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Abstract

Connectionist and dynamical systems approaches explain human thought, language and behavior
in terms of the emergent consequences of a large number of simple non-cognitive processes. We
view the entities that serve as the basis for structured probabilistic approaches as sometimes useful
but often misleading abstractions that have no real basis in the actual processes that give rise to
linguistic and cognitive abilities or the development of these abilities. While structured
probabilistic approaches can be useful in determining what would be optimal under certain
assumptions, we suggest that approaches such as the connectionist and dynamical systems
approaches, which focus on explaining the mechanisms giving rise to cognition, will be essential
in achieving a full understanding of cognition and development.

Emergence of Structure in Cognition

Emergence is ubiquitous in nature: Consider the complex structure of an ant hill. It can have
an elaborate structure, with a complex network of passageways leading from deep
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underground to 25 feet into the sky. One might suppose that ants possess a blueprint for
creating such structures, but something far simpler is in play [1]. Ants are sensitive to certain
gasses within their nests; when these gasses build up they move grains of dirt to the outside.
This activity lets the gasses escape and has the byproduct of creating the elaborate structure
of the nest.

Likewise, human thoughts and utterances have rich and complex structure that, in our view,
is also the emergent consequence of the interplay of much simpler processes. The
emergentist view contrasts with the approach advocated in the companion article [2], in
which cognizing agents are viewed as optimal inferencing machines, coming to cognitive
tasks with a structured space of hypotheses and a prior probability distribution over them.
Observations provide a means of evaluating the hypotheses and selecting the one that has
the highest posterior probability. Work within the structured probabilistic framework is
often thought to address an abstract level of analysis akin to Marr’s computational level [3],
with consideration of the actual cognitive processes being deferred until the computational-
level theory is fully worked out.

The danger, of course, is that if the high-level description is wrong—that is, if the behaving
child or adult is not actually engaged in the formulation and selection of hypotheses—then
focusing on these constructs would be misleading. It may give rise to an enterprise, much
like Chomsky’s Competence-based universal grammar approach to language [4], in which
researchers focus on searching for entities that may exist only as descriptive abstractions,
while ignoring those factors that actually shape behavior (See Box 1).

Box 1

Parallel Pitfalls of Computational-Level and Competence Approaches
Structured probabilistic inference models include the following elements:

i. Formulation of any given problem as one of probabilistic inference.

ii. Commitment to selecting the correct knowledge structure over which
probabilities can be assessed and updated.

iii. Abstraction from details of behavior and brain because the theory is usually
pitched at Marr’s computational level.

A broader perspective on this approach is provided by looking at its closely-related
precursor, Chomsky’s Competence-based approach to linguistics [4], whose foundational
assumptions included the following:

i. Formulation of the goal of the field as characterizing a language user’s
knowledge

ii. Commitment to selecting the correct grammar as the representation that explains
such facts.

iii. Abstraction from details of behavior and brain because the theory is pitched at
the competence level.

In both cases, the goal is an abstract characterization; linkage to performance is a
promissory note, seldom redeemed in practice.

Thus, structured probabilistic models of cognition can be understood as competence
theories. As such they inherit problems that have become apparent with this approach,
including:
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1. The problem formulation is not neutral. If learners are not trying to ‘select the
correct grammar’ or ‘the correct structure’ for a domain, approaching the
problem as if they were would be misleading.

2. The commitment to a knowledge representation is not neutral. Commitments to
particular choices can lead researchers into blind. Commitment to grammar
formalisms radically constrained how other issues were addressed. Acquisition
became the problem of converging on a grammar; performance the question of
how grammar is used; neurolinguistics the study of how grammar is represented
in the brain. The role of grammatical theory has greatly diminished over the
years, because of the research program’s lack of progress.

3. Treating levels of analysis as independent is counterproductive. It may be
difficult or impossible to relate the high level computational/competence theory
back to facts about behavior and the brain. Conversely, considering
implementation/performance issues may lead to a different high-level
formulation of a problem.

4. The levels of description and competence/performance approaches also
introduce an uncomfortable extra degree of freedom with respect to data. Facts
that are consistent with the theory are embraced; facts that conflict with the
theory are relegated to as yet undeveloped “algorithmic-implementational’” or
“performance” theories.

Explanations of behavior that ignore mechanism and implementation are likely to fall short.
For example, a recent study [5] has found that people can exploit a causal framing scenario
to make normatively correct, explicit inferences in a contingency learning task if they are
given ample time to make explicit predictions. However, when the same contingencies
govern events to which participants must respond very quickly, they seem to learn according
to a process akin to simple connection weight adjustment. Thus, different mechanisms
appear to underlie learning of the very same probabilistic contingencies in the explicit
prediction versus quick response variants of the task, yet the statistical structure of the two
tasks, and thus the computational-level analysis of what would be optimal in the two
situations, is the same.

To be clear, the disagreement between emergentist approaches and structured probabilistic
approaches is not about the relevance of probability in characterizing human behavior—both
approaches share an emphasis on statistical regularities in the learning environment and on
variability in human performance. Indeed, emergentist models often optimize their
probabilistic behavior by learning to match probabilistic outputs to the statistical structure of
the experiences on which they are trained [6,7]. The disagreement is also not about
advocating a purely bottom-up versus top-down research strategy, as it is our view that
science is best served by pursuing integrated accounts that span multiple levels of analysis
simultaneously. Rather, the dispute between the two approaches concerns the utility of
treating cognition as if its goal and outcome is the selection of one or the other structured
statistical model, whether it be a probabilistic grammar, a mutation hierarchy, or a specific
causal Bayes network [8,9,10]. From our perspective, the hypotheses, hypothesis spaces and
data structures of the structured probabilistic approach are not the building-blocks of an
explanatory theory. Rather, they are sometimes helpful but often misleading approximate
characterizations of the emergent consequences of the real underlying processes. Likewise,
the entities over which these hypotheses are predicated—such as concepts, words,
morphemes, syllables, and phonemes—are themselves best understood as sometimes useful
but sometimes misleading approximations (See Box 2).
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Box 2
The Units Problem in Language and Cognition

Language is usually characterized in terms of discrete units such as phonemes,
morphemes, and sentences. Such units are compatible with probabilistic inference models
that employ structured representations. For example, recognizing a speech sound could
be construed as a Bayesian inference problem in which the hypotheses are alternative
phonemes and the task is to pick the one that is most probable given the input [35]. The
utility of this approach depends in part on the validity of the units as descriptions of
linguistic structure. Herein lies a problem.

All of these units can be intuitively motivated using apparently clear cases. Phonemes are
illustrated by minimal pairs such as PEN and TEN. Morphemes are minimal units of
meaning as in FARM-FARMER. Such units provide useful terminology for describing
and comparing. However, it would be a mistake to take them as the units involved in
acquiring and using language.

In actual spoken language, units such as phonemes and syllables are matters of degree.
There is almost no ‘t’ in ‘softly’, but more of one in ‘swiftly’ [36]; words such as
‘memory’ have more than two syllables but less than three [37]. Morphology presents a
similar problem. There are cases in which the meaning of a complex word appears to be
compositional (prefabricate), others where there is no compositionality at all (corner),
and still others (predict, prefer) in which the parts appear to contribute to, but do not fully
determine, the meaning of the whole [38]. Data suggests that people are sensitive to the
gradations, in that intermediate cases produce intermediate morphological priming effects
[39], indicating that morphological status is a matter of degree. For years, syntactic
theory treated sentences as grammatical or ungrammatical. However, the borderline cases
are legion [40]. In light of such observations, many linguists have turned to formalisms
that admit degrees of well-formedness [41,42], However, these systems still generally
require commitments to a set of units over which degrees of well-formedness can be
computed. Similar issues arise in any effort to create a taxonomy of concepts or
meanings for words.

In connectionist models, there is no fixed vocabulary of representational units. The
internal representations are graded patterns with varying degrees of distinctness,
compositionality, and context sensitivity [43,44,45]. These characteristics make
connectionist models different from a mere “implementation” of an idealized linguistic
theory.

The remaining sections consider two very different cognitive domains that have been
modeled as emergent phenomena using connectionist and dynamical systems approaches. In

each case, we argue that it is unnecessary, and may even lead research astray, to characterize

the situation in terms of structured probabilistic inference. In Box 3 we list examples of
other linguistic, developmental, and cognitive domains where the phenomena have been
captured within emergentist approaches.

Box 3

Examples of Emergent Phenomena in Language, Development, and
Cognition

Language
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Past-Tense Inflection and Single Word Reading

Systematic linguistic knowledge (e.g., the past-tense of BAKE is BAKED) is often
attributed to the operation of explicit rules, with violations (TAKE/TOOK) relegated to
separate, item-specific storage [46]. Connectionist approaches in domains including past-
tense inflection [47,48] and single word reading [44,49], have emphasized instead that
linguistic structure is graded rather than all-or-none, and that the relevant empirical
phenomena are better captured by an integrated system in which all types of items are
represented and processed.

Sentence Processing

Classical approaches assume an innate module imbued with Universal Grammar as the
basis for acquisition of syntactic knowledge. However, EIman [21,50] addressed the
acquisition of syntax in a simple and generic connectionist model call the Simple
Recurrent Network (SRN, See Figure). Work by EIman and others has shown how SRNs
can assign representations to words capturing their syntactic and semantic roles in
sentences and respect subtle regularities including long-distance dependencies without
explicit syntactic rules [51]. Related models learn to comprehend sentences and stories
[52,53,54].

Development

Stage Transitions

It has been common to characterize development as occurring through a series of discrete
stages. However, there are many signs that stage transitions are graded rather than
discrete [55,56]. Connectionist models address such transitions as consequences of non-
linearities in multi-layer networks. Effects of connection-weight changes in such
networks exhibit accelerations and plateaus capturing stage-like phenomena [57,58].

U-Shaped Developmental Trajectories

Young babies held upright appear to walk, but this behavior ceases long before self-
supported walking. Classical accounts explain the disappearance as reflecting
development of top-down inhibition [59]. More recent research shows that the
disappearance reflects an increase in the mass of the child’s legs as they develop [60].
The approach correctly predicts that walking can be evoked after its apparent
disappearance with appropriate adjustments to counterbalance the effects of increased leg
mass.

Cognitive Processes

Semantic Cognition

A connectionist model [61] accounted for apparent modular representation of living
things versus artifacts as an emergent consequence of (a) modular representation of
visual and functional properties and (b) greater importance of functional properties for
artifacts and of visual properties for living things. See also [20,27].

Executive Functions and Short Term Memory

The control of behavior by task and previous context is disrupted in individuals with
brain lesions in a wide range of brain areas, even though such control has been ascribed
to special modules in the frontal lobes [62]. Botvinick and Plaut [63] observed that when
complex behaviors have been acquired by a generic SRN, diffuse damage leaves
stereotyped action patterns intact but distrupts ‘control” by task and context, suggesting
that such control may be an emergent function distributed over contributing brain areas.
Their model also learns hierarchically structured tasks without explicitly representing
hierarchical structure. Botvinick and Plaut [64] applied a similar model to a range of
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short-term memory phenomena that other approaches interpret as evidence for slots in
short-term memory. In their model, the phenomena arise without explicit slots.

The A-not-B error: Absence of a Hypothesis or Emergent Consequence of
the Dynamics of Motor Behavior?

The A-not-B task was introduced by Piaget [11] to measure the development of the object
concept: the belief that objects exist independent of one’s own actions. In the canonical form
of the task (see Figure 1), after searching for an object at one location, then seeing it hidden
at a new location, 8-10 month old infants reach back to that first location, whereas older
infants reach correctly to the new location. Although the A-not-B task has not been an
explicit focus of research within the structured probabilistic framework, the situation is
traditionally described in a way that is fully consistent with it: on this view, the phenomenon
reflects the absence of (or perhaps a low prior probability for) the hypothesis that the object
exists independently of the child’s actions; the younger child, lacking such a hypothesis,
reaches to the place where his actions previously led him to find the object [11,12].

Experimental data favors an alternative, emergentist account of performance in the A-not-B
task that has been developed within Dynamic Field Theory (DFT) [13,14]. This account
explains the error through general processes of goal-directed reaching (and indeed is a
variant of one model of adult reaching behavior). The model consists of a dynamic field,
shown in Figure 1, which corresponds to the activation within a population of neuron-like
units, each dynamically representing the direction of a reach. The field integrates multiple
sources of relevant information—the immediate events (e.g., hiding the toy), the lids or
covers on the table, and the direction of past reaches. The internal activations that produce a
directional reach are themselves dynamic events, with rise times, decay rates, amplitudes,
and varying spatial resolution. Consequently, the model predicts—and experiments have
confirmed—fine-grained stimulus, timing, and task effects [13,14]. Because the explanation
derives from general models of goal-directed action that are not specific to this task nor to
this developmental period, the model makes predictions (tested and confirmed) about similar
phenomena (and perseverations) at ages younger than, and considerably older than, the
typical age range examined in the standard task [15,16]. Indeed, using this model as a guide,
experimenters can make the error come and go predictably—by changing the delay, by
heightening the attention-grabbing properties of the covers or the hiding event, and by
increasing and decreasing the number of prior reaches to A [13,14,16,17].

The DFT-based model accounts for a wide range of findings showing that variables
unrelated to beliefs about the existence of objects can affect the A-not-B error. The model
has also been used to predict (correctly) that a reach back to A will occur in some situations
when there is no toy hidden [17]. Furthermore, because the dynamic field is viewed as a
motor planning field, and thus is tied to the body-centric nature of neural motor plans [17],
the model also makes the novel prediction that perseverative errors should disappear if the
motor plan needed for reaching to B is distinctly different from that for reaching to A. One
experiment achieved this by shifting the posture of the infant [17,19; see Figure 1].

Because the error can occur even when no object is hidden and can disappear with changes
to the infant’s posture, explanations based on beliefs about objects seem largely irrelevant to
understanding A-not-B behavior. What is developing is a complex dynamic system, and it is
this system that governs intelligent behavior, not the any concepts, hypotheses, or inferences
that some ascribe to the child’s thinking.
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Connectionist vs. Structured Probabilistic Approaches to Semantic

Cognition

We consider next a domain that both approaches have addressed, that of semantic cognition.
Under the structured probabilistic approach [9], the acquisition of semantic knowledge is
viewed as the inductive problem of deciding which of several alternative conceptual
structures is most likely to have generated the observed properties of a set of items in a
domain. This computation requires specification of considerable initial knowledge—
specifically, (i) knowledge of the hypothesis space, the space of possible concepts and
structures for relating concepts, and (ii) prior distributions over both the concepts and the
structures. A similar approach has been taken to characterizing language acquisition [8].

Our fundamental disagreement with this approach concerns the fact that the alternative
structured representations over which a probabilistic choice must be made generally do not,
and perhaps cannot, adequately capture real-world domain structure. For example, a
hierarchical taxonomic model that has been fit to natural kinds [9] fails to take account of
the presence of partial homologies across separate branches of the hierarchy, such that
predatory birds, fish, and mammals tend to share one set of properties while prey of each
kind tend to share others. While strict homology might be captured by assigning parallel
structures, partial homologies would have to be force-fit. Similarly, a context-free grammar
may provide a better fit to a corpus of sentences than some alternatives [8], but such
grammars miss subtler probabilistic dependencies easily captured in connectionist models
[21,22].

Connectionist models take a fundamentally different approach: the task of the model is not
to choose from a set of pre-specified alternative structures, but to learn a set of real-valued
weights on connections among neuron-like processing units that supports the generation of
appropriate, context-sensitive, conditional expectations. Discrepancies between predicted
and observed outcomes provide feedback for learning, in the form of gradual weight
adjustment (see Figure 2). Related items tend to evoke similar internal representations,
thereby supporting generalization, although the system can use context to learn different
similarity relations among the same sets of items when appropriate [20]. Similar approaches
are used in connectionist models of semantic learning and language acquisition [21,22].

Although the continuous space of possible weight sets for a given connectionist network
could be seen as analogous to the “hypothesis space” of the structured probabilistic
approach, there are several key differences. First, unlike the structured probabilistic
approach [9], there is no restriction to a set of possible structure types, so that structures that
do not exactly match any idealized type can be represented. Second, there is never a discrete
decision to select one structure over another—the network’s current set of weights may
approximate one structure or a blend of structures. Finally, learning simply involves the
gradual refinement and elaboration of knowledge based on each new experience, and thus is
far more constrained than the arbitrarily complex computation typically allowed by
structured probabilistic approaches for computing the optimal structure from the entire
corpus of relevant experiences.

A final point of comparison concerns inductive biases, which play a role in both approaches.
Whereas the hypothesis spaces of the structured probabilistic approach impose both general
and domain-specific (content-based) biases, work within the connectionist approach has
typically focused on the discovery of structure using only domain-general biases derived
from properties of the learning procedure and network architecture [7,20]. While content-
based constraints can be built into connectionist models, connectionist work has focused on
generic constraints that foster the discovery of structure, whatever that structure may be,
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across a range of domains and content types [7,20]. Yet, despite using only domain-general
constraints, the connectionist model of semantic learning [20] explains evidence others
[23,24] use to argue that children rely on innate domain-specific constraints. The model can
acquire domain-specific patterns of responding: It can rely, for example, on shape over color
for semantic judgments in one domain while relying on color over shape in another (see also
[25]). Like children [26], the model can also rely on different types of similarity among the
same set of items in different contexts (e.g., taxonomically-defined similarity for biological
properties, but a one-dimensional similarity space for judgments about size; see Figure 2).
The model also exhibits patterns of conceptual change that mirror phenomena reported in
the literature, including (i) a progressive differentiation in development (Figure 2); (ii) the
advantage of basic level concepts in many situations but (iii) the elimination of the basic-
level advantage in expertise; (iv) transient over generalization and illusory correlations in
development and (v) the progressive disintegration of semantic knowledge in semantic
dementia [27,28]. Models cast at a competence level have not addressed most of these
phenomena.

In short, the need to select among a pre-specified set of alternative structure types in [9]
forces semantic representation into an ill-fitting procrustean bed. The connectionist model of
semantic cognition shows that this is unnecessary. While further development of this model
will certainly be required [Box 4;29], the model in its current form already shows that
conceptual knowledge can emerge from a constrained learning process, without prior
domain-specific knowledge and without requiring pre-specification of possible knowledge
structures or selection among them.

Box 4
Outstanding Questions
e What types of network architectures best promote the discovery of structure?

e To what extent are generic constraints sufficient to promote acquisition of
domain-specific structure?

¢ When do the advantages of conforming knowledge to a specific structural form
outweigh the disadvantages? Does expertise increase or decrease conformity to
specific structural forms?

¢ When do humans truly engage in explicit hypothesis selection, and how can we
distinguish such cases from situations in which they are gradually adapting
implicit forms of knowledge such as connection weights in response to
experience?

Conclusion

Far from being functionally equivalent or simply different levels of description, different
theoretical frameworks lead to different conclusions about the nature of cognitive
development, the kinds of questions that a cognitive theory should address, and how
explanations of different domains of behavior should be unified. The structured probabilistic
approach takes the stand that it is critical to specify the goal of cognitive processes at an
abstract, computational- or competence-level of analysis before it makes sense to be
concerned with the performance characteristics of particular algorithms or hardware
implementations. Although this stance does not preclude explicit implementation, the
properties of the machinery that implements the computations are not considered
theoretically relevant. By contrast, the emergentist approach to understanding cognition,
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exemplified by dynamical systems and connectionist models, emphasizes the importance of
specifying the actual mechanisms that underlie human cognitive performance, ultimately in
terms of their neural implementation. The latter approach welcomes consideration of more
abstract levels of description, and numerous research efforts have benefited considerably
from integrating theories across levels [30,31], but not at the expense of mechanism (Box 5).

Box 5

Emergentist Approaches Address Function and Mechanism: Response to
Griffiths et al [2]

We view Griffiths and colleagues’ arguments for their top-down, structured probabilistic
models approach and against our emergentist one as misguided in at least three important
respects.

The characterization of our view

The authors suggest that, whereas their approach is “top-down,” ours is “bottom-up.”
Actually, we emphasize function, algorithm and implementation equally and seek
accounts that span levels. We use dynamical systems and connectionist networks because
they provide tools for addressing questions at all of these levels, including function. The
“function-first” approach will go astray if it makes incorrect assumptions about what the
functions and goals actually are. In fact, we question many of their assumptions about
function—for example, that the goal of language acquisition is to induce grammatical
rules, or that the goal of semantics is to induce a structure representing relations among
concepts. If these are not the right problems, the question of how to solve them optimally
is moot. Mechanistic commitments place important constraints on the kinds of
computations that are easy or natural, and thus provide information about what functions
are actually computed. Thus, attention to mechanism can provide clues to function, just
as attention to function can provide clues to mechanism.

The characterization of human abilities

The authors assume that human behavior is rational, and that cognition is compositional
and recursive. In so doing they seem to over-estimate and mischaracterize human
cognitive abilities. For instance, they suggest that people can radically reconfigure their
beliefs on the basis of a single statement—for example, hearing “Dolphins are not fish
but mammals” reorganizes their knowledge of animals. Although people can memorize
arbitrary facts, deep conceptual reorganization occurs gradually over years, and coexists
with knowledge of inconsistent facts. Human behavior is also notoriously susceptible to
biases and heuristics that can lead to violations of rationality. To the extent that such
behaviors are explained post hoc by “rational” models, the models are under-constrained
—it is too easy to come up with a post-hoc rational characterization of any particular
human behavior. To be useful, a theoretical account must explain not only why people
excel at some cognitive abilities but also why they fail at others.

The characterization of the capacities of emergentist models

Several of Griffiths et al’s statements about the limitations of emergentist models are
incorrect. Contra their statements, such models can: (i) exploit information provided by
natural language or social context [65], (ii) account for rapid learning and generalization
of new words [34,66], (iii) explain why people sometimes generalize in an all-or-none
fashion and sometimes in a graded fashion [67], (iv) explain nonlinearities in children’s
lexical development [68,69], and (V) explain why people generalize differently in
different contexts [20]. Though emergentist models are constrained in what they can do
easily, we view this as an advantage. The constraints arise from a commitment to
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mechanisms similar to those that implement real minds—thus they provide useful clues
as to how real minds solve important cognitive problems.

The commitment to mechanism is both principled and pragmatic. On the principled side,
cognitive processing emerges out of evolutionary and developmental pressures and
constraints that include the limited capabilities of biologically realizable hardware and the
real-time demands of the environment. For example, biological vision cannot have evolved
solely as an in-principle response to the abstract problem of seeing; it was also constrained
by what could evolve from pre-visual biological precursors and operate in real time. Thus,
the fundamental nature of cognitive processing is shaped by the performance characteristics
of the underlying mechanism, and approaches that abstract away from such information run
a serious risk of missing critical aspects of the problem under consideration.

On the pragmatic side, attention to both the strengths and limitations of specific
implementation details has led to valuable theoretical advances that would have been
unavailable if operating only at a competence level of analysis. A clear case in point
concerns the observation that distributed connectionist networks suffer “catastrophic
interference” to old knowledge when forced to rapidly learn new inconsistent knowledge
without the chance to rehearse the old knowledge [32,33]. Such rapid learning is possible
using very sparse representations, but this compromises the ability to learn the underlying
statistical structure of experiences, thereby undermining generalization. The competing
demands of rapid learning of new knowledge versus the gradual discovery of underlying
structure are consequences of the connectionist implementation of learning and memory.
This competition lead McClelland, McNaughton and O’Reilly [34] to propose that these
functions are subserved by distinct but complementary memory systems—nhippocampus and
neocortex, respectively—with the former helping to consolidate knowledge in the latter over
time. There are other possible implementations of mechanisms of learning and memory in
which these demands do not conflict. Thus there is no basis for understanding the
contrasting properties and coordinated operation of hippocampus and neocortex without
committing to properties of the mechanism.

In summary, we advocate an integrated approach to cognition in which functional
considerations are grounded in, and informed by, the performance characteristics of the
underlying neural implementation.

Glossary

Connectionism An approach to modeling cognition based on the idea that the
knowledge underlying cognitive activity is stored in the connections
among neurons. In connectionist models, knowledge is acquired by
using an experience-driven connection adjustment rule to alter the
strengths of connections among neuron-like processing units

Dynamical a mathematical formalization that describes the time evolution of

system physical and cognitive states. Examples include the mathematical
models that describe the swinging of a clock pendulum, the flow of
water in a pipe, the movement of the limbs of a walking organism,
and the drift that occurs in working memory towards or away from
special points in the state space

Dynamical field Originally formulated as a theory of movement preparation, in which

theory movement parameters are represented by distributions of activation

defined over metric spaces, the theory has recently been extended to
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address cognitive function. Dynamical fields are formalizations of
how neural populations represent the continuous dimensions that
characterize perceptual features, movements, and cognitive decisions,
and dynamical field theory specifies how activity in such neural
populations evolves over time

Emergentist Approaches to modeling cognition based on the idea that the structure
approaches seen in overt behavior and the patterns of change observed in

behavior reflect the operation of subcognitive processes such as
propagation of activation and inhibition among neurons and
adjustment of strengths of connections between them. Emergentist
approaches contrast with symbolic approaches, including structured
probabilistic models, in which cognition is modeled directly at the
level of manipulation of symbols and symbolic structures such as
propositions and rules

Semantic A cognitive domain encompassing knowledge of the properties of
cognition objects and their relationships to other objects, as well as the
acquisition of such knowledge and its use in guiding inference
Structured Models that specify that cognitive activity involves the use of
probabilistic probabilistic information to select among and specify the parameters
models of particular structural forms, which specify relationships among
items represented by discrete symbols
Universal A hypothetical construct that arose in the context of generative
grammar grammar. A universal grammar, if one existed, would be a system of
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Figure 1.

Top: The A not-B task. On the A trials, an experimenter hides an object repeatedly in one
location (A), for example under a lid. The infant watches the hiding, a delay of several
seconds is imposed, and then the hiding box is pushed close to the infant and the the infant is
allowed to reach to the hiding location and retrieve the object. This is repeated several times
—hiding in location A, delay, infant retrieval of the object. On the critical B trial, the
experimenter hides the object in a new adjacent location (B), under a second lid. After the
delay, the infant is allowed to reach. Bottom Left: A DFT simulation of activation in the
dynamic field on a B trial. The activation rises at the B location during the hiding event, but
then due to the cooperativity in the field and memaory for previous reaches, activation
begings to rise at A during the delay and the start of the reach inhibiting the activation at B
and resulting in a simulated reach to A. Bottom right: A baby in a posture-shift A not-B task.
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Figure 2.

Top, Left: the connectionist network used by Rogers and McClelland [20], first used by
Rumelhart and Todd [70], to explore the emergence of structure from experience. The
network is trained by presenting item-context input pairs (e.g. robin can) and then
propagating activation forward (to the right) to activate units standing for possible
completions of simple three-term propositions. Learning occurs by comparing the output to
a pattern representing the valid completions (in this case, move/grow/fly), then adjusting
connection weights throughout the network to reduce the discrepancy between the network’s
output and the valid completions. Learning occurs gradually, affecting how different items
are represented at the Representation layer, and also at the subsequent Hidden layer, where
the representations are shaded by context. Learning occurs gradually, producing progressive
differentiation. Bottom, Left: At first the network treats all items similarly, as shown in the
hierarchical clustering analysis of the patterns of activation at the representation layer. As
learning progresses over successive sweeps through the set of item-context-output training
patterns, the network first differentiates the plants form the animals and later differentiates
the different types of animals and different types of plants. Upper right: The middle panel
shows the similarity structure in the learned representation layer patterns in a different way
for a larger set of items, while the flanking panels show how this similarity structure is re-
organized in different contexts. Note that in the can context, the plants are all represented as
similar, because they all do the same thing (they just grow). Bottom right: Naming response
of the network when the input is ‘goat’ at different points in training. Note the transient
tendency to activate ‘dog’ before the correct response ‘goat’ is acquired. In this instance, the
network was trained in an environments where dogs were more frequent than any other type
of animal. Before the dog is differentiated from other animal types, the network treats all
animals the same, naming them all with the most common animal name, dog. As
differentiation occurs the correct name of the goat is finally learned. All panels reproduced
with permission from [20].
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Box Figure.

Elman’s Simple Recurrent Network. Each rectangle represents a pool of simple processing
units, and each dashed arrow represents a set of learnable connections from the units in one
pool to the units in another. A stream of items is presented to the input layer of the network,
one after another. For each item, the task is to predict the next item. The pattern on the
hidden layer from processing the previous item is copied back to the context layer, thereby
allowing context to influence the processing of the next incoming item. Reproduced with
permission from [21].
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