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SYNOPSIS
Preclinical studies of analgesia in amphibians or recommendations for clinical use of analgesics in
amphibian species are extremely limited. This article briefly reviews the issues surrounding the
use of analgesics in amphibians starting with common definitions of pain and analgesia when
applied to non-human animals. Nociceptive and endogenous opioid systems in amphibians are
reviewed and results of preclinical research on opioid and non-opioid analgesics summarized.
Recommended opioid and non-opioid analgesics are summarized and practical recommendations
made for their clinical use.
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INTRODUCTION
Analgesia is the selective loss of pain sensation leaving other cognitive, sensory and motor
functions intact and ideally, unaltered. General anesthesia is the loss of all sensory and
motor function, and a total lack of consciousness and awareness. Both analgesia and
anesthesia are defined by description of these states in humans; it is at best an educated
guess whether these definitions can also be applied accurately to non-human animals, or
amphibians. Comparative neurology suggests that the potential for pain is less substantial in
amphibians and other earlier-evolved vertebrates compared to humans.1–4

There are very limited studies on either analgesia or anesthesia in amphibian species and
only a few agents are recommended for clinical use. Anesthesia studies can be done to
determine appropriate pharmacological agents and dosages by assessing simple measures
like ability of an animal to right itself or to withdrawal its limb from a strong forceps pinch
5–9 but such studies will not be considered further here. In contrast, studies of analgesia are
more difficult in amphibians as a validated assay is needed in which the animal exhibits a
specific behavior in response to a potentially painful stimulus and in which that response is
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reduced by a potential analgesic agent. A well-validated alternative pain and analgesia
model using Rana pipiens has been in use for over twenty-five years,10,11 however, in
general, studies of analgesia in any non-mammalian species are surprisingly limited.12,13 As
discussed elsewhere, there are a number of reasons for the limited research on pain and
analgesics using non-mammalian pain models, including the biased view of alternative
models by funding agencies, dismissive regulations of non-mammalian species, and lack of
a scientific and zoological perspective by some scientists, veterinarians, and animal welfare
experts.14 This article will review the nociceptive pathways and related systems in
amphibians, summarize the results of preclinical studies of analgesics in amphibian pain
models, and provide clinical guidelines and rationale for the use of analgesics in amphibians.

NOCICEPTION AND PAIN IN AMPHIBIANS
Nociception is used to describe the transmission of noxious stimuli and subsequent
processing up to the point in the brain whereby the pain experience, if present, is mediated.
However, for ease of use and to make research findings accessible to a general audience, the
term pain is generally used instead of nociception, and analgesia is used instead of
antinociception in non-human animal studies. As our attitudes about animals are reflected by
the language we use describing them and their possible attributes, word usage in this case is
not a trivial point.15 Most pain researchers accept this less precise usage of the words pain
and analgesia (nociception and antinociception being too cumbersome and pedantic) but this
does not necessarily imply that these researchers believe that the animals they treat or use
for research experience pain as we do. It also does not mean that researchers using non-
human animals believe that animals do not feel pain. In this regard, we must remain
agnostic, using the best available science to guide our judgment. To think we know what an
animal experiences or is feeling is not science but science fiction. The terms pain and
analgesia are used here for convenience and in doing so make no assumptions as to the
capacity of non-mammalian animals to experience pain.

The nociceptive pathways of amphibians were recently reviewed in detail.16 In brief, there
are no major differences between amphibian nociceptive afferents and those primary
afferents of other vertebrates including mammals. Early electrophysiological work
suggested that the detection of all noxious sensory stimuli, including chemical, was
mediated exclusively by the same free nerve endings associated with thermal sensitivity in
amphibians.17 Amphibians, like mammals, possess both myelinated and unmyelinated
afferent fibers running concurrently in mixed-fiber peripheral sensory nerves. These afferent
fibers have been delineated into three general classes based on morphology, conduction
velocities, latency of response, and action potential characteristics: large, heavily myelinated
A fibers; small, thinly myelinated B fibers; and small, unmyelinated C fibers. Their
characteristics correlate well with those observed in corresponding classes of somatic
sensory afferents in mammals: Aβ, Aδ and C fibers, respectively.16 In studies that separated
fibers both by conduction velocity and fiber diameter in amphibians, small slowly-
conducting fibers transmitted the majority of all impulses induced by noxious heat,
pinching, pin pricks and the application of dilute acetic acid to the skin. 17, 18 A recent
study closely examined the nociceptive primary afferent fibers excited in the acetic acid test
(see below) and found that concentrations producing the behavioral response to the
cutaneously applied acid solution evoked both Aβ and C-fibers to an equal extent.19

There is some uncertainty concerning the central terminations of primary afferent fibers
within the amphibian spinal gray matter;20 most, but not all studies indicate that sensory
afferents from the skin terminate in areas of the dorsal field of the frog spinal cord that
corresponds to mammalian laminae I-IV. It appears that in more recently evolved
vertebrates, primary afferent fibers retract their ventral horn connections and become more
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restricted to the superficial laminae of the spinal dorsal horn.21 This may reflect an overall
vertebrate evolutionary vector to put more neurons in between reflex arcs to allow for finer
control of responses and greater response modulation.

The primary afferent nerve fibers in mammals terminate in the dorsal horn of the spinal cord
and release pain-signaling neurotransmitters such as substance P, calcitonin gene-related
peptide and glutamate. Using immunohistochemical techniques, these algogenic substances
are readily identified in abundance in the spinal dorsal horn of amphibians. 22,23 In
mammals, substance P and glutamate excite second-order neurons which have their cell
bodies in the dorsal horn and send long fibers upward to form the ascending pain pathway.24

Such second-order neurons within the dorsal horn that receive direct primary afferent input
have not been identified in amphibians.25 Also present in the mammalian spinal cord are
endorphinergic neurons which release met-enkephalin, an endogenous opioid peptide, to act
presynaptically to inhibit the release of substance P and postsynaptically to decrease the
firing of the second-order pain neurons. Likewise, met-enkephalin, as well as opioid
receptors, are abundant in the amphibian spinal cord.10,16 Additionally, using in situ
hybridization to identify neurons expressing mRNA for met-enkephalin, endorphinergic
neurons were identified throughout the brain and spinal cord of Rana pipiens.26 Thus while
the most detailed studies have only been performed in mammals, the existence of these key
pain neurotransmitters and endogenous opioid peptides suggests that basic mechanisms of
pain transmission and endogenous opioid peptides within the spinal cord are common in
both amphibians and mammals. An important caveat to remember, however, is that the
presence of opioid receptors and endorphins (met-enkephalin or β-endorphin) in the CNS of
any vertebrate is not by itself supporting evidence that these animals feel pain, as some
authors suggest.27–29 Endorphins and opioid binding sites are located in a number of
organisms that do not have the capacity for anything like human pain and have very limited
nervous systems such as the cockroach, crab, and snail.30–33

Ascending nociceptive pathways in amphibians are unclear as the location of second-order
neurons in the spinal cord and the route of their fibers that carry this information to the brain
are unknown.34 Functional studies of evoked responses in supraspinal sites after specific
noxious stimulation of peripheral fibers are lacking. A single study found that electrical
stimulation of the sciatic nerve produces evoked potentials in posterior thalamic nuclei and
primordial hippocampal structures in frogs.35 However, the general sensory tracts from
spinal neurons make direct connections with neuron groups farther towards the front of the
brain as the phylogeny of vertebrates is ascended.36 Throughout phylogeny, all the target
sites of spinal tracts in the brain increase in complexity, specialization, and number of
neurons, suggesting that even nociceptive messages to the thalamus in an amphibian and
mammal may not be similar.

Cortical tissue, whether in limbic or cerebral regions, is a highly complex and laminated
structure which is a relatively recent development in the evolution of the vertebrate nervous
system. We know from human experience, that decreasing the activity of cortical neurons by
anesthesia or surgical lesion results in a loss of the full appreciation of pain; the patient
reports an awareness of pain “but it no longer bothers them”.37 Recent studies using positron
imaging techniques also show specific areas of the cortex activated by noxious stimuli in
awake humans.38 For these reasons, there is agreement among various scientific
organizations that an intact cortex assists in the appreciation of pain.39–41 It is likely that
amphibians, without either a cerebral or limbic cortex, have a diminished potential for the
appreciation of pain. Even the most rudimentary cerebral and limbic cortex does not appear
until class Reptilia. In this sense, the use of amphibians may represent a ‘purer’ model
system for the study of nociception, possibly without the additional factors of learning and
conditioning which can interfere with the accurate measurement of analgesia in mammals.42
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PRECLINICAL STUDIES OF AMPHIBIAN ANALGESIA
Pain Models in Amphibians

The first successful algesiometric model developed in the amphibian was described by
Pezalla, who used dilute concentrations of cutaneously applied acetic acid and watched for a
wiping response.43 Called the acetic acid test (AAT), a determination of the nociceptive
threshold (NT), as signaled by the wiping response, was done by placing, with a Pasteur
pipette, a single drop of acid on the dorsal surface of the frog's thigh. Testing began with the
lowest concentration and proceeded with increasing concentrations until the NT was
reached. The NT was defined as the lowest concentration of acid that caused the frog to
vigorously wipe the treated leg with either hindlimb. To prevent tissue damage, the acetic
acid was immediately wiped off with a gentle stream of distilled water once the animal
responded or after five seconds if the animal failed to respond. If the animal failed to
respond, testing continued with the next highest concentration of acetic acid on the opposite
hindlimb. The wiping response in frogs, like the tail-flick in rodents, remains intact after a
high spinal transection, demonstrating sufficient circuitry in the spinal cord to mediate this
behavior.44 The acetic acid stimulus excites primary afferent fibers consistent with
nociceptive stimulation.19,45 This wiping response has not been observed in the laboratory
in the absence of noxious stimuli and appears specific for assessing nociception. The wiping
response is also the basis for much research on the motor systems of the amphibian spinal
cord.46

Opioid Analgesia in Amphibians
Using the AAT, initial and ongoing studies of the analgesic effects of opioid administration
in amphibians was conducted using non-selective opioid agonists, endogenous opioid
peptides, and antagonists. 47–52 These studies showed that both exogenous opioid agonists
and endogenous opioid peptides could raise the nociceptive threshold in amphibians by an
action at an opioid receptor. Tolerance to the analgesic effects of daily morphine
administration was documented53 and stress-induced release of endogenous opioids was
shown to produce analgesia in amphibians which was potentiated by enkephalinase
inhibitors.54 Other behavioral studies include an investigation of the effects of opioids on
noxious and non-noxious sensory modalities55,56, an examination of agents acting on alpha2
adrenergic receptors after systemic and spinal administration,57,58 and studies aimed at
determining the selectivity of opioid receptors in amphibians.59–63

Later results of systematic studies examining the analgesia of selective mu, delta, or kappa
opioid agonists administered by different routes yielded an important finding: The relative
analgesic potency of mu, delta, or kappa opioid agonists after systemic, intraspinal, or
intracerebroventricular administration in amphibians was highly correlated to that observed
in typical mammalian models and to the relative analgesic potency of opioid analgesics in
human clinical studies.64–67 This data established the amphibian model using the AAT as a
robust and predictive adjunct or alternative non-mammalian model for the testing of opioid
analgesics.

Two other studies also used the AAT to examine the potential analgesic effects of opioids in
ranid frogs. Using Rana pipiens, Suckow and colleagues demonstrated a dose-dependent
analgesic effect of butorphanol, a mixed mu-kappa opioid receptor agent.27. Butorphanol
has the logistical advantage that unlike the more potent opioids such as morphine, it is not a
Schedule II agent and therefore easier to obtain for veterinary use and to keep in animal
facilities. Using the common European water frog, Rana esculenta, Benyhe and colleagues
confirmed the potency of morphine on the AAT and also showed that oxymorphazone, an
analog of oxymorphone that binds irreversibly to mu opioid receptors, produced a long-
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lasting analgesia up to 48 h.68 Table 1 provides a summary of the dosage range and ED50
values for the analgesic effect of opioid agonists used in behavioral studies of in Rana
pipiens following systemic administration.

A recent study examined the potential analgesic effects of buprenorphine and butorphanol in
another amphibian species, the Eastern red-spotted newt (Notophthalmus viridescens). 69 In
this study, the AAT was not used but rather animals underwent bilateral forelimb
amputation and ‘analgesia’ was assayed by changes in food consumption, spontaneous
movement, and other non-specific measures. There was a significant shortening of the time
to resume normal behaviors following post-operative systemic administration of
buprenorphine or bath application of butorphanol compared to animals receiving no post-
operative agents. Finally, using the Japanese fire-belly newt (Cynops pyrrhogaster),
administration of the neuropeptide RFamide produced an increase in the latency to
withdrawal the newt’s tail from a hot lamp (like the common tail-flick test used in rodents)
which was blocked by the opioid antagonist, naloxone.70

Non-Opioid Analgesia in Amphibians
The acetic acid test (AAT) applied in studies using Rana pipiens clearly demonstrated dose-
dependent and receptor-mediated opioid analgesia in amphibians. There were a number of
other analgesic agents shown to be analgesic in typical rodent models that were also
effective on the AAT. Potential non-opioid analgesics tested included antipsychotic,
benzodiazepine, barbiturate, antihistamine, non-steroidal anti-inflammatory (NSAID), and
partial opioid agents. Specifically, chlorpromazine and haloperidol (antipsychotics),
chlordiazepoxide (a benzodiazepine), buprenorphine (partial opioid agonist) and
diphenhydramine (histamine antagonist) produced moderate to strong analgesic effects.71

Indomethacin and ketorolac (NSAIDs), butorphanol (partial opioid agonist), and
pentobarbital (a barbiturate) produced weaker but still had significant analgesic effects. Peak
analgesic effects for the highest, non-lethal doses of the potent agents showed a relative
analgesic potency of morphine > chlorpromazine > chlordiazepoxide > buprenorphine >
diphenhydramine > haloperidol. It should be noted, however, that full dose-response curves
were not generated thus ED50 values were not calculated.

Studies by Brenner and colleagues and Suckow’s group also demonstrated the analgesic
efficacy of alpha2 adrenergic agonists, such as clonidine, dexmedotomidine, and xylazine at
specific adrenergic receptor sites.27,57,58 An additional NSAID agent, flunixin meglumine,
was also an effective analgesic after intracelomic injection in Rana pipiens.27 In a model of
anesthesia using adult bullfrogs (Rana catesbeiana) it was noted that responses to strong
forcep pinching of the hindlimb remained intact in animals anesthetized with thiopental,
suggesting that this barbiturate is not a high potency analgesic agent in amphibians.5 Table 2
provides a summary of the doses tested and maximum percent effect (M.P.E.) for non-
opioid and partial opioids in behavioral studies in Rana pipiens following systemic
administration.

CLINICAL APPLICATIONS OF AMPHIBIAN ANALGESIA
The clinical judgment of the attending veterinarian will ultimately determine the appropriate
instances when an analgesic agent should be administered in an amphibian species. Cases of
trauma to limbs or surgical interventions are possible scenarios when analgesics would be
given. As pointed out in a recent opinion paper, the use the postoperative analgesics in
African clawed frogs (Xenopus leavis) after surgery for removal of oocytes used in
biomedical research is currently an unresolved clinical issue.72 Frog oocytes are often used
for electrophysiological and molecular pharmacology studies due to their large size and
ability to express transfected mRNA into receptor or channel proteins. There are established
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guidelines now for many university researchers on oocyte harvesting by repeated
laparotomy (cf. Google search for ‘oocyte harvesting guidelines’). Most institutions copy the
guidelines from the National Institutes of Health-Office of Animal Care and Use (NIH-
OACU) in their most recent revision.73 These NIH guidelines do not mention any use of
analgesics for postoperative care, but do suggest that animals be monitored daily for
“appetite as well as for any complications such as dehiscence or infection. Such adverse
effects would be reasons for immediate euthanasia.”

A minority of other institutional animal care and use committees (IACUC) guidelines for
oocyte harvesting from Xenopus do explicitly state that analgesics should be given and
provide doses, as this example from University of North Carolina: “Post-operative care
should be provided as with any species. Suggested analgesics for Xenopus are butorphanol,
25 mg/kg intracelomic, or xylazine, 10 mg/kg intracelomic. Both butorphanol and xylazine
have a calming effect.” Other sets of guidelines, as in this example from University of
Buffalo-SUNY, are even more explicit and outright state that analgesia should be addressed:
“All frogs should receive at least one dose of post-operative analgesia. Acceptable
analgesics include: flunixin meglumine (25 mg/kg intracoelomic once) and xylazine (10 mg/
kg intracoelomic, every 12–24 h.” Both of these institutions are recommending agents and
doses based on the single study by Suckow and colleagues.27 Further studies are needed to
determine the relative potency of other opioid and non-opioid analgesics shown to be active
in preclinical studies (see Tables 1,2).

The issue of hypothermia for amphibian anesthesia or analgesia is also inadequately
addressed in scientific studies. The guidelines mentioned above for oocyte removal all state
that hypothermia is not an adequate method for inducing analgesia or for carrying out
surgical procedures. There was one elegant study that examined hypothermia-induced
analgesia in Rana pipiens using the acetic acid test.74 These investigators found that
placement of a tourniqueted limb in icewater did produce analgesia in the acetic acid test
compared to the untreated contralateral limb. Furthermore, this analgesic effect was blocked
by administration of the general opioid antagonist, naltrexone, suggesting the involvement
of endogenous opioid peptide release. This finding has to be interpreted in light of other
studies which show: 1) amphibians in cold-adaptation show a decrease in pain
thresholds75,76 and 2) amphibians that are immobilized or in stressful situations produce
opioid-mediated stress analgesia.54,77

A major concern is the risk-benefit ratio of using experimental drugs on zoological
companion animals like amphibians. Most clinical treatments in non-mammalian species are
by definition experimental as little research has or is being done using these earlier-evolved
vertebrates. It is knotimesus, the use of clinical analgesics in amphibians should be
undertaken by those veterinarians who are willing to explore the non-mammalian ‘pain’
literature and come to their own evidence-based conclusions. Practical recommendations for
amphibian analgesia should follow the edict “first do no harm.”

SUMMARY
Preclinical and clinical studies of analgesia in amphibians are extremely limited. Almost all
preclinical studies were done using Rana pipiens and the acetic acid test while the greatest
clinical need is for treatment of Xenopus laevis with post-operative analgesics after
harvesting of oocytes in academic research settings.72 There are also a number of zoos and
herpetological collections that may also benefit from clinical information in recognizing and
treating potential pain states in amphibians. Besides the inherent need of pain and analgesia
studies in amphibians to guide the clinical treatment of these zoological companion animals,
preclinical research using non-mammalian models has yielded a surprising wealth of
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information on the vertebrate evolution of endogenous opioid peptides78–80 and opioid
receptor systems.81–84 There is a great need for further research that can be realized by
increased awareness and funding of amphibian models by alternative animal model
foundations, increased preclinical and clinical research using Xenopus species, and increased
involvement of exotic companion animal veterinarians in the research process.
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Table 1

Characteristics of opioid analgesics following systemic administration in Rana pipiens64,67 The most potent
drugs are listed first and in order of their calculated ED50 values.

Opioid Agonist Receptor type Dosage Rangea
nmol/g

ED50 valueb
nmol/g

ED50 valuec
µg/g

Fentanyl mu 1–30 1.4 0.8

Enadoline kappa 1–30 5.8 2.3

remifentanil mu 1–30 7.1 2.8

levorphanol mu 1–100 7.5 1.9

U50488H kappa 1–100 8.5 3.1

methadone mu 10–300 19.9 6.2

bremazocine kappa 10–100 44.4 14.0

Morphine mu 10–300 86.3 32.7

buprenorphine mu 30–300 99.1 46.3

meperidine mu 30–1000 128.1 31.6

Codeine mu 10–1000 140.3 42.0

nalorphine kappa 100–300 320.9 99.9

a
effective dosage range in nmol/g body weight

b
dose that gives 50% analgesic effects, in nmol/g body weight.

c
equivalent ED50 in µg/g body weight dosing.
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Table 2

Characteristics of non-opioid and partial opioid drugs following systemic administration in Rana pipiens57,71

Morphine is included for comparison. The most efficacious drugs are listed first and drugs producing less than
40% effect (M.P.E.) are listed below the bold line.

Agent Class Tested dosea
nmol/g

M.P.E.b Equivalent
µg/g

morphine opioid analgesic 300 100 114

dexmedetomidine alpha2 adrenergic 3 78.0 0.6

chlorpromazine antipsychotic 100 62.9 32

chlordiazepoxide benzodiazepine 300 51.3 90

buprenorphine partial opioid agonist 30 48.6 14

clonidine alpha2 adrenergic 300 45.0 69

diphenhydramine H1 antagonist 200 43.2 51

Haloperidol antipsychotic 30 41.1 11

Indomethacin NSAID 300 39.6 107

Ketorolac NSAID 100 39.1 26

Butorphanol partial opioid agonist 100 36.9 33

Pentobarbital barbiturate 30 27.7 8

a
nmol/mg. The conversion of nmol/mg body weight doses to µg/g body weight doses is given in the last column.

b
M.P.E. = maximum percent effect of analgesia observed at that dose in an average of 4–8 animals.
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