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Abstract

Although methylenetetrahydrofolate reductase (MTHFR) genetic variants are associated with plasma homocysteine (Hcy)

and cardiovascular disease (CVD), little is known whether dietary fatty acid intake modulates these associations. The goal

was to examine the interaction of MTHFR variants with dietary fatty acids influencing plasma Hcy in 995 Boston Puerto

Rican adults. We found that plasma Hcy concentration was negatively correlated with (n-3) PUFA intake (r = 20.117; P =

0.022), and the ratio of (n-3):(n-6) PUFA in the diet (r =20.122; P = 0.009). Further, 2 functionalMTHFR variants, 1298A.C

and 677C.T, which are not in linkage disequilibrium in this population, were significantly associated with hypertension

(OR = 1.72, P = 0.024, and OR = 1.60, P = 0.002, respectively). In addition, the 1298A.C variant was significantly

associated with CVD (OR = 3.32; P = 0.030). Importantly, this variant exhibited significant interactions with intakes of total

and (n-6) PUFA and the (n-3):(n-6) PUFA ratio of the diet. The plasma Hcy concentration of carriers of risk allele 1298C was

greater than that of noncarriers only when participants had consumed a high-PUFA diet (.7.8% energy) but was not

greater when they had low intake of PUFA (#7.8% energy). In addition, participants with combined genotypes of both

SNP (677 TT with 1298 AC or CC) who consumed high levels of (n-3) PUFA (.0.66% energy) had lower plasma Hcy

compared with those who had the same genotype and consumed low levels of (n-3) PUFA (#0.66% energy). Our study

suggests that dietary PUFA intake modulates the effect of 2 MTHFR variants on plasma Hcy in Boston Puerto Rican

adults. J. Nutr. 141: 654–659, 2011.

Introduction

During the past several decades, hyperhomocysteinemia
(HHcy)8 has been suggested as an important risk factor for
cardiovascular diseases (CVD) (1–3). Moderately elevated
plasma Hcy concentration tends to be seen in patients with

coronary and peripheral vascular diseases compared with the
general population (4–6). The major causes of HHcy include
impairment of renal function, deficiencies of plasma folate,
vitamin B-12, and vitamin B-6, and dietary and genetic factors
(7,8). Recently, we investigated the relationship between (n-3)
PUFA and plasma Hcy in Chinese and Australian populations and
provided evidence that increased (n-3) PUFA concentrations in
plasma phospholipids and platelet phospholipids were associated
with a protective effect on CVD and lower plasma Hcy concen-
trations (9,10). Human intervention studies also demonstrated
that dietary (n-3) PUFA can decrease plasma Hcy (11–13). To
understand how fatty acids regulate Hcy metabolism, we con-
ducted a feeding study in rats and found that tuna oil and salmon
oil rich in (n-3) PUFA regulate both gene expression and enzyme
activity of constituents of Hcy metabolism (14). However, the
question remains how dietary PUFA intake regulates Hcy metab-
olism in humans.Methylenetetrahydrofolate reductase (MTHFR)
catalyzes the conversion of 5,10-methylenetetrahydrofolate to
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5-methyltetrahydrofolate, an important enzymatic process in
folate metabolism and in remethylation of Hcy into methionine.
In humans, 2 putative functional variants atMTHFR, 677C.
T and 1298A.C, are known to be associated with HHcy
(15,16). The homozygous MTHFR 677TT genotype results in a
thermolabile enzyme with reduced activity and consequentially
decreased concentration of plasma folate and increased plasma
Hcy concentration (17,18). Similarly, 1298C also yields de-
creased MTHFR activity (19). MTHFR 1298CC genotypes are
associated with increased risk of hypertension and higher Hcy in
essential hypertensive participants (15). Although the determi-
nants of Hcy and the relationship betweenMTHFR variants and
plasma Hcy have been most extensively evaluated with B
vitamins and folate, the interaction of fatty acids with MTHFR
polymorphisms on plasma Hcy concentration remains inadequately
described. Considering the relationship between (n-3) PUFA and the
critical enzymes involved in Hcymetabolism, the goal of the present
study was to test the hypothesis that fatty acid intake modulates the
effects of MTHFR variants on Hcy metabolism.

The population of Puerto Rican adults living in the Boston,
Massachusetts metropolitan area has a disproportionate health
burden, including high prevalence of hypertension and CVD (20).
Thus, we examined the association between MTHFR variants and
hypertension and CVD and assessed the interaction between dietary
fatty acids andMTHFR variants on plasma Hcy in this population.

Methods

Study design and participants. The current study was conducted in a

nested fashion within the ongoing Boston Puerto Rican Health Study
(BPRHS), described in detail elsewhere (21). Briefly, areas of high Puerto

Rican density in the Boston metropolitan area were identified from the

year 2000 census and 1 Puerto Rican adult from households with at least
1 Puerto Rican between 45 and 75 y of age was randomly selected for

participation. Interviews were conducted in the home and, in addition to a

host of health-related and anthropometric data, detailed data were

collected on dietary intake using a questionnaire previously adapted from
the NCI/Block FFQ and validated for this population (22). Fasting blood

samples were collected in the volunteer’s home the morning following the

health interviews. Approval for the Boston Puerto Rican Health Study was

obtained from the Institutional Review Board of the New England
Medical Center and Tufts University Health Sciences and the current

nested studywas declared exempt from such requirements due to the use of

de-identified samples and data (NIH exemption category 4).

Genetic analysis. DNAwas isolated from blood samples using QIAamp

DNA Blood Mini kits according to the manufacturer’s instructions

(QIAGEN). MTHFR 1298A.C (rs1801131) and MTHFR 677C.T
(rs1801133) were genotyped by using TaqMan SNP genotyping kits with

ABI PRISM7900HT SequenceDetection system (Applied Biosystems) (23).

Measurement of anthropometric and plasma biochemical param-

eters. Anthropometric variables, including height and weight, were

measured by standard techniques. BMI was calculated as weight (kg)/

height (m)2. Blood samples were collected by venipuncture from all
participants while they were fasting. Plasma total Hcy was measured

using HPLC with fluorescence detection as previously described (24).

Plasma pyridoxal phosphate (PLP) was determined using the radio-

enzymatic method of Camp et al. (25). Plasma folate and vitamin B-12
were measured using Immulite Chemiluminescent kits according to the

manufacturer’s instructions (Diagnostic Products /Siemens). Hyperten-

sion was identified as 1 of the following: 1) a positive response to the

question “Have you ever been told by a physician that you had high blood
pressure/hypertension?”; 2) reported use of blood pressure medication; or

3) high systolic ($140 mmHg) or diastolic ($90 mmHg) blood pressure.

CVD was defined as a positive response to the question “Have you ever

been told by a physician that you had heart disease” or to similar questions

on heart attack or stroke or reported use of CVD medication. Smokers

or drinkers were defined as a positive response to the question “Do

you currently smoke/drink?” Thus, past smokers or drinkers were not
considered as a smoker or drinker. Using the American Diabetes Asso-

ciation criteria (26), participants were classified as having type 2 diabetes

when the fasting plasma glucose concentration was $126 mg/dL

($7.0 mmol/L) or use of insulin or diabetes medication was reported.
Physical activity was estimated as a physical activity score based on the

Paffenbarger questionnaire (27).

Dietary assessment. Dietary intake was assessed using a FFQ that was
designed for and tested in this population (17). Dietary data were linked

to the Minnesota Nutrient Data system (1999, version 25) for nutrient

analysis. Fatty acid intakes were expressed as percentages of total energy
intake and were included in analyses as both continuous and categorical

variables. To construct categorical variables, intakes were classified into

2 groups according to the median intake of the population.

Population admixture. Population admixture was calculated using

STRUCTURE 2.2 based on 100 single nucleotide polymorphisms (SNP)

selected as ancestry informative markers specifically for Puerto Rican

populations (20,28). Using the estimated admixture of each participant,
we adjusted for population admixture for all genotype-associated analyses.

Statistical analyses. Data analyses were performed using SPSS version
12 (SPSS) or SAS 9.1. All continuous dependent variables that were not

normally distributed were Box-Cox transformed (29) prior to statistical

analysis. Gender differences in demographic, anthropometric, and

biochemical characteristics were examined using a t test. Correlations
between dietary fatty acid compositions and plasma Hcy were estimated

as a Pearson correlation coefficient after adjustment for potential

confounding factors and exclusion of outliers for (n-3) PUFA (.1.35%

energy) and (n-6) PUFA intake (.13.5% energy) using the simplest
statistical outlier detection techniques (informal box plots), as described

by Kentala et al. (30). Men and women were first examined separately

for any gender effect. To ensure adequate statistical power, men and

women were analyzed together when there was no gender-specific
influence on phenotypes. Chi-square tests were conducted to examine

whether genotype frequencies of the selected SNP were in Hardy-

Weinberg equilibrium. The relationships among MTHFR genotypes,
dietary intakes, and anthropometric measures were assessed using linear

regression models. The interactions between dietary fatty acid intakes

and genotypes were tested in a multivariate interaction model while

controlling for potential confounders, including age, sex, population
admixture, diabetes status, tobacco and alcohol use, dietary energy, and

plasma folate, vitamin B-12, and PLP concentrations. The population

medians for total SFA, MUFA, PUFA, and (n-3) and (n-6) PUFA intakes

were used as cutoffs to dichotomize these variables. Differences between
groups were considered significant at P # 0.05.

Results

Clinical characteristics of populations and genetic variants

at MTHFR. Information about demographic, biochemical, die-
tary intake, and genotypic data are provided in Table 1. Men had
significantly higher plasma Hcy and lower plasma folate than
women. No gender differences were observed in dietary fatty
acids or plasma PLP or vitamin B-12. Genotype frequencies did
not deviate from Hardy-Weinberg equilibrium expectation. Allele
frequencies of the minor alleles of MTHFR 1298A.C
(rs1801131) and MTHFR 677C.T (rs1801133) were 0.358
and 0.242, respectively. Both SNPwere independent of each other,
i.e. not in linkage disequilibrium (r2 = 0.002; P = 0.95).

Correlations between dietary fatty acid compositions and

plasma Hcy. Plasma Hcy concentration was negatively corre-
lated with (n-3) PUFA expressed as total energy intake (r =
20.12; P = 0.022), and with the ratio of (n-3):(n-6) PUFA
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(r = 20.12; P = 0.009), after adjustment for potential con-
founding factors (Supplemental Table 1). However, plasma Hcy
was not correlated with the intakes of other fatty acids.

Association between MTHFR genotype and hypertension

and CVD. MTHFR 677C.T showed a significant association
with hypertension (OR = 1.60 for TT vs. CC, P = 0.009; OR =
1.60 for TT+CT vs. CC, P = 0.002, respectively) (Table 2).
Participants homozygous for the minor allele (TT) or carriers for
T (TT+CT) had a 60% higher likelihood of hypertension than
did homozygotes (CC), but this variant was not associated with
CVD. The second variant, 1298A.C, was also associated with
hypertension (OR = 1.72 for CC vs. AA; P = 0.024). In addition,
1298A.C variants displayed a significant association with CVD

(OR = 3.32 for CC vs AA; P = 0.030). Minor allele (1298C)
homozygotes were more than 3-fold as likely to have CVD than
homozygotes for the major allele (AA).

Association between 2 MTHFR variants and plasma Hcy.

MTHFR 1298A.C was significantly associated with plasma
Hcy (Table 3). Plasma Hcy concentrations were higher in
participants homozygous for the 1298C risk allele compared
with carriers of the 1298A allele (P = 0.011). In contrast,
participants homozygous for 1298C had significantly lower
plasma folate compared with carriers of 1298A. MTHFR
677C.T was marginally associated with plasma Hcy under a
recessive model (i.e. CC+CT vs. TT). Homozygotes for the risk
allele of 677T had higher plasma Hcy compared with carriers of
677C (P = 0.050; Table 3). In addition, we evaluated the
combined effect of the 2 MTHFR 677C.T and 1298A.C
polymorphisms on Hcy concentration. Participants homozygous
for 677T, when carrying 1298C, had higher plasma Hcy
concentrations than all other genotypes (Fig. 1).

Interaction of MTHFR variants with dietary fat intakes on

plasma Hcy. We observed an interaction between total PUFA
consumption and MTHFR 1298A.C on plasma Hcy (P =
0.003) (Table 4). PlasmaHcy concentrations in participants who
carried the 1298C allele were higher than those of noncarriers
(P = 0.039) when they had high daily PUFA intakes (.7.8%
energy) but were not significantly (P = 0.27) different when they
had low daily PUFA intakes (#7.8% energy).

We next examined the interaction between PUFA and
MTHFR genotype by splitting total PUFA into (n-3) and (n-6)
PUFA. (n-6) PUFA normalized to total energy intake was
dichotomized into high (.7.1% energy) and low (#7.1%
energy) daily (n-6) PUFA intakes based on the median intake of
the population. After adjusting for potential confounders
(including age, sex, tobacco smoking, alcohol drinking, popu-
lation admixture, diabetes, dietary energy, plasma folate, plasma
vitamin B-12, and plasma PLP), we observed that MTHFR
1298A.C displayed a significant interaction with dietary (n-6)
PUFA, influencing the plasma Hcy concentration (P = 0.039)
(Fig. 2). When daily intake of (n-6) PUFA was high (.7.1%
energy), carriers of the 1298C allele had higher plasma Hcy than
1298AA homozygotes (P = 0.032), whereas under a low
(#7.1% energy) daily intake of (n-6) PUFA, the 1298C carriers
did not differ in plasma Hcy concentrations from the AA
homozygotes (P = 0.21) (Table 4).

Using the same statistical models, we also found an interac-
tion between the dietary (n-3):(n-6) PUFA ratio and theMTHFR
677C.T SNP (P = 0.027). Plasma Hcy concentrations in
participants who harbored the 677T allele were higher than

TABLE 1 Demographic, anthropometric, biochemical, and
genotype data in BPRHS participants1

Characteristics Men Women

n 292 702

Age, y 57.6 6 7.6 57.8 6 7.2

BMI, kg/m2 29.7 6 5.1 33.1 6 6.9*

Alcohol, g/d 9.2 6 3.4 1.5 6 0.5*

Smoker, n (%) 80 (31.1) 126 (19.8)*

Drinker, n (%) 132 (51.4) 219 (34.5)*

Energy intake,2 kcal/d 2696 6 1321 2175 6 1115*

Total fat, % of energy 31.9 6 5.4 30.7 6 5.2*

Total SFA, % of energy 9.7 6 2.5 9.3 6 2.2

Total MUFA, % of energy 11.6 6 2.1 11.2 6 2.1

Total PUFA, % of energy 7.9 6 1.7 7.6 6 1.8

(n-3) PUFA, % of energy 0.68 6 0.17 0.67 6 0.16

(n-6) PUFA, % of energy 6.9 6 1.7 7.2 6 1.6

Plasma folate,3 ng/mL 17.7 6 8.7 20.1 6 9.4*

Plasma vitamin B-12,4 pg/mL 526.6 6 276.1 549.6 6 284.3

Plasma PLP, nmol/L 61.4 6 60.3 59.2 6 63.3

Plasma Hcy, mmol/L 10.7 6 6.2 8.8 6 4.2*

Hypertension, n (%) 153 (59.8) 390 (61.4)

CVD, n (%) 61 (23.8) 132 (20.8)

MTHFR 1298 A.C, n (%)

AA 120 (50.2) 320 (54.9)

C carriers 119 (49.8) 262 (45.1)

MTHFR 677 C.T, n (%)

CC 90 (37.8) 271 (44.8)

T carriers 148 (62.2) 333 (55.2)

1 Values are mean 6 SD, or n (%). *Different from men, P,0.01.
2 1 kcal = 4.184 kJ.
3 1 ng/mL = 2.3 nmol/L.
4 1 pg/mL = 0.74 pmol/L.

TABLE 2 Association between MTHFR variants and hypertension and CVD in BPRHS participants

SNP name Genotype n1
Hypertension CVD

OR 95% Interval P 2 OR 95% Interval P 2

677 C.T TT vs CC 137 vs 486 1.60 0.99–2.59 0.009 1.07 0.62–1.84 0.89

TT vs CT 137 vs 502 1.01 0.62–1.61 1.13 0.67–1.92

TT+CT vs CC 639 vs 486 1.60 1.19–2.15 0.002 1.03 0.73–1.45 0.86

1298 A .C CC vs AA 66 vs 598 1.72 0.94–9.14 0.024 3.32 1.26–8.74 0.030

CC vs AC 66 vs 439 2.23 1.20–4.14 2.61 0.98–6.95

1 n = sample size.
2 Pwere calculated by logistic regression models and adjusted for sex, smoking, drinking, BMI, age, diabetes, population admixture, plasma

folate, vitamin B-12, and PLP.
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those of noncarriers (P = 0.001) when the diet had a high (n-3):
(n-6) ratio (.0.09% energy), whereas carriers and noncarriers
did not differ when the (n-3):(n-6) consumption ratio was low
(#0.09% energy) (P = 0.20). We did not observe any significant
interactions on Hcy between these 2 SNP and total MUFA, total
SFA, and total fat intake (Table 4).

Analysis of combining the 2 MTHFR SNP identified a
significant interaction with dietary (n-3) PUFA intake on plasma
Hcy (P = 0.024) (Supplemental Fig. 1). Participants who carried
2 risk alleles (677TT + 1298AC or CC) and consumed high (n-3)
PUFA (.0.66% energy) had significantly lower Hcy than those
consuming low (n-3) PUFA (#0.66% energy). No other signif-
icant interaction between individual SNP and (n-3) PUFA was
observed.

Discussion

HHcy has been associated with CVD and is thus considered an
important risk factor for this disease (1,2,31). The mechanism
underlying this correlation, however, is not clearly understood.
Although in the past 2 decades many studies have demonstrated
the protective effects of fatty acids on CVD (32–34), correlations

between plasma/platelet phospholipid fatty acids and Hcy in
humans (12) and rats (14) have been reported. These studies
suggested that fatty acids are central to Hcy metabolism (12,13).
Increased consumption of dietary (n-3) PUFA increases the
concentration of (n-3) PUFA in plasma phospholipids. This is
associated with a protective effect on CVD and lowers plasma
Hcy concentrations (9). An increased ratio of (n-3):(n-6) PUFA
in platelet phospholipids was also associated with decreased
thrombotic risks, such as plasma Hcy, in middle-aged and
geriatric hyperlipemia patients in Hangzhou, China (10). In the
present study, we confirmed that plasma Hcy concentrations
were negatively correlated with dietary (n-3) PUFA and with the
ratio of (n-3):(n-6) PUFA. These correlations, however, remain
weak even after removal of the outliers, a result perhaps of the
confounding factors and the low (n-3) PUFA intake (,0.7%
energy) in this population.

A possible mechanism underlying the correlation between
PUFA and plasma Hcy concentration is taken from the obser-
vation that fatty acids modulate expression of a gene encoding
an enzyme(s) involved in the metabolism of plasma Hcy (9). In
animal studies, expression ofMthfr, encoding an enzyme central
to Hcy metabolism, was modulated by (n-3) PUFA (14). In the
present study and others (14,17), MTHFR variants are associ-
ated with plasma Hcy concentrations. Furthermore, in this
population, we also observed that carriers of MTHFR 677T or
1289C had an increased risk of hypertension and that 1289C
was associated with an elevated risk of CVD. Importantly, we
found that dietary PUFA consumption significantly interacted
with MTHFR variants (677C.T and 1298A.C) on plasma
Hcy. Persons carrying risk allele 1298C had higher plasma Hcy
than the noncarriers (AA) only when consuming a high-PUFA
diet (.7.8% energy) (Table 4) but did not when consuming low
concentrations of PUFA (#7.8% energy). Additionally, partic-
ipants with combined genotypes of both SNP (677TTwith 1298
AC or CC) who consumed higher (n-3) PUFA tended to exhibit
low Hcy. Thus, combined with our previous results (14), this
finding strengthens support for a regulatory role by PUFA on
Hcy metabolism acting through MTHFR. Although (n-3) PUFA
regulates expression ofMTHFR in cell culture (data not shown),
we observed only weak interactions between the 2 MTHFR
variants and (n-3) PUFA intake. This may be the consequence of
low (n-3) PUFA intake (0.7% energy) in this population. In the
typical Western diet, consumption of (n-6) PUFA is ~20- to 25-
fold greater than that of (n-3) PUFA (35). Persons consuming
a vegetarian diet only, with little saturated fat, have a low (n-3):
(n-6) PUFA ratio in plasma and can still develop CVD as elderly
persons (36). The predominance of (n-6) PUFA in the typical diet
results from the abundance of linoleic acid [18:2(n-6)], which is

TABLE 3 Association between the MTHFR variants and plasma homocysteine and B vitamin group in BPRHS participants1

Hcy and B
vitamin group

MTHFR 1298 A.C P-value MTHFR 677 C.T P-value

AA, n = 498 AC, n = 369 CC, n = 53 P 2 P 3 P 4 CC, n = 404 CT, n = 424 TT, n = 117 P 2 P 3 P 4

Hcy, mmol/L 9.4 6 5.5 9.2 6 4.2 10.9 6 4.8 0.011 0.003 0.62 9.1 6 4.0 9.2 6 3.7 9.7 6 4.1 0.43 0.05 0.49

Folate,5 ng/mL 19.6 6 0.4 19.3 6 0.5 17.3 6 1.3 0.84 0.029 0.39 19.7 6 9.3 19.4 6 9.0 19.1 6 10.4 0.26 0.23 0.64

Vitamin B-12,6 pg/mL 527.4 6 12.2 557.5 6 16.8 539.2 6 39.9 0.06 ,0.001 0.15 537.3 6 272.5 532.6 6 275.5 605.6 6 335.4 0.33 0.35 0.59

PLP, nmol/L 59.7 6 3.1 59.0 6 2.9 69.0 6 11.6 0.65 ,0.001 0.90 57.6 6 56.1 61.8 6 71.4 60.5 6 51.5 0.58 ,0.001 0.36

1 Values are mean 6 SD. Plasma Hcy data were transformed before analysis.
2 P for additive model.
3 P for recessive model (MTHFR 1298A.C: AA+AC vs. CC; MTHFR 677 C.T: CC+CT vs. TT).
4 P for dominant model (MTHFR 1298A.C: AA vs. AC+CC; MTHFR 677 C.T: CC vs. CT+TT).
5 1 ng/mL = 2.3 nmol/L.
6 1 pg/mL = 0.74 pmol/L.

FIGURE 1 The combined effect of MTHFR 677C.T and 1298A.C

variants on plasma homocysteine. Mean plasma Hcy was estimated

and plotted based on the combined genotypes of 2 SNP, MTHFR

677C.T and 1298A.C, after adjustment for potential confounders

(age, sex, smoking, drinking, BMI, diabetes, population admixture,

plasma folate, plasma vitamin B-12, plasma PLP, and total energy).

The sample size of each genotype is given inside each bar. *Different

from all other groups, P , 0.05. Values are adjusted means 6 SEM.
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high in soy, corn, safflower, and sunflower oils. In contrast, there
is lower intake of the (n-3) homolog of linoleic acid, a-linolenic
acid [18:3(n-3)], which is present in leafy green vegetables and in
flaxseed and canola oils (37). The indiscriminate recommenda-
tion to substitute (n-6) PUFA for saturated fats to lower serum
cholesterol concentrations could also contribute to excessive
intake of (n-6) PUFA in the current Western diet (38). High (n-6)
PUFA, or a low ratio of (n-3):(n-6) PUFA intake, may increase
plasma Hcy concentrations in carriers of the 1298C or 677T
allele, and, importantly, this may contribute to increased risk for
hypertension and CVD in these participants.

MTHFR 677C.T has been shown to be functional in that
the 677T allele shows reduced MTHFR enzyme activity (39).
This is also the most common genetic variant associated with
HHcy (40,41). In this population, however, we observed only a

weak association between 677C.T and Hcy concentration and
an association with CVD that did not reach significance (P =
0.86). This may be due to the high plasma folate concentrations
in this population, which consumes a diet high in rice fortified
with folic acid. The MTHFR 1298C allele decreased MTHFR
activity and increased plasma Hcy (15,39,42). We have con-
firmed this association in CVD patients, observing thatMTHFR
1298C increased the risk of hypertension and CVD. Inconsistent
association between MTHFR variants and CVD, however, was
observed in other populations (43). The discrepancy of such
observations could result from differences in LD patterns at the
MTHFR locus and dissimilar dietary structure in diverse
populations. Such factors may affect the interaction between
MTHFR genotype and dietary PUFA intake on Hcy. The LD
between 677C.T and 1298A.C is strong (r2 = 0.19; D’=0.91)
in the HapMap European population (http://hapmap.ncbi.nlm.
nih.gov/). In marked contrast, this Puerto Rican population
shows that these 2 variants are genetically independent. In
addition, substantial evidence establishes that this population is
genetically different from European populations. For example,
using 100 ancestry informative markers, we have estimated the
ancestry of this population on average to be 57.2% European,
27.4% African, and 15.4% Native American (16). This could
be 1 important factor that contributes to the inconsistencies
between populations. Other population characteristics, such as
dietary or nondietary environmental factors, and a small sample
size are all likely to also contribute. Indeed, the observation of a
strong interaction between the 2 variants analyzed here and
PUFA intake could be another important factor contributing to
the discrepancy between different study populations.

In summary, dietary fatty acid intake modulates the effect of
MTHFR genotypes on plasma Hcy in Boston Puerto Ricans.
MTHFR 677T increases the risk of hypertension and MTHFR
1298C increases the risk of both hypertension and CVD in
Boston Puerto Rican adults.
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.7.8 9.0 6 0.32 (27) 9.6 6 0.31 (95) 0.039 9.1 6 0.31 (77) 9.2 6 0.32 (53) 0.35

Total MUFA #11.4 9.5 6 0.32 (25) 9.2 6 0.21 (94) 0.15 0.38 9.0 6 0.31 (87) 9.5 6 0.32 (38) 0.53 0.72

.11.4 8.8 6 0.32 (24) 9.2 6 0.21 (90) 0.29 9.4 6 0.31 (80) 9.1 6 0.32 (50) 0.48

Total SFA #9.3 9.6 6 0.32 (26) 9.5 6 0.21 (96) 0.84 0.71 9.3 6 0.21 (87) 9.5 6 0.32 (39) 0.31 0.68

.9.3 8.9 6 0.32 (25) 9.0 6 0.31 (94) 0.64 8.9 6 0.31 (82) 9.2 6 0.32 (49) 0.76

(n-6) PUFA #7.1 9.3 6 0.22 (24) 9.1 6 0.31 (95) 0.21 0.005 8.9 6 0.31 (86) 9.4 6 0.32 (39) 0.16 0.23

.7.1 9.1 6 0.32 (27) 9.6 6 0.21 (92) 0.032 9.3 6 0.31 (80) 9.4 6 0.32 (50) 0.78

(n-3) PUFA #0.66 9.5 6 0.32 (22) 9.4 6 0.32 (09) 0.11 0.67 9.3 6 0.31 (95) 9.3 6 0.32 (44) 0.89 0.76

.0.66 9.4 6 0.32 (29) 9.3 6 0.31 (83) 0.21 8.8 6 0.21 (74) 9.3 6 0.32 (44) 0.031

(n-3):(n-6) #0.09 9.2 6 0.32 (26) 9.8 6 0.21 (84) 0.75 0.59 9.6 6 0.31 (86) 9.4 6 0.32 (30) 0.20 0.027

.0.09 9.2 6 0.32 (25) 8.8 6 0.32 (03) 0.45 8.5 6 0.31 (83) 9.4 6 0.32 (58) 0.001

1 Dichotomized values for fatty acids were adjusted for the total energy.
2 Data in this column are mean 6 SEM. Plasma Hcy data were transformed before analysis.
3 Data in this column are adjusted for age, sex, BMI, smoking, drinking, population admixture, diabetes, dietary energy, plasma folate, plasma vitamin B-12, and plasma PLP.

FIGURE 2 Interaction between MTHFR 1298A.C genotype and

(n-6) PUFA intake on plasma homocysteine. MTHFR: Predicted values

were calculated from regression models containing (n-6) PUFA intake,

MTHFR 1298A.C genotype, their interaction terms, and potential

confounders (age, sex, smoking, drinking, BMI, diabetes, population

admixture, plasma folate, plasma vitamin B-12, plasma PLP, and total

energy). The sample sizes of each genotype of MTHFR 1298A.C are

as follows: n = 98 (AA), n = 22 (AC+CC). The P-interaction between

MTHFR 1298A.C genotype and (n-6) PUFA intake (percent energy) as

a continuous variable is 0.039. Values are adjusted means 6 SEM.
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