulse pressure values> 50 mmHg among 2531 participants in the Chronic Renal Insufficiency
Cohort (CRIC) (redrawn from [5]).

(adjusted for age, race, sex, diabetes, eGFR, proteinuria,
and clinical site) with the different independent variables
categorized using common clinical cut-points for brachial
systolic/pulse pressures, and central aortic systolic/pulse/
augmentation pressures and aortic pulse wave velocity. These
findings suggested that in CKD

(1) increasing PWV predicts ESKD,

(2) central pressures also predict ESKD,

(3) central pulse pressure appears to predict ESKD best
among the four selected measures of central pressure.

4. Speculations

Given the paucity of studies of CKD progression, and the
limitations of noninvasive technology to pursue mechanisms
of progressive kidney damage, it is difficult to state with
certainty how increasing pulse pressure mediates increasing
kidney function loss. Loutzenhiser et al. and others, have

stressed relative importance of afferent arterial myogenic
tone, and its relationship to tubuloglomerular feedback [19].
It stands to reason then, that in an organ like the kidney,
whose blood flow (relative to mass) has been described as
“torrential” [20], increasing pulse pressure would act like
a progressively heavy hammer slamming into the delicate
capillary network of the glomerulus particularly when the
afferent arteriole fails as a gatekeeper to buffer the incoming
pressure waveform. Their work in animal models suggest
the systolic pressure is important in influencing afferent
arteriolar myogenic responses [21]. Whether this is the most
important hemodynamic parameter in humans, especially
given the variety of processes associated with CKD (diabetes,
glomerulonephritis, etc.), is not as clear. The morphometric
work of Gary Hill supports this concept. He has shown that
larger afferent arterioles (on kidney biopsy) in hypertension
correlate positively to the size of the glomerulus and also
predict the likelihood of finding focal sclerosis [22]. More-
over, it seems plausible to these authors that when a higher
pulse pressure is delivered at a greater velocity (courtesy of
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increasing central arterial stiffness) the damaging effect of
the higher pulse pressure would be amplified by the higher
velocity of delivery because of the greater energy dispersion
into tissues associated with higher PWV values.
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