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Abstract
Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major
gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of
plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal
stimuli and environmental signals, guard cells have been highly developed as a model system to
dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and
elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by
kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard
cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium
signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-
signaling mechanisms. Recent progress in identification of early stomatal signaling components
are reviewed here, including ABA receptors and CO2-binding response proteins, as well as
systems approaches that advance our understanding of guard cell-signaling mechanisms.
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INTRODUCTION
Plants need to assimilate CO2 for photosynthesis while simultaneously preventing excessive
loss of water. Because the plant cuticle is impermeable to both water and CO2,
transpirational water loss and CO2 influx in plants are tightly regulated by the opening and
closing of stomatal pores in aerial tissues. The stomatal pore is formed by two specialized
guard cells, which in some plant species are surrounded by subsidiary cells (12). The
transport of ions and water through channel proteins across the plasma and vacuolar
membranes changes turgor and guard cell volume, thereby regulating stomatal aperture
(138,148,161).

Guard cells continuously sense information from the leaf environment, including abiotic and
biotic stimuli, as well as long-distance signals from roots. Guard cells integrate all of these
signals and convert them into appropriate turgor pressure changes. Several important
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environmental factors induce stomatal opening in C3 and C4 plants, including blue and red
light. Stomates also open in response to high humidity and low CO2 in order to maintain
CO2 intake. Stomatal closure, on the other hand, is promoted by darkness in C3 and C4
plants. In order to preserve water, CAM-plants do not close their stomates in response to
darkness. Instead, they accumulate CO2 during the nighttime by converting it into organic
molecules such as malate. Elevated CO2 leads to stomatal closure because less opening is
required for efficient CO2 influx. Stomata are also closed in response to drought, as well as
elevated ozone, thus protecting the inside of leaves from ozone-induced oxidative damage to
plants (62,72,170). Drought causes production of the plant hormone abscisic acid (ABA),
which promotes stomatal closure and thereby reduces transpirational water loss. Other plant
hormones, including auxin, cytokinin, ethylene, brassinosteroids, jasmonates, and salicylic
acid (in response to pathogenic bacteria), can have effects on stomatal function; these have
recently been reviewed in detail elsewhere (1,115).

Elevated CO2 concentrations (Ci) in intercellular spaces of leaves cause stomatal closure.
The effect of CO2 on stomatal movements has been known for over 90 years, but mutations
that strongly impair CO2-induced stomatal closure have only recently been described
(55,66,96,128,190,214). The effect of ABA on stomatal movements was reported in the late
1960s. Both stimuli have gained a more focused interest over recent years as the continued
rise in atmospheric CO2 levels and ensuing climate change can cause drought stress in
plants, as well as limit freshwater availability in many regions. Elevated atmospheric CO2
concentrations may provide plants with increased water-use efficiency due to reduced
stomatal conductance (66,69). However, a consequence of reduced stomatal conductance is
higher leaf temperatures, which have been predicted to contribute to heat stress in plants,
reducing crop yield (11,16,69). The predicted effects of global climate change on stomatal
function call for an in-depth understanding of both drought- and CO2-regulated stomatal
signaling networks.

Several recent reviews have provided excellent accounts of advances made in understanding
stomatal development (12,143), light-induced stomatal opening (170), and the roles of ion
channels in stomatal regulation (72,138,161,173). In this review we focus on the molecular
guard cell signaling mechanisms that have been uncovered in recent years on ion channel
regulation, signaling, and perception of the stomatal closure signals ABA and CO2. We
include discussion of newly emerging models in CO2 signal transduction, ABA reception,
specificity in Ca2+-signaling, and novel mechanisms in ABA signal transduction.

ION CHANNELS IN GUARD CELLS
An Overview of Guard Cell Ion Channels and Their Functions

When guard cells perceive increased ABA levels, their turgor and volume are reduced by
efflux of anions and potassium ions and by gluconeogenic conversion of malate into starch,
causing stomatal closure (110) (Figure 1). ABA triggers cytosolic [Ca2+]cyt increases and
enhances [Ca2+]cyt sensitivity (172), which activates two different types of anion channels,
slow-activating sustained (S-type) and rapid-transient (R-type) anion channels
(56,107,162,165). Whereas S-type anion channels generate slow and sustained anion efflux,
R-type anion channels are activated transiently within 50 ms, suggesting that two different
types of anion channels provide distinctive mechanisms for anion effluxe (165). Activation
of anion channels at the plasma membrane of guard cells has been regarded as a critical step
in stomatal closure (46,140,160). Anion efflux via anion channels causes membrane
depolarization, which subsequently drives K+ efflux from guard cells through outward-
rectifying K+

out channels (65,164,166,184). Among the solutes released from guard cells,
more than 90% originate from vacuoles (110). [Ca2+]cyt-activated vacuolar K+ (VK)
channels function in vacuolar K+ release (44,197) (Figure 1).
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Stomatal opening requires the activation of H+-ATPases in the plasma membrane of guard
cells (10,171) (see Figure 1). Membrane hyperpolarization caused by H+-ATPases induces
K+ uptake through inward-rectifying K+

in channels (91,94,164,166). Influx of K+, Cl−,
NO3

−, and production of malate from osmotically inactive starch increases turgor and
volume in the guard cell and induces stomatal opening. In guard cells, K+ is accumulated in
vacuoles by H+/K+ antiporter activities, and anions can be transported into vacuoles through
both low-affinity anion channels and a H+/anion exchange mechanism (29,48,87,142). ABA
inhibits stomatal opening through downregulation of K+

in channels and H+-ATPases
(80,162) (see the section Calcium Sensitivity Priming Hypothesis, below).

Updates on Ion Channels and Regulation during Stomatal Closure
In this section we review recent findings of mechanisms that mediate guard cell ion channel
activity and regulation. Early patch clamp, cell signaling, and genetic studies suggested that
S-type anion channels play a key role in stimulus-induced stomatal closure
(46,77,140,162,165) (see Figure 1). A gene encoding the anion-conducting subunit of S-type
anion channels has recently been identified. SLAC1 (SLOW ANION CHANNEL-
ASSOCIATED 1) was genetically isolated from independent mutant screens for ozone-
sensitive mutants and CO2-insensitive stomatal closure mutants (128,190). The SLAC1/
SLAH (SLAC1 HOMOLOGUE) gene family encodes proteins with 10 predicted
transmembrane domains, with similarity to bacterial and fungal dicarboxylate/malate
transporters (128,190). slac1 mutants exhibit reduced stomatal closure responses to ABA,
CO2, Ca2+, and ozone treatments. In addition, Ca2+-and ABA-activation of S-type anion
channels are impaired in slac1 guard cells, providing genetic evidence that SLAC1 encodes a
major anion-transporting component of S-type anion channels in guard cells (190).
Heterologous expression of Arabidopsis SLAC1 in Xenopus oocyte illustrates that SLAC1
functions as an anion channel with selective permeability to Cl− and NO3

− (42,97).
Furthermore, retention of R-type anion channel activities in slac1 (190) provides genetic
support for the model that two types of anion channels are present in guard cells (165).

The guard cell-expressed transmembrane ABC (ATP binding cassette) protein AtMRP5
(MULTIDRUG RESISTANCE PROTEIN 5) has also been shown to function in ABA-
induced stomatal closure (38,82). In contrast to slac1, impairment of ABA regulation of
Ca2+-permeable cation (ICa) currents, as well as defects in ABA- and cytosolic Ca2+-
activation of S-type anion channels in atmrp5, suggests that AtMRP5 may function as a
regulator of several guard cell signal transduction mechanisms rather than directly as an ion
channel (178). It is intriguing to note that disruption of the AtMRP5 homologous gene
AtMRP4 (MULTIDRUG RESISTANCE PROTEIN 4) produced an impairment in stomatal
opening (81).

ABA activates Ca2+-permeable ICa-channels in the plasma membrane of guard cells
(49,141). PP2Cs, NADPH oxidases, glutathione peroxidase, and Ca2+-dependent protein
kinases function in ABA-activation of these Ca2+-permeable channels (85,90,117,120,124).
These ICa Ca2+ channels have been proposed to function as a failsafe mechanism against
stomatal opening, since these channels are activated at hyperpolarized membrane potentials
(49,72,141). Thus, enhanced Ca2+ influx by activated Ca2+-permeable ICa-channels may
ensure a conditional regulation of stomatal movements.

During stomatal closure, [Ca2+]cyt-activated vacuolar K+ (VK) channels contribute to K+

release from vacuoles (44,197) (see Figure 1). It was previously shown that heterologous
expression of TPK1 (TWO PORE K+ CHANNEL 1) in yeast produced vacuolar K+ currents
with similar characteristics to VK channels (13). Recent genetic evidence shows that TPK1
mediates guard cell VK channel currents (44). ABA-induced stomatal closure is slowed in
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the tpk1 mutant (44). However, a residual ABA response in stomatal closure in tpk1
suggests that additional vacuolar K+ release pathways exist in plants.

Recent Updates on Ion Channels and Regulation during Stomatal Opening
Stomatal opening is initiated by hyperpolarization of the guard cell plasma membrane,
which is caused by H+-ATPase-dependent proton efflux (10,171) (see Figure 1). Membrane
hyperpolarization activates inward-rectifying K+

in channels and induces solute influx
followed by water uptake into guard cells (see Figure 1). Two dominant alleles of
Arabidopsis AHA1/OST2 (ARABIDOPSIS H+ ATPASE 1/OPEN STOMATA 2) were
identified and provide genetic evidence supporting the role of H+-ATPases in stomatal
movements. The dominant ost2–1 and ost2–2 mutants produce constitutively activated H+-
ATPases, persistent stomatal opening, and thus ABA insensitivity (116). The defect found in
stomatal closure in the dominant ost2 correlates with ABA-inhibition of H+-ATPases (171).

Subunits of a heterotrimeric G protein complex were shown to be required for ABA-
inhibition of K+

in channels in guard cells (32,196). Mutations in AtGPA1 (G PROTEIN
ALPHA SUBUNIT 1) (196) and AGB1 (GTP BINDING PROTEIN BETA 1) reduce ABA-
inhibition of K+

in currents (32), which correlates with impairment in ABA-inhibition of
stomatal opening. The reader is also referred to other detailed reviews on previous findings
of guard cell ion channels (72,138,161,170).

ABA-Regulation of Ion Channel Activities by Protein Trafficking
During stomatal movements, changes in guard cell volume affect the surface area of guard
cells by up to 40% (63). Previously, it was found that an increase in the plasma membrane
surface area of guard cells is proportional to an addition of active inward- and outward-
rectifying K+ channels to the plasma membrane of guard cells (64). However, until recently,
it was not clear whether this membrane trafficking contributes specifically to ABA
regulation of ion channels.

Microscopic observation using a photoactivatable GFP fusion to the K+
in channel α-subunit

KAT1 (POTASSIUM CHANNEL IN ARABIDOPSIS THALIANA 1) showed that ABA
causes endocytotic internalization of KAT1 (181). KAT1 movement from the plasma
membrane to the endosome contributes to a reduction in K+

in channel activity and limited
stomatal opening (181). Endosomal KAT1 proteins are subsequently redelivered to the
plasma membrane to complete the vesicle traf-ficking cycle, and this process is dependent
on the SNARE protein SYP121 (SYNTAXIN OF PLANTS 121) (180). Taken together,
protein trafficking of membrane ion channels provides a parallel mechanism to
downregulate K+

in channels during ABA signaling in guard cells (181).

CO2 SIGNALING IN GUARD CELLS
Elevated concentrations of CO2 decrease stomatal conductance via rapid physiological
responses, as well as via sustained developmental mechanisms. In the short term, CO2
provokes stomatal closure. In addition, long-term exposure to elevated CO2 decreases
stomatal density in leaves, thus further reducing stomatal conductance (47,92). However, the
mechanism by which CO2 controls stomatal movements and stomatal development have
remained largely unknown and the first plant mutants that robustly affect CO2 control of
stomatal movements have only recently been identified (55,66,96,128,190,214).

Site of CO2 Signaling
Elevated CO2 (Ci) concentrations that occur in leaves at night due to respiration and the
continuing rise in atmospheric [CO2] mediate reduction in stomatal apertures on a global
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scale. CO2, as a lipophilic, nonpolar molecule, appears to diffuse across the cell membrane.
Recent research on the chloroplast membrane, however, has demonstrated that aquaporins
function in transmembrane CO2 transport for photosynthesis (33,186,187).

The physiology of CO2 control of stomatal apertures has been discussed in previous reviews
(9,72,192). In brief, elevated [CO2] activates anion channels and K+

out efflux channels in
Vicia faba guard cells (14,147), and consistent with this, CO2 triggers chloride release from
guard cells and depolarization in intact leaves (51,152). Ca2+ is required for CO2-induced
stomatal closure (167,200,214) and high CO2 causes no detectable change in cytosolic pH in
V. faba (14). However, the question of whether the CO2 signal is sensed directly by guard
cells (96,153) or by leaf mesophyll cells (57,121) has been a matter of active debate and
could be advanced through genetic investigation. The idea that both cell types contribute to
this stomatal CO2 response cannot currently be excluded.

Analyses of stomatal movements in epidermal strips, which were removed from the
mesophyll cell environment, showed that elevated CO2 can mediate closure of stomatal
pores, indicating a direct functional role for guard cells in mediating the CO2 response
(96,203,214). In other research, however, stomatal movements in isolated and mesophyll-
grafted epidermes indicated that mesophyll tissue mediates the stomatal CO2 response (121).
Identification of specific CO2 signaling components and mechanisms by genetic approaches
is required for further insights into the cell type specificity of CO2 signaling mechanisms.

Arabidopsis Mutants in the CO2 Signaling Network
Recently, mutant screening and functional characterizations in Arabidopsis have led to
identification of plant mutants and genes that mediate CO2 control of stomatal movements.
The ABA-insensitive mutant gca2 (growth controlled by abscisic acid 2) (61) is strongly
impaired in CO2-induced stomatal closure in response to elevated CO2 (800 ppm) both in
leaf epidermes and in intact leaves of plants (214). In addition, [CO2] shifts did not elicit
significant changes in the [Ca2+]cyt transient rate in gca2 mutant guard cells, indicating an
impairment in CO2-induced depolarization of the membrane potential (214). Together with
previous research, showing that gca2 mutant plants are impaired in ABA-induced stomatal
closure (4,61), GCA2 likely functions downstream of the convergence point of CO2 and
ABA signaling transduction networks (Figure 2).

Ozone, like CO2, enters the leaf mainly through stomata. Ozone-sensitive and CO2-
insenstive Arabidopsis mutant alleles in the SLAC1 gene were recently identified. slac1
mutant plants are strongly impaired in the high CO2-induced stomatal closure response,
illustrating that the SLAC1 protein is a positive mediator of the CO2-induced stomatal
closure signaling pathway (128,190). slac1 mutant alleles are more susceptible to ozone due
to impairment in ozone- and ROS (reactive oxygen species)-induced stomatal closure. As a
result, more ozone can enter leaves and cause cell death (190). As discussed in Ion Channels
in Guard Cells, above, ABA-induced stomatal closure and, specifically, S-type anion
channel activation are impaired in slac1 alleles, but R-type anion channel activity and ABA-
activated Ca2+ channel activity are retained in these mutants (190). These findings provide
genetic evidence for the model that S-type anion channels function as a central control
mechanism for ABA- and CO2-induced stomatal closure (162) (Figures 1 and 2).

The HT1 (HIGH LEAF TEMPERATURE 1) protein kinase is the first identified molecular
component that functions as a major negative regulator in the high CO2-induced stomatal
closure pathway (55). Stomatal responses to CO2 changes in leaf epidermes and in intact
leaf gas-exchange analyses show that the recessive ht1–2 mutation causes a constitutive
high-[CO2] stomatal closure (55). Although HT1 protein kinase activity is greatly reduced in
ht1–1 and ht1–2 mutants, they retain responsiveness to ABA and blue light, indicating that
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HT1 may function upstream of the convergence of the CO2- and ABA-induced stomatal
closure pathways (55) (Figure 2).

A plasma membrane ABC malate uptake transporter, AtABCB14 (ABC TRANSPORTER B
FAMILY MEMBER 14), in guard cells was identified as another negative regulator of CO2-
induced stomatal closure (96). CO2-induced stomatal closure in detached leaves was slightly
accelerated in atabcb14 mutants and decreased in AtABCB14 overexpressing plants (96),
suggesting that malate uptake into guard cells by AtABCB14 plays a role in the CO2-
induced regulation of stomatal closure. Since extracellular malate enhances anion channel
activity (57) and CO2- and ABA-induced stomatal closure (58,160), knockout of the guard
cell malate uptake transporter AtABCB14 may increase extracellular malate, thus slightly
accelerating CO2-induced stomatal closure (96) (Figure 2). In addition, knockout of guard
cell plasma membrane–localized malate import in atabcb14 plants may reduce the osmotic
increase in intracellular malate levels, thus reducing stomatal apertures (96). Dominant
negative repression of the inward-rectifying K+

in channel subunit KAT2 (POTASSIUM
CHANNEL IN ARABIDOPSIS THALIANA 2) caused CO2-insensitive stomatal
conductance regulation (93). The question of why dominant K+

in channel downregulation
impairs CO2 responsiveness requires further investigation.

Mechanisms of CO2 Signaling in Guard Cells
Several Arabidopsis mutants have been identified that mediate CO2-regulated stomatal
signaling in guard cells, but the mechanism by which the physiological stimulus of CO2 is
transduced to regulate stomatal apertures is only beginning to be understood.

Solubilized, CO2 is converted to carbonic acid, bicarbonate and protons. Thus the sensing
mechanism could either rely on measuring CO2, protons and bicarbonate or monitor the
interconversion of a protein via CO2 binding. Experiments using either the pH-sensitive dye
BCECF or fluorescence microphotometry found no evidence for a change in cytosolic pH
after elevation of [CO2] up to 1000 ppm (14). These data suggested that CO2 response is not
mediated through changes of cytosolic pH.

A mechanism mediating CO2-induced stomatal closure had previously been proposed, in
which malate released from mesophyll cells in response to elevated CO2 mediates the
stomatal CO2 response, by extracellular malate-induced activation of guard cell anion
channels (57–59), resulting in anion loss and subsequent stomatal closure. However, since
guard cells release malate into the cell wall during stomatal closure (77,128,191) and malate
enhances R-type anion channel activity in guard cells (58,146), an alternative model can be
considered, in which malate released from guard cells provides positive feedback by further
stimulating anion channels (96) (Figure 2). Consistent with the latter positive feedback
model, extracellular malate also enhances ABA-induced stomatal closure in V. faba (160),
and isolated guard cell protoplasts respond to CO2 (9,203).

CO2 binding proteins that function at the apex of CO2-regulated stomatal movements have
remained unknown and their identification is needed to understand the mechanism
mediating this response that affects plant gas exchange in response to the global CO2
increase. Research in other species has suggested that CO2 signaling is mediated by
receptor-ligand mechanisms. For example, in Drosophila, CO2 was reported to be sensed as
an olfactory stimulus by a novel G protein-coupled receptor, although direct CO2 binding/
interaction remains to be analyzed (75). Research in mice proposed that carbonic anhydrases
function as olfactory CO2-binding proteins to trigger an avoidance behavior response to
elevated CO2 (67). In plants CO2-binding/interacting proteins that mediate CO2-induced
stomatal closure remain unknown and genetic redundancy may have prevented their
identification. A recent study revealed that Arabidopsis mutant plants—disrupted in two
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carbonic anhydrases, βCA1 (BETA CARBONIC ANHYDRASE 1) and βCA4 (BETA
CARBONIC ANHY-DRASE 4)—are strongly impaired in stomatal CO2 responses (66).
Guard cell-specific expression of either carbonic anhydrase restores the CO2 responsiveness,
indicating that carbonic anhydrases can mediate the CO2 response directly in guard cells.
Interestingly, ca1ca4ht1–2 triple mutant plants exhibit the same constitutive high-[CO2]
response as ht1–2, demonstrating that HT1 is epistatic to βCA1 and βCA4 (Figure 2). CAs
are also involved in detection of CO2 in animal taste receptors (18). Interestingly, expression
of an unrelated mammalian α-carbonic anhydrase specifically in guard cells restored
stomatal CO2 signaling and high intracellular bicarbonate and CO2 concentrations activated
S-type anion channels, providing strong evidence that CA-mediated CO2 catalysis is the
mechanism for transmission of the CO2 signal (66).

GUARD CELL ABA SIGNAL TRANSDUCTION
ABA Receptors and Early Signaling Components

Several candidate ABA receptors have been reported, including the Mg-chelatase H subunit
(169) and GCR2 (G-PROTEIN COUPLED RECEPTOR 2) (108). Whether they represent
authentic ABA receptors however, remains controversial (see 39,122,150,205 for
discussion). Two other recently identified candidate ABA receptors are the GPCR (G-
PROTEIN COUPLED RECEPTOR)-TYPE G PROTEINS GTG1 and GTG2 (137) and the
Betv1/START domain family proteins PYR/PYL/RCAR (PYRABACTIN RESISTANCE/
PYR1 LIKE/REGULATORY COMPONENT OF ABA RECEPTOR) (109,139).

GTG1 and GTG2, with (respectively) 45% and 68% protein sequence similarity to the
mammalian membrane protein GPHR (Golgi pH regulator) bind ABA (137). In plants
GTG1 and GTG2 are targeted to the plasma membrane and interact with the Gα subunit
GPA1. Previous research has shown that the gpa1 mutant causes ABA insensitivity in guard
cells (196) and ABA hypersensitivity in seeds (19,136). gtg1gtg2 double mutants are ABA
hyposensitive in seed germination, root growth, gene expression, and stomatal movement.
ABA binds to a fraction (~1%) of GTG1 and GTG2 recombinant proteins. Since gtg1gtg2
plants are only partially insensitive to ABA, either genetic redundancy of GTG genes or the
presence of additional independent ABA receptors is likely.

The PYR/PYL/RCAR family of proteins was recently identified as ABA binding and
signaling proteins by two independent groups using different methods (109,139). The pyr1
(pyrabactin resistance 1) mutant was isolated from a genetic screen for mutants resistant to
the ABA agonist pyrabactin (139). PYR1 encodes a Bet v 1 family protein, which is known
as a major birch pollen allergen. To identify molecular targets of PYR1 in a ligand-
dependent manner, yeast two-hybrid screening in the presence of pyrabactin was performed.
These experiments led to isolation of the type 2C protein phosphatase (PP2C), HAB1
(HOMOLOGY TO ABI1), as an interaction partner of PYR1. HAB1 functions as a negative
regulator of ABA signaling, including ABA-induced stomatal closure (99,151,155). ABA-
induced interaction of PYR1 with HAB1 and ABI1 (ABA-INSENSITIVE 1) was also
confirmed in tobacco (139) and in Arabidopsis (132). Furthermore, yeast-two hybrid
analyses showed that the PYR1 family members, PYL1 to PYL4, interact with HAB1 only
in the presence of ABA (139). However, PYL5 to PYL12 could interact with HAB1 in yeast
regardless of ABA presence (139,157). The single pyr1 mutant has no ABA response
phenotype. Notably, however, the pyr1/pyl1/pyl2/pyl4 quadruple mutant exhibits strong
ABA-insensitive phenotypes in seed germination, root growth, gene expression (139) and
stomatal opening and closing responses (132), indicating a functional redundancy within the
PYR/PYL/RCAR family.
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Independently, the RCAR1/PYL9 (REGULATORY COMPONENT OF ABA RECEPTOR
1/PYR1 LIKE 9) gene was identified as an interactor of the PP2C ABI2 (ABA
INSENSITIVE 2) in a yeast two-hybrid screen (109). ABA binds to the RCAR1/PYL9-
ABI2 complex in vitro (109). ABA causes inhibition of PP2C activity when either
recombinant RCAR1 or PYR1 protein is added to the reaction (109,139). These findings
provide in vitro evidence that perception of ABA signaling by the PYR/PYL/RCAR proteins
shuts down negative regulation of ABA signaling by PP2Cs.

Previous findings showed that the dominant PP2C mutants, abi1–1 and abi2–1, impair
several of the earliest known ABA signaling responses, including Ca2+ signaling, reactive
oxygen species production, and OST1/SnRK2.6/SnRK2E (OPEN STOMATA 1) kinase and
S-type anion channel activation (5,46,124,125,140) (Figure 4). Based on these earlier
studies, an ABI1 complex purification approach was pursued and independently led to
identification of the PYR/PYL/RCAR proteins using proteomic analysis (132). This study
showed that the major and most robust in vivo ABI1 copurified proteins in Arabidopsis were
nine members of the PYR/PYL/RCAR protein family and that ABA rapidly stimulates
PYR1-ABI1 interaction within 5 min in Arabidopsis (132).

Consistent with the findings, present results suggest that a major early step in ABA signal
transduction is the inactivation of the cluster A subgroup members of the Arabidopsis PP2C
family (Figure 3) (109,139,157). ABA perception by PYR/PYL/RCAR proteins induces
protein complex formation between PYR/PYL/RCAR proteins and the PP2Cs, and that
subsequently inactivates the negative regulatory function of PP2Cs (Figure 3). This early
signaling model is also genetically supported because the hab1-1abi1–2abi2–2 and hab1–
1abi1–2pp2ca-1 triple mutants cause partially constitutive ABA responses in the absence of
exogenous ABA (154). Furthermore, it was shown that downregulation of the PP2CA
mRNA level in abh1 (aba hypersensitive 1) loss-of-function alleles contributed to the ABA
hypersensitivity of abh1 (88). Mutations in the mRNA cap binding protein ABH1 cause
ABA hypersensitivity (68).

Recently, a series of crystallographic studies on PYR/PYL/RCAR proteins have determined
structural bases of ABA perception to PYR1 (131,158), PYL1 (114,119,211), and PYL2
(114,211). PYR1 and PYL2 exist as homodimers in crystals, in solution and in planta
(131,158,211). Resolution of the unbound (ABA-free) structure of these receptors reveals
that the ABA covering lid structures of the PYR1 homodimer exhibit direct intersubunit
PYR1-PYR1 interactions (131,158). ABA binding to the internal cavity of PYR1, PYL1,
and PYL2 induces closing of lid structures through conformational changes
(114,119,131,158,211). Closing of the ABA binding cavity exposes a hydrophobic surface
on the ABA receptors that associates with the active site of PP2Cs (114,119,211).
Interaction of PP2Cs with the hydrophobic surface of ABA-bound receptors inhibits PP2C
phosphatase activity (114,119,211). Furthermore, the structure of the unnatural (−)-ABA
stereo-isomer bound to the ABA receptors was resolved, providing a structural basis for
classical observations that this ABA stereo-isomer can trigger physiological responses (131).
Together these findings provide structural mechanisms of early ABA signaling events
(Figure 3).

The ABA-activated protein kinase OST1 and the V. faba homolog, AAPK (abscisic acid-
activated protein kinase), function as positive regulators of ABA-induced stomatal closure
(101,125,212). Interestingly, ABI1 interacts with OST1 in vitro and negatively regulates
ABA-activated OST1 kinase activity (125,213). Recent research has shown that the ABI1
protein phosphatase co-immunoprecipitates with the SnRK2.2 and SnRK2.3 protein kinases
in Arabidopsis (132) and that the ABI1/ABI2/HAB1 PP2Cs interact with the OST1 and
SnRK2.3 protein kinases (188,194), confirming in vivo interactions between ABI1 and
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SnRK2s. With in vitro studies showing that ABI1 or HAB1 inactivates the OST1 kinase by
dephosphorylation of the activation loop (188,194), these findings further support the early
ABA signaling model (Figure 3). Genetic studies using snrk2.2snrk2.3ost1 triple mutants
further support major roles of SnRK2 protein kinases, exhibiting strong ABA insensitive
phenotypes (34,126). Moreover, ABA-induced activation of SnRK2.2 and SnRK2.3 was
reduced in the pyr1pyl1pyl2pyl4 quadruple mutant, providing a link from ABA receptors to
the activation of SnRK2 kinases (139). These findings together with the finding that OST1
also interacts with and activates the SLAC1 anion channel (42,97) and the AtRBOHF
(RESPIRATORY BURST OXIDASE HOMOLOGUE F) NADPH oxidase (174) provide
strong evidence that the SnRK2 protein kinases can interact with and regulate multiple target
proteins (Figure 4), including transcription factors (35,37) (discussed further below).

Important topics for future research are the identification of the network of protein targets of
both the cluster A PP2Cs and the SnRK2 protein kinases.

Calcium in Guard Cell Signaling
A number of second messengers regulate ABA signaling (62,72,161), including reactive
oxygen species (ROS), nitric oxide (NO), phosphatidic acid (PA), phosphatidyl-inositol-3-
phosphate (PIP3), inositol-3-phosphate (IP3), inositol-6-phosphate (IP6), and sphingolipids.
Plant homologs for some of the predicted components for plant Ca2+ signaling in diverse
plant cell types have not yet been found in land plant genomes, including IP3-receptors,
ADP-ribosyl cyclases, and the cADPR-regulated ryanodine receptor channels, in contrast to
algal genomes; further research is needed to determine the underlying land plant–specific
signaling mechanisms (202). Recent reviews provide detailed discussions of the various
small-molecule second messengers and their roles in guard cell signaling responses and are
recommended for further reading (60,72,138,161,170).

ABA elevates ROS levels via mechanisms that include the NADPH oxidases AtRBOHD
and AtRBOHF (90) (Figure 4). The OST1 protein kinase was shown to directly interact with
and phosporylate the AtRBOHF NADPH oxidase (174), which is consistent with findings
that these NADPH oxidases function in early ABA-mediated ROS signaling (90). Notably,
through feedback, ROS directly regulates early ABA signaling. ROS downregulate the
phosphatase activity of the ABI1 and ABI2 PP2Cs in vitro (113) (Figure 4). MPK9 (MAP
KINASE 9) and MPK12 were identified as downstream factors that integrate ABA-ROS
signaling, leading to anion channel activation (73). Guard cell expressed MPK9 and -12 are
activated by ABA and H2O2 treatments and mpk9/12 double mutants are ABA and H2O2
insensitive in stomatal movements (73). In addition, ROS activate Ca2+ channels in the
plasma membrane of guard cells (90,141) and promote NO and PIP3 signaling in response
to ABA (15,40,41,129,195). NO and PIP3 act by modulation of [Ca2+]cyt levels in the cell.
The roles of nitric oxide and reactive oxygen species in ABA signaling and components of
this signaling pathway have been recently reviewed (129).

In this review we focus on the role of [Ca2+]cyt in guard cell signaling. [Ca2+]cyt acts in a
rapid Ca2+-reactive-stomatal closure response as well as in a long-lasting Ca2+-programmed
inhibition of reopening of stomatal pores (4,72).

Calcium-Dependent and Calcium-Independent Signaling
It has been known for some time that ABA induces [Ca2+]cyt elevations in guard cells of
Commelina communis prior to stomatal closure (112). Later experiments, however, showed
that ABA induces [Ca2+]cyt elevations only in part of the cells [37% in V. faba (163), 40–
80% in C. communis (43), and 70% in Paphiopedilum tonsum (70)]. The absence of a tight
coupling between ABA-induced stomatal closure and ABA-induced Ca2+ increases
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therefore indicated a Ca2+-independent mechanism existing in the ABA signaling network
(3) (Figure 4).

A recent study has now quantified the relative importance of [Ca2+]cyt-elevation-dependent
and -independent signaling in ABA-induced stomatal closure in Arabidopsis (172). After
inhibition of spontaneous and ABA-induced [Ca2+]cyt elevations, ABA-induced stomatal
closure was greatly attenuated and showed only ~30% of the response, compared to control
conditions with [Ca2+]cyt elevations (172). The remaining 30% change in stomatal aperture
still required physiological, resting intracellular Ca2+concentrations of 100–150 nM (172),
consistent with results from V. faba (100,199). This research points to the possible relevance
of a Ca2+-elevation-independent but resting Ca2+ requirement for ABA signaling (172).
Thus, whether the proposed Ca2+-independent pathway actually requires ABA enhancement
(priming) of the sensitivity to resting Ca2+ levels is an important question for future
research. Mutants with reduced ABA sensitivity (ost1, abi2–1) had an even further reduced
ABA sensitivity after blocking [Ca2+]cyt elevations (172). These results are consistent with
the findings that these signaling components act upstream of calcium-dependent and
calcium-independent signaling (172) (Figure 4).

Calcium Signal Transducers: CDPKs and CIPK/CBLs
Although the role of Ca2+ as a second messenger in ABA signaling is well established, we
are only beginning to understand the molecular components underlying this network. A
large number of abiotic and biotic stress factors, plant hormones, and light utilize localized
intracellular [Ca2+]cyt transients to elicit specific responses in plants (60), pointing to the
central cell biological question being investigated in both plant and animal systems, namely,
how specificity in Ca2+ signaling is achieved.

Plants possess several families of Ca2+ sensors to link upstream [Ca2+]cyt elevations to
downstream signaling events. CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs, or
in Arabidopsis, CPKs) act as sensor responders by combining Ca2+-binding and kinase
activity in the same polypeptide (20,53). The Arabidopsis genome encodes 34 CDPK
isoforms. In reverse genetic approaches, 4 CDPKs have been identified with functions in
guard cell and ABA signaling (120,221). Mutations in the guard cell–expressed CDPKs
CPK3 and CPK6 led to partial impairment in ABA and Ca2+ activation of S-type anion
channels and, interestingly, ABA activation of plasma membrane Ca2+ channels (120)
(Figure 4). In addition, the calcium-reactive stomatal closure response of cpk3cpk6 double
mutants was impaired by ~64–81%, whereas the long-lasting calcium-programmed response
was not clearly affected (120). CPK4 and CPK11 have also been identified as positive
transducers of Ca2+-dependent ABA signaling (221). Strong ABA insensitivity in stomatal
closure and increased drought sensitivity were reported in the cpk4 and cpk11 single and
double mutants, with opposite phenotypes observed in CPK4 and CPK11 overexpression
lines (Figure 4). The nuclear and cytosolic localizations of CPK4 and CPK11 (221) suggest
possible dual nuclear/cytoplasmic roles for these CDPKs. CPK4 and CPK11 phosphorylate
two members of the ABA-RESPONSIVE ELEMENT BINDING FACTORS (ABFs),
namely, ABF4 and ABF1 in vitro (221). Besides CPK4 and CPK11, several Arabidopsis
CDPKs, including CPK10, CPK30, and CPK32, have been shown to interact with ABF4 in
vitro (25). Furthermore, CPK32 has been shown to phosphorylate ABF4 in vitro and to
interact with ABF1, ABF2, and ABF3 (25). This may indicate either a general mechanism or
a lack of specificity among CDPKs. In vivo confirmation of phosphorylation events is
presently needed.

CALCINEURIN-B LIKE PROTEINS (CBLs) are sensor relay proteins that, upon Ca2+

binding, interact with and modulate the activity of CBL-INTERACTING PROTEIN
KINASES (CIPKs). Ten CBLs and 25 CIPKs are expressed in the Arabidopsis genome, and
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interactions between individual members of the CBL family with various CIPKs allow cross
talk between abiotic stress and phytohormone signaling pathways at the molecular level
(28). Two CBLs have been identified thus far as playing a role during ABA signaling in
guard cells, CBL1 and CBL9. CBL1 was identified as a relay for multiple stress responses
(2,21) and acts as a positive regulator of drought signaling (2,21). CBL1-overexpressing
plants exhibit enhanced drought tolerance and constitutive expression of stress genes.
However, loss of cbl1 function did not affect ABA responsiveness (2,21). cbl9 mutant plants
are hypersensitive to ABA in seed germination, seedling growth, and gene expression (134).
CBL9 has been shown to interact with CIPK3 and might in this way regulate ABA
responses at the level of seed germination (78,135). Although neither CBL single mutant is
ABA hypersensitive in guard cells, the cbl1cbl9 double mutant was reported to be more
drought tolerant in wilting assays, and the stomatal closure response in the double mutant
was hypersensitive to ABA (22). As an interaction partner of CBL1 and CBL9, CIPK23 was
identified as a negative regulator of ABA signaling in guard cells. The cipk23 mutant is
ABA hypersensitive during stomatal opening and closing responses and has reduced
transpirational water loss in leaves (22). Based on the cbl1cbl9 double mutant phenotype,
CBL1 and CBL9 might synergistically activate CIPK23 during Ca2+-dependent signaling in
guard cells (22). CBL1 and CBL9 bind to CIPK23 and target it to the plasma membrane
(22). It is proposed that CIPK23 negatively regulates ABA signaling in guard cells by
activating an inward potassium channel (22). A candidate for this mechanism is AKT1, an
inward-conducting potassium channel that is activated by CIPK23 (102,207).

The presence of functional redundancy of Ca2+-binding proteins (22,120,221) supports the
observation of an overall robustness of the guard cell signaling network. In the current
model CDPKs act as confirmed positive regulators (120,221) (Figure 4) and CBLs/CIPKs as
negative regulators (22,78,135) of Ca2+-dependent ABA signaling.

Calcium-Sensitivity Priming Hypothesis
Ca2+-imaging experiments have shown that spontaneous repetitive [Ca2+]cyt transients occur
in guard cells under nonstimulated conditions (6,45,83,176,210,214) (Figure 4). These
spontaneous repetitive [Ca2+]cyt transients have been observed in guard cells in intact plants
(210). This raises the question, How can CO2- and ABA-induced stomatal closure be Ca2+-
dependent (30,98,167,200,214) if guard cells have repetitive spontaneous [Ca2+]cyt
transients? One new hypothesis (214) is that the physiological stomatal closure signals,
elevated CO2 and ABA, enhance (prime) the Ca2+ sensitivity of guard cells (214), as has
recently been demonstrated for ABA signaling (172) (Figure 4). While measured in a low-
extracellular-Ca2+ bath, guard cell S-type anion channels show little response to an increase
in [Ca2+]cyt to 2 μM (7,172). However, preincubation of guard cells in the same solution,
containing ABA, strongly increased the ability of 2μM [Ca2+]cyt to activate anion channel
currents (172). These findings provide evidence that ABA enhances/primes the ability of
guard cells to respond to increased [Ca2+]cyt levels and to activate anion channels (172)
(Figure 4).

The Ca2+-sensitivity priming effect of ABA is not restricted to S-type anion channel
activation but also regulates inward potassium channels (172). The priming effect uncovered
in stomatal CO2 and ABA responses (172,214) may not be restricted to guard cell signaling.
During rice seed swelling a Ca2+-dependent protein kinase activity could be enhanced by
addition of Ca2+ to the kinase reaction and could be further enhanced by treatment with
phosphatidylserine (86). In the same experiment kinase activity from seedlings pretreated
with 5 μM ABA was dependent on only Ca2+ and could not be induced further by
phosphatidylserine (86). Ca2+ sensitivity priming of specific Ca2+ sensors may provide an
important mechanism for specificity in Ca2+ signaling in plants and animals. In cpk3cpk6
mutants ABA could not prime S-type anion channel activation (120), further suggesting that
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priming could occur in the Ca2+-dependent signaling pathway or in a closely associated
parallel signaling pathway (Figure 4).

Interestingly, experimentally imposed [Ca2+]cyt transients, regardless of the [Ca2+]cyt
transient pattern, have been shown to trigger a Ca2+-reactive stomatal closure response in
Arabidopsis thaliana and V. faba (4,105,209). These findings, and enhanced anion channel
activation after extracellular preexposure to high Ca2+ (7), indicate that high extracellular
[Ca2+]ext itself can also prime guard cells for permissive (primed) intracellular Ca2+

signaling. The chloroplastic protein CAS (CALCIUM SENSING RECEPTOR) was recently
reported to regulate [Ca2+]cyt elevations in response to elevated extracellular [Ca2+]ext
(198,201). Oscillations of [Ca2+]cyt were absent in response to elevated [Ca2+]ext in cas
mutant plants, thereby abolishing stomatal closure (50,201).

Several distinctive mechanisms could provide a molecular basis for Ca2+-, ABA-, and CO2-
induced Ca2+ sensitivity priming. During the measurements of K+

in channel priming by
ABA, guard cells were incubated in ABA-containing solution for about 45 minutes prior to
patch clamping (172). This would leave sufficient time for transcription and translation of
Ca2+-binding proteins that participate in Ca2+sensitivity priming either by binding Ca2+

directly or by facilitating Ca2+ sensing. Relocalization of proteins offers another possibility.
As shown for CIPK23 (22), proteins can be relocalized in the cell via protein-protein
interactions. Chemical modifications such as myristoylation can trigger protein
relocalization. Parallel detection of Ca2+ elevation and an independent signal would provide
a third mechanism for modulation of Ca2+ sensitivity (Figure 4). Only upon perception of
both, Ca2+-elevation and an independent signal, could downstream signaling occur. Such a
signaling network would reduce spontaneous activation and an additional signaling
component would allow for a tightly controlled layer of specificity in Ca2+ signaling.

The Ca2+ sensitivity priming hypothesis derived from guard cell signaling research (214)
might explain specificity in other plant Ca2+ responses, given the over 200 Ca2+-binding
proteins found in the Arabidopsis genome alone, and may also explain how opposing
signaling pathways like ABA-induced stomatal closure and blue-light- and low-[CO2]-
induced stomatal opening can both employ [Ca2+]cyt elevations as a secondary messenger
and nonetheless retain specificity (52,214).

Calcium-Programmed Stomatal Response
The long-term Ca2+-programmed inhibition of stomatal reopening is distinct from the above
discussed rapid Ca2+-reactive response (24,120). In contrast to the Ca2+ reactive response,
this slower programmed response does depend on the pattern of the preceding imposed
[Ca2+]cyt transients (4,105,209). Preceding Ca2+ transients of the appropriate pattern
enhance inhibition of the reopening of stomatal pores, even after the Ca2+ transients have
been terminated (4,24,105,209). The dampening of [Ca2+]cyt transients during ABA-induced
membrane potential depolarization and stomatal closure might reflect a [Ca2+]cyt pattern that
contributes to long-term Ca2+-programmed inhibition of stomatal reopening
(4,45,72,83,176,214). A first mutant that impairs this Ca2+-programmed long-term Ca2+

inhibition of reopening of stomatal pores was recently identified via overexpression of the
glutamate receptor-like channel AtGLR3.1 (GLUTAMATE RECEPTOR 3.1) (24). Data
further suggest that both transcriptional and translational mechanisms are required for this
long-term Ca2+-programmed response of guard cells, further distinguishing it from the Ca2+-
reactive response (24).
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NEWLY IDENTIFIED COMPONENTS AND MECHANISMS IN ABA SIGNAL
TRANSDUCTION
Regulation of ABA Metabolism

Considering the wide range of roles of ABA in abiotic stress and developmental responses
(161,215), elucidating ABA metabolism is an important step in understanding the functions
of ABA. Three important questions on regulation of ABA metabolism arise: How is ABA
synthesized and degraded? Where is ABA synthesized? and How is ABA metabolism
activated?

The enzymatic biosynthesis pathway of the sesquiterpenoid, abscisic acid, from C40
carotenoids has been well characterized biochemically and genetically (127,215). A rapid
increase in the ABA concentration in response to abiotic stresses can be partly explained by
transcriptional induction of ABA biosynthesis genes such as the rate-limiting step enzyme
NCED3 (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3) (182). In addition to the
transcriptional induction of ABA biosynthesis genes, stress-induced conversion of inactive
ABA conjugates has been proposed to contribute to an increase in the net ABA
concentration. ABA-glucose ester is an inactive ABA conjugate and is regarded as a
candidate precursor for ABA signaling (74). It has been reported that hydrolysis of ABA-GE
by β-glucosidase AtBG1 (BETA-1,3-GLUCANASE 1) is induced by dehydration-induced
AtBG1 complex formation (95), indicating conjugation and decon-jugation of ABA.
However, in order to explain the more than 30-fold induction in ABA concentrations by
osmotic stresses (54), plants must have other regulatory mechanism(s) to adjust ABA levels
in response to changing environments.

A key enzyme in ABA catabolism is ABA 8′-hydroxylase, which converts active ABAs into
inactive 8′-hydroxy ABAs (127). Recent studies show that ABA catabolism is under the
control of environmental conditions and can fine-tune ABA concentrations. The
CYTOCHROME P450, FAMILY 707, SUBFAMILY A genes CYP707A1 to A4, encoding
ABA 8′-hydroxylases, are induced by rehydration of dehydrated plants (89). High humidity
can also induce CYP707A3 in vascular tissues and CYP707A1 in guard cells (133).
Generation of inactive ABA-GE from active ABA has been proposed to provide another
mechanism for ABA inactivation, as indicated by overexpression of UGT71B6 (UDP-
GLUCOSYL TRANS-FERASE 71B6) (144). However, whether glucosyltransferases are
regulated by stress signals remains to be determined.

The question has resurfaced as to which tissues ABA synthesis occurs in as a response to
osmotic stresses (i.e., drought, salinity, and cold). Recent immunohistochemical localization
studies of the ABA biosynthesis enzymes ABA2 (ABA DEFICIENT 2), NCED3, and
AAO3 (ABSCISIC ALDEHYDE OXIDASE 3) indicated that shoot vascular tissues appear
to be a major site of ABA biosynthesis in response to stress conditions in Arabidopsis (31).
Consistent with these findings, luciferase reporter expression under the control of the ABA-
responsive AtHD6 (HISTONE DEACETYLASE 6) promoter was detected in the
vasculature and in guard cells in response to drought, suggesting a role for tissue-
autonomous ABA synthesis in addition to long-distance root-to-shoot movement of ABA.

Several mechanisms are considered as signaling cues to initiate ABA biosynthesis, including
hydraulic signals and pH changes (26,74). However, information about the genes and the
underlying mechanisms that detect primary stress signals and cause activation of ABA
biosynthesis and ABA biosynthetic gene expression is just beginning to be revealed. In
response to osmotic stress, the histidine kinase ATHK1 has been proposed to mediate
induction of ABA biosynthesis genes and ABA accumulation because, compared to wild-
type controls, sorbitol-treated athk1 mutants contained lower ABA levels, whereas
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overexpression of ATHK1 produced higher ABA levels (204). Overexpression of the RING-
H2 gene XERICO (84), a putative E3 ligase, and the recessive mutant saul1 (senescence-
associated E3 ubiquitin ligase 1) (145) cause enhanced ABA accumulation. These findings
indicate that an ubiquitin-based protein degradation pathway may be involved in
upregulation of ABA biosynthesis. Moreover, reduced ABA levels in sad1 (supersensitive to
ABA and drought 1) (206) indicate that regulation of RNA metabolism can affect ABA
concentrations. As a whole, limited knowledge exists about the proteins that sense and
translate osmotic stresses to ABA synthesis.

Transcription Factors Involved in ABA Signaling
ABA is known to strongly affect transcription of downstream target genes (99,168). The
presence of ABA-responsive elements (ABREs) within the promoters of many ABA
upregulated genes suggests that transcription factors binding to ABREs may represent major
downstream targets of ABA signaling responses (99,168). A bZIP transcription factor,
AREB1/ABF2 (ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR 1), was
identified as a binding protein to ABRE motifs and shown to be phosphorylated by ABA-
activated SnRK2 kinases (37). Posttranslational modification of AREB1 might trigger
induction of downstream ABA-responsive genes because enhanced general ABA responses
were reported by over-expression of a constitutively active truncated form of AREB1 (36).

In addition to ABREs, MYBR (MYB-recognition site) and MYCR (MYC-recognition site)
are cis-elements identified in the promoters of ABA-regulated genes (208). Two guard cell–
expressed MYB transcription factors, MYB60 and MYB61, function in light-induced
stomatal opening (27,106). MYB60 expression is downregulated by ABA and upregulated by
light, which correlates with the reduced stomatal opening of the atmyb60 mutant (27).
MYB61 expression is upregulated in the dark, and overexpression of MYB61 causes
inhibition of light-induced stomatal opening (106).

Moreover, transcripts of MYB44, another guard cell–expressed transcription factor,
accumulates in response to abiotic stresses (76). Transgenic plants overexpressing MYB44
were hypersensitive to ABA in stomatal closure. Notably, stress induction of several cluster
A PP2C mRNAs was severely compromised by MYB44 overexpression, which correlates
with the over-expression phenotype (Figures 3, 4).

The cis-element CCAAT box is found in 25–30% of all mammalian promoters and is
recognized by nuclear factor-Y (183). It was recently reported that the Arabidopsis NFYA5
(NUCLEAR FACTOR Y, SUBUNIT A5) and the maize NF-YB2 function as positive
regulators of drought-stress responses (104,130), suggesting a possible role of the CCAAT
box element and its binding partner NF-Y in ABA/abiotic stress signaling. Besides
transcriptional induction by ABA, NFYA5 gene expression is further enhanced by
posttranscriptional control of NFYA5 mRNA stability. NFYA5 transcripts contain a target
site for the microRNA, miR169, which is downregulated by drought. Furthermore,
overexpression of miR169 and a T-DNA insertion mutation in NFYA5 both caused drought
sensitivity in Arabidopsis (104). The MYB101 and MYB33 transcription factors are also
targets of a microRNA (miR159) and modulate ABA responses (149).

In addition to the positive regulation of ABA signaling by transcriptional activators, possible
transcriptional repressors AtERF7 (ETHYLENE RESPONSE FACTOR 7) and NPX1
(NUCLEAR PROTEIN X 1) negatively modulate ABA signaling (79,175). Supporting
AtERF7 and NPX1 as negative regulators of guard cell signaling, overexpression transgenic
lines of AtERF7 or NPX1 exhibit a reduced ABA sensitivity in stomatal movements and an
increased wilting phenotype in response to drought stress (79,175).
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Roles of 26S Proteasome-Dependent Protein Degradation in ABA Signaling
Specific target protein degradation by the 26S proteasome is a common regulatory
mechanism in plant hormone and light signal transduction. Series of enzymes function in
tagging target proteins with small ubiquitin modifiers for destruction. In particular, E3
ligases function to select specific target proteins by direct protein–protein interactions (193).
Among different types of E3 ligases, E3 SCF (SKP1-CULLIN-F-BOX PROTEIN)
complexes containing F-box proteins with LRR (leucine-rich-repeat) motifs have been
identified as major hormone perception and response proteins in auxin, jasmonic acid (JA),
gibberellin, and ethylene signal transduction (159,193). However, during ABA and abiotic
stress signal transduction, RING or U-box type E3 ligases have instead been identified as
regulatory components (177,217,218). For example, AIP2 (ABI3-INTERACTING
PROTEIN 2) is a RING-type E3 ligase and regulates protein stability of ABI3 (ABA-
INSENSITIVE 3) (217). In vitro ubiquitylation of ABI3 by AIP2 and ABA hypersensitive
phenotypes of the aip2 mutant suggest that AIP2-mediated ABI3 protein degradation
downregulates ABA signal transduction (217). Similarly, the RING E3 ligase KEG (KEEP
ON GOING) was shown to ubiquitylate ABI5 (ABA-INSENSITIVE 5) (177). Consistent
with the direct interaction of KEG with ABI5, increased ABI5 protein levels were found in
keg T-DNA insertion mutants (177).

Besides the specific ubiquitylation-dependent degradation of positive transcription factors
such as ABI3 and ABI5, degradation of negative ABA signaling regulators has also been
implicated in regulation of ABA signaling. Genetic mutants of the RING E3 ligase SDIR1
(SALT- AND DROUGHT-INDUCED RING FINGER 1) produced reduced ABA responses
in seed germination as well as in stomatal closure, suggesting SDIR1 targets negative
regulators of ABA signaling (218).

In addition to ubiquitin-mediated protein stability, sumoylation of protein targets is also
involved in ABA and abiotic stress signaling. SIZ1 is a component of a sumoylation-
mediating E3 ligase (17,118). ABA hypersensitive seed germination, root growth, and gene
expression phenotypes of siz1 indicate that SIZ1 negatively regulates ABA signal
transduction. In fact, sumoylation of ABI5 by SIZ1 produces inactive ABI5 and attenuates
ABA responses during seed germination (118). In addition to ABI5, accumulation of
sumoylated proteins by drought treatment (17) suggests more stress-response targets are
regulated by SIZ1-mediated sumoylation. Given the importance of regulated protein
degradation for ABA responses, research is needed to determine how these mechanisms may
mediate ABA control of stomatal movements.

Epigenetic Regulation in ABA Signaling
Recent evidence indicates that epigenetic regulation is also involved in transcriptional
control of plant stress responses (23). Chromatin modification and DNA methylation are the
two most frequently observed epigenetic regulation mechanisms in eukaryotes that require
coordinated actions of diverse sets of regulatory components. The ABA and cold stress–
hypersensitive mutant hos15 (high expression of osmotically responsive genes 15) encodes a
WD40 motif containing protein with similarity to human TBL1 (TRANSDUCIN β–LIKE
PROTEIN 1), which is known to repress gene expression by histone deacetylation (220).
Consistent with this, HOS15 interacts with histone H4 directly, and hos15 mutants contain
more acetylated histone H4 than wild type. These data suggest that HOS15 negatively
regulates ABA and abiotic signal transduction by deacetylation of histone H4 (220).

An Arabidopsis component of the SWI/SNF chromatin remodeling complex SWI3B was
identified as an interacting protein of the PP2C HAB1 (156). The swi3b mutant exhibited
reduced ABA sensitivity during seed germination and seedling growth by down-regulation

Kim et al. Page 15

Annu Rev Plant Biol. Author manuscript; available in PMC 2011 March 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of ABA-dependent gene expression. Chromatin-immunoprecipitation (ChiP) results using
HAB1 as bait suggest that ABA-induced transcription is regulated by direct interactions
between SWI3B and HAB1 in the presence of ABA. In addition to direct contributions of
epigenetic regulation to ABA signal transduction, stress-induced epigenetic controls have
been hypothesized to establish a “stress memory” in plants in preparation for upcoming
stresses (23). More research is needed to determine the relative significance of this model.

Interaction with Jasmonic Acid Signaling
Novel roles of ABA signaling during pathogen infection and antagonistic control of ABA
signaling in defense responses against biotic stresses have been found (185). JA is one of the
major plant hormones that regulates plant biotic stress signal transduction. The JA-
derivative, MeJA (methyl jasmonate), induces stomatal closure through a COI1
(CORONATINE INSENSITIVE 1)- and JAR1 (JASMONATE RESISTANT 1)-dependent
signaling pathway (123,179). Other research indicates that MeJA treatment inhibits ABA-
induced stomatal closure (115) rather than causes stomatal closure. More research is needed
to clarify the proposed opposing MeJA responses.

MeJA-triggered activation of S-type anion channels and Ca2+-permeable (ICa) channels is
abolished in abi2–1 (123), indicating that MeJA induces stomatal closure through ABA
signaling. Guard cell–abundant TGG1 (THIOGLUCOSIDE GLUCOHYDROASE 1) also
functions in regulation of ABA- and JA-triggered stomatal closure. tgg1 was impaired in
ABA-inhibition of inward K+-channel activity and stomatal opening (219), and ttg1/ttg2
double mutants were defective in ABA- and JA-induced stomatal closure responses (71),
suggesting a role of glucosinolate metabolism in guard cell ABA signaling.

NEW APPROACHES AND PERSPECTIVES ON THE STUDY OF GUARD
CELL SIGNALING

Cell biological/physiological and molecular genetic approaches have identified numerous
components and regulatory mechanisms in guard cell signal transduction. Functional
redundancies in major signaling components require alternative approaches that combine
mechanistic characterizations of gene functions and parallel innovative systems approaches
to advance our understanding of the guard cell signaling network.

Genomic scale analyses of guard cell gene expression (99,210) have led to the identification
of guard cell signal transduction mechanisms, including redundant signaling mechanisms
(71,90,120). In addition, tiling array-based analyses of whole plant samples, at the level of
the whole genome, have identified comprehensive ABA-/stress-dependent transcriptomes
(111,216). In particular, the identification of more than 7000 stress-inducible, noncoding
elements (111) suggests important regulatory functions of noncoding transcripts in ABA
and/or stress signal transduction. However, information regarding the roles of stress-
inducible, noncoding transcripts in guard cells and other tissues is still elusive.

Complementary to guard cell transcriptome analyses, mass spectrometric profiling of guard
cell–expressed proteins has identified 1734 proteins, including 336 newly detected proteins
(219). Considering the critical roles of protein kinases such as SnRK2s, CDPKs, and HT1 in
ABA and CO2 signaling (55,101,125,160,213), phosphoproteome and ubiquitome profiling,
in addition to total protein profiling, will provide new insights for downstream target
identifications.

Although dissection of gene and protein expression modification networks can guide stress
signaling pathway models, the real-time physiological status during stress responses is hard
to predict. Metabolomic profiling of total plant cell extracts provides a tool for
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understanding physiological changes under abiotic stress conditions. Combined approaches
of transcriptome/proteome analyses with metabolite profiling have identified dynamic
metabolic changes during drought stress (8,189). With the accumulation of genetic,
proteomic, and metabolomic profiling data sets, an integration of quantitative data by
computational modeling (103) can guide the prediction of signaling interactions and novel
regulatory mechanisms in ABA/stress signaling.

Despite the major advances made in understanding guard cell signaling, there are still many
questions remaining before a comprehensive understanding of stomatal regulation is at hand.
What are the gene identities encoding other major regulators and ion channels in guard cells
(e.g., R-type anion and ICa channels) (Figures 1 and 4)? How do stress signals increase ABA
concentrations in guard cells? What are the precise structure and protein–protein interactions
of guard cell signaling networks, and how are diverse signals such as ABA, CO2, light, and
ozone integrated at the mechanistic level? What is the mechanistic basis of Ca2+ sensitivity
priming and Ca2+ specificity? In the future, further research into individual signaling
mechanisms, combined with genomics and systems biology analyses of guard cell signaling,
will advance our knowledge of ABA and CO2 signal transduction. For example, protein–
protein interaction screens of membrane proteins will generate a regulatory interaction map
of plant cell signaling. While stomatal movement analyses have the potential of quantifying
and detecting mechanisms that affect guard cell signaling, either directly or indirectly,
analyses of the modulation of downstream signaling targets such as membrane potential, ion
channels, protein kinases, and transcription are needed for gaining an understanding of the
underlying signaling mechanisms. Furthermore, real-time measurements of parameters such
as stomatal conductance in signaling mutants using intact leaves and plants point to
mechanisms that have strong physiological effects (e.g., 55, 66, 214), and such intact plant
response analyses will lead to physiologically significant and integrated information.

Continued expansion of the mechanistic understanding of the guard cell signal transduction
network is also of relevance, considering global population growth and predicted
environmental changes due to the continuing rise in atmospheric CO2, increasing
temperatures (11), and limited availability of fresh water. Thus, guard cell signaling research
will both enrich our general understanding of basic mechanisms that mediate plant cell
signaling and likely illuminate new approaches for engineering improved water-use
efficiency and dessication avoidance in crop and biomass-producing plants.
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Figure 1.
Summary of guard cell signaling and ion channel regulation. This model focuses on guard
cell ion channel functions and ABA-induced signal transduction across the plasma
membrane and vacuolar membrane of guard cells. Signaling events during stomatal closing
are shown in the left guard cell, and major regulation steps for ABA-inhibition of stomatal
opening mechanisms are shown in the right guard cell. Abbreviations: ABA, abscisic acid;
ICa, inward Ca2+ current; S-type, slow-type; SLAC1, SLOW ANION CHANNEL
ASSOCIATED 1; R-type, rapid-type; SV, slow vacuolar; VK, vacuolar K+ selective; TPK1,
TWO PORE K+ CHANNEL 1; AHA1, ARABIDOPSIS H+ ATPASE 1; OST2, OPEN
STOMATA 2.
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Figure 2.
A simplified model illustrating the functions of recently identified genes and mechanisms in
guard cells mediating CO2 control of stomatal movements. In this model, the HT1 protein
kinase and ABCB14 proteins function as negative regulators (red ), and CA1 and CA4,
GCA2, and SLAC1 function as positive mediators ( green) of high CO2-induced stomatal
closing. Convergence with abscisic acid (ABA) signaling is also indicated. Abbreviations:
HT1, HIGH LEAF TEMPERATURE 1; GCA2, GROWTH CONTROLLED BY ABSCISIC
ACID 2; CA, CARBONIC ANHYDRASE; SLAC1, SLOW ANION CHANNEL
ASSOCIATED 1.
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Figure 3.
A proposed simplified model for early ABA signaling events. In the absence of ABA,
PP2Cs negatively regulate activation of SnRK2 kinases. Without activation of SnRK2s,
downstream ABA signaling targets are inactive. In the presence of ABA, ABA binds to
PYR/PYL/RCAR proteins. The ABA ligand-PYR/PYL/RCAR-PP2C complex then inhibits
PP2Cs and that activates SnRK2 kinases. Active SnRK2 kinases phosphorylate downstream
target proteins, including NADPH oxidases, the SLAC1 anion channel and the ABF family
proteins, and generate ABA responses. Abbreviations: ABA, abscisic acid; PYR/PYL/
RCAR, PYRABACTIN RESISTANCE/PYR1 LIKE/REGULATORY COMPONENT OF
ABA RECEPTOR; PP2C, type 2C protein phosphatase; SnRK2, sucrose non-fermenting 1-
related protein kinase 2; ABF, ABA-RESPONSE ELEMENT BINDING FACTOR.
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Figure 4.
ABA-induced Ca2+-dependent (middle and right) and Ca2+-independent (left) signal
transduction mechanisms in guard cells (see text for the details). Abbreviations: ABA,
abscisic acid; PP2C, type 2C protein phosphatase; OST1, OPEN STOMATA 1; RbohD/F,
RESPIRATORY BURST OXIDASE HOMOLOGUE D/F; ICa, inward Ca2+ current;
AtMRP5, MULTIDRUG RESISTANCE PROTEIN 5; CPK, CALCIUM-DEPENDENT
PROTEIN KINASE; GCA2, GROWTH CONTROLLED BY ABSCISIC ACID 2; S-type,
slow-type; SLAC1, SLOW ANION CHANNEL ASSOCIATED 1; R-type, rapid-type.
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