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Abstract

To honor the late John Beard’s many contributions regarding iron and dopamine biology, this review focuses on recent human

studies that test specific hypotheses about effects of early iron deficiency on dopamine system functioning. Short- and long-

term alterations associated with iron deficiency in infancy can be related to major dopamine pathways (mesocortical,

mesolimbic, nigrostriatal, tuberohypophyseal). Children and young adults who had iron deficiency anemia in infancy showpoorer

inhibitory control and executive functioning as assessed by neurocognitive tasks where pharmacologic and neuroimaging

studies implicate frontal-striatal circuits and the mesocortical dopamine pathway. Alterations in the mesolimbic pathway, where

dopamine plays a major role in behavioral activation and inhibition, positive affect, and inherent reward, may help explain altered

social-emotional behavior in iron-deficient infants, specifically wariness and hesitance, lack of positive affect, diminished social

engagement, etc. Poorer motor sequencing and bimanual coordination and lower spontaneous eye blink rate in iron-deficient

anemic infants are consistent with impaired function in the nigrostriatal pathway. Short- and long-term changes in serum

prolactin point to dopamine dysfunction in the tuberohypophyseal pathway. These hypothesis-driven findings support the

adverse effects of early iron deficiency on dopamine biology. Iron deficiency also has other effects, specifically on other

neurotransmitters, myelination, dendritogenesis, neurometabolism in hippocampus and striatum, gene and protein profiles, and

associated behaviors. The persistence of poorer cognitive, motor, affective, and sensory system functioning highlights the need

to prevent iron deficiency in infancy and to find interventions that lessen the long-term effects of this widespread nutrient

disorder. J. Nutr. 141: 740S–746S, 2011.

Introduction

At the time of Oski and Honig’s (1) seminal 1978 report of
improved developmental test scores in iron-deficient anemic
infants who received iron therapy, understanding of underlying
brain mechanisms was limited. Little was known except that
many enzymes in the central nervous system (CNS)4 were iron

dependent, and pioneering work by Dallman et al. (2,3) was
showing that iron deficiency in rats lowered brain iron concen-
tration and Youdim was documenting impaired dopamine
function and related behaviors [see (4) for review]. Since then,
much has been learned about neuroanatomical, neurochemical,
neurometabolic, and genomic/proteomic effects of early iron
deficiency (5–9), thanks in part to research in rodent models in
the laboratories of John Beard (continued under the leadership
of Erica Unger), James Connor, Barbara Felt, Michael Georgieff,
Raghu Rao, and others. There have also been many more studies
in human infants with iron deficiency anemia. These document
poorer performance on global assessments of cognitive, motor,
and social-emotional behavior (10–13) and alterations in such
regulatory processes as the sleep-wake cycle (14).
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Though consistently observed, such global outcomes give little
indication of the CNS processes affected by iron deficiency in
infancy. Guided by basic science and behavioral research in
rodent models, some human infant studies have become more
hypothesis driven and have tried to overcome the challenges in
assessing specific CNS effects in infants. This review will focus
on such studies. Results that are most related to Beard’s many
contributions regarding neurotransmitter function, especially
dopamine, will be emphasized. Some of the more specific
findings come from a cross-species NIH-supported program
project grant entitled Brain and Behavior in Early Iron
Deficiency (P01 HD39386), where Beard played key roles in
the rodent project and analytical core, and from 2 NIH-
supported longitudinal studies of long-term effects of iron
deficiency anemia in human infants (R01 HD33487 and R23
HD31606). The infants in all studies were full term and healthy,
and those with iron deficiency anemia received a full course of
oral iron therapy. Specific criteria for anemia and iron deficiency
varied from study to study but generally used cutoffs 2 SD below
reference values for age and altitude (for hemoglobin). For
instance, hemoglobin cutoffs might be #100 g/L at 6 mo or
,110 g/L at 12 mo, depending on the study. Iron deficiency was
defined as 2 or more abnormal iron measures, using study-
dependent combinations of mean cell volume (,70 fL,,74 fL),
transferrin saturation (#10%, ,12%), free erythrocyte proto-
porphyrin ($100 mg/dL RBC), zinc protoporphyrin (.69 mmol/
mol heme), ferritin (,12 mg/L), and red cell distribution width
(.14%).

Dopamine is important in regulating cognition and emotion,
reward and pleasure, movement, and hormone release (15).
Striatal networks with dopamine as the major neurotransmitter
relate to higher order cognitive and emotional processes,
motivated behavior, positive affect, and reward-related process-
ing, as well as motor functioning (15,16). Thus, alterations in
the striatum and basal ganglia more generally are likely to have
many manifestations, given their role in widely distributed
networks. Such effects have been observed in both animal
models and humans with early iron deficiency.

Rodent models of diet-induced iron deficiency during devel-
opment have helped generate specific hypothesis that we are
testing in the human projects mentioned above. Rat studies show
that brain and behavior effects and their reversibility with iron
repletion vary depending on the timing and severity of iron
deficiency and the timing of iron treatment (4,8,17–21). For
instance, iron deficiency anemia reduces brain iron in rats, but
the regional pattern and degree of reduction depends on timing
and severity (17,20,22). Similarly, dopaminergic alterations
vary, as shown in part by the extensive contributions of Beard
and colleagues in the last 15 y or so. For example, reduced D1
and D2 receptor densities in the striatum, increased extracellular
dopamine concentrations, and reduced densities of dopamine
and other monoamine transporters vary with timing and severity
(4–6,19,20,23–33).

Early rodent models resulted in severe iron deficiency anemia
and poor growth. To be more relevant to iron deficiency anemia
in human infants, Felt and Lozoff (34) developed a rodent model
of iron deficiency during gestation and lactation with moderate
iron restriction that avoids marked growth effects. This model,
which is used in our program project, produces a more moderate
level of brain iron deficiency than previous models (20,21). Even
in this more moderate iron deficiency model, brain iron was
reduced and dopamine and serotonin metabolism were altered
while animals had iron deficiency anemia (20). The striatal
metabolome was also affected (35). Some neurotransmitter

alterations persisted in adulthood despite correction of anemia
and brain iron content (except in the thalamus) (21). Behavioral
alterations in iron-deficient rats are consistent with the CNS
effects (18,20,21,36,37). During development, a number of
sensory-motor reflexes are delayed (20). For instance, elicited
forelimb placing emerged later during early development for rat
pups with iron deficiency anemia (20), even though striatal
metabolic alterations corrected with iron repletion (35). In
young adulthood, rats with iron deficiency anemia during
gestation and lactation had disrupted grooming sequences
(21). These behavioral measures were chosen by Beard et al.
and Felt et al. (20,21) specifically to assess striatal dopamine-
dependent functional behaviors. Other persistent consequences
related to the dopamine system include less exploration and
more hesitancy in the face of novelty (18,21,34,36). Related
CNS changes have been observed in monkeys. In the University
of Wisconsin-Madison monkey project of our program project,
Coe et al. (38) collaborated with Beard and colleagues to assess
brain monoamines. Juvenile monkeys that had iron deficiency
anemia as infants had lower dopamine levels in the cerebrospi-
nal fluid (38) compared with monkeys without iron deficiency
anemia.

Studies of iron deficiency in human infancy have now found
differences that are consistent with altered dopaminergic func-
tion. The findings will be considered as they may relate to the 4
major dopamine pathways, i.e. mesocortical, mesolimbic,
nigrostriatal, and tuberohypophyseal (15). However, there is
overlap in these pathways (39) and we sometimes had to make
educated guesses about which pathway is most involved in a
particular functional outcome. Furthermore, we have over-
simplified interpretation of results for heuristic purposes.
Although the findings will be discussed in terms of specific
hypotheses about the effects of early iron deficiency on dopa-
mine pathways, we do not claim that dopaminergic dysfunction
is the sole explanation. There is no doubt that iron deficiency
affects other neurotransmitters and other processes, such as
myelination, dendritogenesis, neurometabolism, and gene and
protein profiles (4,6–9,40).

Mesocortical pathway

We have sought to include neurocognitive tasks where nonhu-
man primate studies or human neuroimaging studies implicate
frontal-striatal circuits and dopaminergic function. The striatum
sends dopaminergic projections to prefrontal cortex and is
recruited in the control of executive functions (e.g. inhibitory
control, planning, etc.), sustained attention, working memory,
memory storage and retrieval, emotion regulation, and motiva-
tion (41). Cognitive control, which is essential for higher
cognition, develops gradually throughout childhood and ado-
lescence, probably due to prolonged maturation of the prefron-
tal cortex (42,43). Although several neurotransmitters are
involved in inhibitory control, dopamine in its prefrontal-striatal
circuits plays a key role (41). Relations between dopaminergic
activity and performance on frontostriatal-dependent measures
of executive functioning have been documented in human and
nonhuman primates using dopamine agonists (drugs that stim-
ulate dopamine release) and antagonists (drugs that block or
inhibit dopamine) (44–48). In addition, functional MRI studies
show that deliberately withholding a response requires integra-
tion of circuits in prefrontal cortex, basal ganglia, and the
thalamus to modulate subcortical input to cortical motor areas
(49–51).

Based on this research, we predicted that if early iron
deficiency impairs dopamine function in prefrontal-striatal
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circuits, it would be associated with poorer function on
neurocognitive tasks that require inhibiting a familiar or
prepotent response. Our first opportunity to test this hypothesis
occurred in a long-term follow-up study in Costa Rica. We had
previously reported that compared with children who were iron
sufficient in infancy before and/or after iron therapy (“good iron
status”), those who had had chronic, severe iron deficiency (with
or without anemia) scored lower on global measures of
cognitive, affective, and motor functioning in infancy (52,53)
and at 5 (54,55) and 11–14 y (56) and overall cognitive
functioning up to 19 y (57). At 19 y, we also assessed specific
neurocognitive functions using the Trail Making Task (58) and
the Cambridge Automated Neuropsychological Test Assessment
Battery (version 3; CeNeS). Compared with young adults who
had good iron status in infancy, participants who had chronic,
severe iron deficiency as infants performed worse on tests
involving inhibitory control, set-shifting, and planning, all of
which are classified as executive functions and rely on the
integrity of frontal-striatal circuits (59). In our other longitudi-
nal study in Chile, results were similar, i.e. 10-y-old children
who had iron deficiency anemia in infancy had poorer perfor-
mance on inhibitory tasks compared with those who had been
nonanemic (60).

Our first opportunity to test the hypothesis during a period of
early iron deficiency anemia was in the human infant study of
the program project grant’s initial 5-y period. This infant study
assessed 9- to 10-mo-old infants from inner-city Detroit (61–64).
We used the A-not-B test, which is considered a precursor of
executive function and requires inhibitory control (65,66). In
this task, the infant is invited to retrieve an object that is hidden
in location A for a few trials and then hidden in a new location B.
Success in the task requires the infant to notice and remember
when the toy is no longer hidden in the first location (A) and to
inhibit the prepotent response of searching there. Object
permanence is assessed before toy location changes in the
A-not-B test to determine whether the infant can retrieve a
hidden toy from a single location. There was a linear effect of
iron status on object permanence; infants with iron deficiency
anemia were least likely to exhibit object permanence, those
who were iron-sufficient were most likely, and infants with iron
deficiency without anemia were intermediate (64). Taken
together, these results indicate short- and long-term effects of
early iron deficiency on higher order cognitive processes
(executive functions) and their precursors.

Mesolimbic pathway

Through the mesolimbic pathway, dopamine plays a major role
in systems of behavioral activation and inhibition, positive
affect, and reward (67,68). Alterations in the mesolimbic
pathway may help explain altered social-emotional behavior in
early iron deficiency. Virtually every study that examined the
social-emotional domain found differences comparing infants
with iron deficiency anemia to those without (e.g. more wary,
hesitant, solemn, unhappy, closer to their mothers, less social
interaction, etc.) (53,61,69–74). Four of 6 randomized trials of
supplemental iron that assessed this domain showed affective
benefits of iron (e.g. more positive affect, social interaction, etc.)
(12). The program project infant study adds to the mounting
evidence by considering the severity of iron deficiency. We found
dose-response relations between severity (iron deficiency ane-
mia, iron deficiency without anemia, or iron sufficiency) and
outcome. Linear effects showed that poorer iron status was
associated with increased shyness, decreased orientation/en-
gagement, and decreased soothability, and, when an examiner

attempted to engage the infants in imitative play, decreased
positive affect and engagement (61). The threshold for effects
was iron deficiency with or without anemia. Social-emotional
effects of iron deficiency even without anemia are supported by
other studies as well. For instance, there was an early report of
increased solemnity in nonanemic iron-deficient infants (74). In
our preventive trial in Chile, infants who did not receive
supplemental iron were less likely to show positive affect or
interact socially (75). In addition, a study of human neonates
reported a negative linear relation between cord-blood iron
status across the full range and negative emotionality and a
positive one for alertness and soothability (76). There is also
evidence from nonhuman primate models. In the University of
California-Davis monkey project of our program project (77),
Golub et al. (78,79) observed increased boldness and impulsivity
in infants of monkey mothers that did not receive prenatal iron
supplements and increased tenseness and emotionality in mon-
key infants that were not postnatally supplemented with iron.
None of the infants ever had iron deficiency anemia. Affective
alterations were also observed in monkey infants with iron
deficiency anemia (80). Taken together, these studies point to
altered infant social-emotional behavior and affect with iron
deficiency, regardless of whether the lack of iron is severe and
chronic enough to cause anemia.

Notwithstanding the consistency of results, social-emotional
effects have captured less attention than cognitive ones, but we
previously speculated that they could equally result from direct
effects of iron deficiency on associated brain systems (56,75).
Findings of reduced positive affect are consistent with altera-
tions in the mesolimbic dopamine pathway (67,68). We also
have considered that behavioral alterations might be especially
apparent in circumstances of novelty, unfamiliarity, or stress
(53,81), because the dopamine system is involved with behav-
ioral inhibition/activation. In the program project infant study,
there was little difference in free play behavior, but several
social-emotional differences became apparent when an exam-
iner sought to engage the infant in elicited play (61). Further
analyses showed that orientation and engagement with the
examiner at least partially mediated the iron status effects on
neurocognitive outcomes (64).

The program project’s rodent study systematically investi-
gated the behavioral domain in the moderate iron deficiency
model. Behaviors that depend on striatal dopamine function
were delayed or disrupted, with alterations into adulthood
despite iron repletion and normalization of brain iron (20,21).
Of particular relevance here are the observations of altered
response to novelty, specifically, hesitancy, and reduced explo-
ration (20,21). The results in human infants, monkey infants,
and rodents in the short and long term contribute to our growing
conviction that altered affect and response to novelty are among
the core deficits in early iron deficiency.

Nigrostriatal pathway

The nigrostriatal system, which connects the substantia nigra
and the striatum, is especially important for movement control
and regulation (15). In the rodent project of the program project,
Felt and Schallert included a naturalistic grooming sequence that
had previously been shown to require intact dorsolateral striatal
dopaminergic neurons (82). As adults, rats that experienced iron
deficiency anemia during gestation and lactation had fewer
complete grooming chains than control animals (21). In light of
the motor sequence results in the rat model, we analyzed a
particular motor task, toy retrieval from box, that required
motor sequencing and bi-manual coordination in the human
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infant study of the program project (63). In the box task, infants
had to use their hands and arms in a coordinated sequential
fashion to get a toy out of a transparent box while an examiner
exerted light pressure on the box lid. There was a linear effect of
iron status on the probability of retrieving the toy with good
coordination: lowest in infants with iron deficiency anemia,
intermediate in those with iron deficiency without anemia, and
highest in iron-sufficient infants (63). This kind of task is
thought to involve the motor loop of the basal ganglia. The basal
ganglia play important roles in learning and execution of
sequential movements (83) and also control of bi-manual
coordination through motor inhibition (84). Furthermore, the
basal ganglia have direct output to the supplementary motor
area, which is known to be involved in the control of bi-manual
coordination (85). Thus, the difficulty that iron-deficient anemic
infants showed on the toy retrieval task is consistent with
impaired striatal dopamine function.

In the human infant study of the program project, we also
used the rate of spontaneous eye blink as a noninvasive way to
assess dopaminergic function in the nigrostriatal pathway (86).
Previous research in human and nonhuman primates showed
that spontaneous eye blink rate can be increased by dopamine
agonists and reduced by dopamine antagonists or specific
lesions. The nigrostriatal system seems to be especially impor-
tant (87,88) and dopamine appears to independently modulate
spontaneous eye blink via D1 and D2 receptors (89). If early iron
deficiency impairs dopamine functioning in this pathway, we
hypothesized that the spontaneous eye blink rate would be lower
in infants with iron deficiency anemia and would increase with
iron therapy. In the Detroit study, iron-deficient anemic infants
had a lower initial eye blink rate than nonanemic infants. After 3
mo, during which oral iron was provided to study infants, the
eye blink rate increased significantly in the iron-deficient anemic
group but was unchanged in the nonanemic group (86). These
results provide perhaps the most direct evidence to date of
reduced dopamine function in iron-deficient anemic infants. The
clinical importance of a lower eye blink rate is unclear, but
impaired dopamine functioning is likely to have broader
impacts, given dopamine’s many roles, as detailed above.

Tuberohypophyseal pathway

Dopamine from the hypothalamus provides tonic inhibition of
prolactin release from the anterior pituitary, primarily through
D2 receptors (90,91). Serum prolactin has therefore been
considered a peripheral indicator of central dopaminergic
function. If dopamine function is impaired due to such factors
as fewer D2 receptors, reduced reuptake, or decreased dopamine
transporter, all of which have been observed in rodent models of
early iron deficiency (4,5), there should be less inhibition of
prolactin release and therefore higher prolactin levels. In keeping
with this physiology, increased serum prolactin levels and liver
prolactin-binding sites were reported years ago in iron-deficient
rats (92,93).

We previously explored the question of dopaminergic alter-
ations in human iron deficiency by assessing serum prolactin
levels in the infant phase of the Costa Rica study (52,94). We did
not find a significant relation between infant iron status and
serum prolactin levels, perhaps due to the limited number of pre-
iron treatment serum samples or the stress of venipuncture.
However, a high serum prolactin level was associated with the
behavioral profile of infants with iron deficiency anemia, i.e.
wary and hesitant behavior during developmental testing (94).

We measured serum prolactin in the same cohort in early
adolescence (95). Rather than the higher levels we predicted, the

formerly iron-deficient children showed an earlier decline in
serum prolactin concentration following venipuncture. For
cortisol, another stress-responsive hormone, high levels in
infancy are observed with stress, but lower or blunted response
patterns can be observed later on (96–98). We speculated that
the same might apply to early iron deficiency and prolactin (95).
In the Chile preventive trial, we subsequently observed the
expected higher prolactin levels in infants who did not receive
supplemental iron and those with iron deficiency anemia (99).
Combining the Chile infant findings and the Costa Rica long-
term results, there appear to be higher serum prolactin levels
with iron deficiency anemia in infancy, consistent with reduced
dopamine functioning in the tuberohypophyseal pathway, and a
long-lasting dysregulation of prolactin.

Other brain and behavior effects of early iron deficiency

To pay tribute to John Beard’s many contributions regarding
iron deficiency and dopamine biology, this review focused on
results in animal models and human infants that are consistent
with dopaminergic dysfunction. However, executive functions,
positive affect and response to the unfamiliar, motor sequencing
and coordination, spontaneous eye blink, prolactin release, and
the related dopamine pathways are not the only brain and
behavior systems affected by early iron deficiency. Studies in
Connor’s (5,9,100–102) laboratory (in collaboration with Beard
in later years) have documented that early iron deficiency
impairs myelination in rodent models and alters gene and
protein profiling in rodent and monkey models, with both short-
and long-term effects. In humans, short- and long-term latency
delays in auditory and visual evoked potential studies are
consistent with delayed myelination (103–107). Nor is dopa-
mine the only neurotransmitter affected. In addition to earlier
work in severe iron deficiency rodent models (4,8), later work by
Beard and colleagues (21,35,38) in the milder iron deficiency rat
model and the Madison monkey model found changes in other
monoamine neurotransmitters, including serotonin and norep-
inephrine. Studies by Rao et al. (108) show changes in glutamate
in both severe and moderate iron deficiency models and other
research points to iron deficiency effects on y-aminobutyric acid
(108–110). The opiate system and cholinergic neurotransmis-
sion appear to be affected as well (4,23,37).

There is also compelling evidence from rodent studies,
especially by Georgieff, Rao, and colleagues, that early iron
deficiency affects neurometabolism, dendritogenesis, and long-
term potentiation in the developing hippocampus [reviewed in
(7)]. Felt, Schallert, Georgieff and others have observed behav-
ioral alterations consistent with these hippocampal effects,
specifically poorer spatial learning performance (21,23,34,111)
and altered trace conditioning (112,113). Among many impor-
tant functions of the hippocampus, it is central to recognition
memory processing (114), which can be assessed in infants and
children. In the Detroit sample, we used event-related potentials
and found electrophysiologic indications of delayed recognition
memory (115). Evidence of poorer recognition memory in the
long term has been electrophysiologically obtained in the Chile
sample at 10 y (C. R. Algarin, E. L. Congdon, A. Westerlund,
P. D. Peirano, M. Gregas, B. Lozoff, C. A. Nelson, unpublished
data) and behaviorally in the Costa Rica sample at 19 y (59).

We want to emphasize again that the findings summarized in
this review are unlikely to depend solely on a given CNS region
or process. The correspondence between brain and behavior is
not 1-to-1. Furthermore, the brain works as an integrated system,
and disruption in one process, circuit, or region can affect other
systems; age and experience also play a role. For instance, there
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are functional interactions between prefrontal-striatal and hippo-
campal systems in humans, and dopamine seems to play a critical
role in successful completion of hippocampus-based memory
tasks (116). In rodents, the mesocortical dopamine system also
modulates hippocampal-dependent long-term potentiation (117),
thereby indicating that hippocampal and prefrontal neurons are
connected at the level of cell (117) and system (118) and
functionally integrated (117,119). Another example is prolactin
release. The regulation of prolactin is complex and includes other
neurotransmitter systems such as serotonin (91,120).

Iron is required for so many CNS processes that it is
reasonable to expect a variety of subtle and diffuse effects.
Interconnections between neurochemistry, neuroanatomy, neu-
rometabolism, and genomics/proteomics may be particularly
important during early development, when both vulnerability
and plasticity often differ from what is observed later in life. The
persistence of negative outcomes on measures of executive
function and recognition memory and on other sensory, motor,
affective, and neuroendocrine measures highlights the need to
prevent iron deficiency in infancy and to find interventions that
lessen the long-term effects of this widespread nutrient disorder.

Conclusion

Tremendous strides in understanding brain/behavior relations
and the effects of early iron deficiency have been made in the last
few decades, but there is still much uncertainty and much more
to learn. In the second 5-y period of our program project grant,
we are focusing on timing of iron deficiency and outcomes after
early treatment. All projects (human infants, monkey infants,
and developing rats) are investigating differential effects of pre-
vs. postnatal iron deficiency and differences in reversibility,
depending on timing of iron deficiency and its treatment. We are
also considering the potential for adverse effects with excess iron
or too-rapid iron repletion. John Beard played an important role
in the conception and design of the relevant rodent experiments
and the energetic discussions about the program project as a
whole. He will be sorely missed by all members of our group and
all those who seek to understand brain and behavior effects of
early deficiency.
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