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Abstract

Background: In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with
changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks
encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These
conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have
developed a new BMI framework in which a computational agent symbiotically decoded users’ intended actions by utilizing
both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle
(PARC).

Methodology: The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement
learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich
representation of goal information in terms of predicting the probability of earning reward and it could be translated into
an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed
that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the
presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1)
and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single
unit activity in M1 based on an evaluative feedback that was estimated from NAcc.

Conclusions: Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from
the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals.
During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward
interdependency in the brain.
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Introduction

The design of Brain-Machine Interfaces (BMI) is intended to

establish a direct control and communication channel between the

central nervous system and prosthetic devices operating in the

user’s environment. The ultimate vision for BMIs is to assist users

in a wide variety of motor tasks encountered in the activities of

daily life [1]. Maintaining performance of the BMI while

contending with the complexities of daily life activities is a major

challenge in BMI system design. However, there are few solutions

that can in a hybrid manner contend with dynamics of neural and

environmental conditions, which are necessary for clinical

neuroprosthetic systems. Interestingly, unlike current BMIs,

natural biological systems have emerged in such a way that they

are responsive to complex and changing environments. By

engaging a Perception-Action-Reward Cycle (PARC) through an

intricate set of sensorimotor processes [2,3] internal antecedents

are expressed through actions and ultimately the outcomes of these

actions contribute to shaping future motor behaviors [4,5].

Underlying a large part of this PARC in goal-directed behavior

is valuation, which is the process of computing action-outcome

sequences to optimize future decision-making in the context of

dynamical conditions [6].

While great progress has been made in BMI design, current

approaches for decoding neural activity into behavior completely

ignore the major aspects of the PARC by relying heavily only on

the primary motor representation of behavior [7–9]. For BMIs,

the acquisition of goal-directed behaviors is critical for reach to

grasp motions, which are highly desirable for paralyzed patients

[10]. The most popular methods of neural decoding focus on

reconstructing hand trajectories from motor neuron activity using

input-output modeling derived from electrical engineering appli-

cations [11]. These approaches solve functional regression

problems but are devoid of the key components that are known

to play a role in goal-directed action selection [6]. In addition,

unlike the nervous system, these input-output interfaces are

typically static and cannot adapt without an external training

signal such as the mean square error (MSE) between the true and

predicted behavior. As a result, two main paradigms for providing

an external training signal have been designed and they can be
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categorized as trajectory-based [12–14] or goal-based [15,16] BMIs. In

trajectory-based BMIs, the role of the external training signal is to

generate correction signals between a known trajectory and an

intended trajectory. While this approach is an efficient means of

supervised learning, it is difficult to extract the desired kinematics

from paralyzed individuals. The goal-based BMIs on the other

hand focus on extracting goal information from the brain and

leave the execution of motor movements to an intelligent robot

actuator that shares control. The goal-based BMIs are ideal for

controlled environments with a discrete set of known goals.

However, these may not always be known in new environments.

In addition, the user also loses control over the motor aspects of

the trajectory. Despite these difficulties, these BMIs have proven to

exhibit good performance for the context that they are designed

for but an important question remains to be answered here. Are

the BMIs designed based on these approaches capable of handling

the complexities that arise from the dynamics (both neuronal and

behavioral) of new tasks during daily life activities?

Designing next generation intelligent neuroprosthetics that

actively can evolve with the user to cooperatively maximize a

shared goal could be a solution to the problem of interaction with

complex dynamical environments [17,18]. By putting the user and

intelligent neuroprosthesis in a shared PARC which is based on

the principles of value-based decision making, the user’s intent can

be expressed through prosthetic actions and outcomes. That

action can be evaluated by the user to promote continuous

learning. We call this framework a symbiotic brain-machine

interface (S-BMI). However unlike the PARC in biologic systems,

the PARC in an S-BMI should be modified to incorporate two

different entities; one with biologic and the other with artificial

intelligence. In order to link these two entities as the elements of a

goal-directed system, a minimal set of prerequisites are required

which are considered to be instrumental in the theory of value-

based decision making [6].

An important requirement for S-BMI design is that adaptation

should lead to cooperation between the user and intelligent

neuroprosthesis to achieve the user’s goals. The user’s goal provides

a basis for evaluation of the neuroprosthesis function where higher

values should be assigned to motor actions that increase the

probability of achieving the goal. In order to evaluate motor actions,

an outcome measure is required to be extracted from the user. In this

work, we seek to link motor action and reward expectation of the

user as an outcome measure. The encoding of goal-directed,

rewarding behavior has been localized to many centers in the brain

[19]. The action-reward relationships in the brain [20,21] are

instrumental for the S-BMI design. In this regard, the striatum is a

key structure that represents action-specific reward values in

cortico-basal ganglia loops [22,23] and encodes reward expectation

of actions [24] during goal-directed behavior. It is suggested that the

striatum enhances the association between sensory information and

motor response followed by reward [25]. In this process, the

Nucleus Accumbens (NAcc), a major component of ventral

striatum, is known to modulate reward-seeking behavior by

associating reward values to sensory information and selecting

actions that lead to reward. Integration of reward perception and

motor information in the NAcc has given rise to the idea that NAcc

serves as limbic-motor interface [26].

In addition to linking limbic to motor representations in the

brain, the striatum has been hypothesized to play a major role in

linking the reward feedback to action selection in goal-directed

behavior [27]. Learning based upon this evaluative feedback is the

key feature of the reinforcement learning that makes it appealing

as the computational framework of the S-BMI [28]. Here, we seek

to build a BMI decoder that learns how to take action based on

goal information supplied by the user in the form of an evaluative

feedback derived directly from the brain. Using neurocomputa-

tional mechanisms of reinforcement learning between the NAcc

and the primary motor cortex, it may be possible to engage the

PARC and facilitate performance of BMIs in multiple environ-

ments.

Systematic development of the S-BMI is structured in three

components. In the first part, we introduce an S-BMI decoding

architecture and develop the theory for training it. Second, we

focus on the neurophysiologic aspects of value and demonstrate

how it can be used in the computational architecture. Finally, we

introduce a set of experiments to test the functionality of the S-

BMI.

Methods

A. BMI Control Architecture
By formulating the BMI control as a decision-making problem,

the process of optimization can be built on the theory of Markov

Decision Processes (MDP) and automated using the well-known

approach of reinforcement learning [29]. In the design of S-BMI,

learning through reinforcement is very appropriate because it is

inspired by operant conditioning of biological systems where the

learner must discover which actions yield the most reward through

experience [30]. The approach is built on the concept of valuation

and as described above, valuation is the process of how a system

assigns importance to actions and behavior outcomes. In the design

of S-BMI, we seek systems that compute with action-outcome

sequences and assign high value to outcomes that yield desirable

rewards. This approach is very different from habitual valuation

which does not participate in continual self-analysis [31] which is

important in dynamical environments. One of the main computa-

tional goals in the methods presented here is to develop real-time

techniques for modeling and coupling the valuation between the

user and the BMI (to enhance symbiosis) in a variety of tasks.

In Figure 1, we formulate the control architecture of the S-BMI

based on Actor-Critic implementation of reinforcement learning

[32]. In the S-BMI, the Actor plays the rule of decoding the user’s

neural motor commands. The Actor receives the neural represen-

tation of user’s intended actions, recorded from the primary motor

cortex (M1), as input and translates them into actions in the user’s

environment. Depending on the internal goals of the user, NAcc

represents a reward feedback. The Critic translates this neural

feedback into a temporal-difference error (evaluative feedback) for

adaptation of the Actor. The architecture in Figure 1 combines key

elements of the Actor-Critic framework: actions, states, and value,

which are distributed between the user and the computer code

which we call an ‘‘Intelligent Assistant’’ (IA).

Note that the evaluation (Critic) and action selection (Actor)

subsystems are split into two embodiments (brain and IA), creating

a symbiotic brain-machine system due to the real-time feedback.

In the Actor-Critic framework, the value of an action is specified

by a measure of reward received when that action is selected. At

every instance in time, the brain generates new M1 states, the IA

selects actions, and the Critic estimates the action outcome based

on the representation of reward expectation in NAcc. The update

of the state-to-action mapping is based on the past history of

rewards and the estimation of future rewards. The modulation of

reward activity in the user’s brain defines the task, which is a great

advantage for reaching tasks in the external world because the

designer does not need to specify the reward function in the

environment as is done in conventional reinforcement learning

paradigms [32]. The agent finds an optimal control strategy based

on the user’s neuronal state and the actions that are defined as

Brain-Machine Symbiosis
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movement direction. The key problems in this architecture are the

following:

(1) Translate the neural population NAcc activity into a scalar

evaluative feedback signal. This involves the integration of

improved real-time signal processing methods that capture

global computation on multiple spatial, temporal, and

behavioral scales.

(2) Estimate the state-action value function (shown mathemati-

cally later) that selects future actions given the states. To best

capture the effects of the neural inputs on the architecture,

initialization, and parameter selection of the Actor-Critic

model, we will perform our experimentation first in a

simulator and then on real data collected from a behaving

animal.

Critic structure. To address problem (1) above, the

traditional use of the Critic in reinforcement learning must be

reformulated. In our architecture, the value function was

implemented in the brain and it is biologically trained.

Therefore, we just need to estimate the evaluative feedback from

the neural population response in NAcc. Depending upon the

user’s goal, IA actions might increase or decrease the reward

expectation [33]. During BMI use, we sought to best capture and

model the response of NAcc neurons over time and translate it into

a scalar value that could be used for evaluation of actions of the

Actor. We modeled the hidden parameters in the NAcc data that

pertained to goal proximity and movement directions. By finding

the modulatory effect of IA actions on the reward expectation of

the user, the value function predicted how the actions over time

influenced the reward expectation. Figure 2 schematically plots the

reward expectation as a function of IA’s actions over time where

the positive slope corresponds to approaching the goal and

negative slope represents getting away from the goal. Training the

Critic involved translating the NAcc neural activity to a scalar

function that predicted the gradient of the reward expectation of

the user in presence of known goals. A Time-Delayed Neural

Network was trained using conventional error backpropagation

[34] for this purpose. The network was composed of tap-delayed

lines at the input to capture the temporal structure of the NAcc

activity and a Multi-Layer Perceptron with a linear output

Figure 1. Block diagram of the symbiotic BMI controller. The architecture contains two key components. The Actor is driven by the primary
motor cortex (st) and its primary role is to select actions (ai) in the environment. These actions are evaluated by the Critic, which is driven by the NAcc.
At each instance in time, the Critic provides an error signal (et) that is computed based on the gradient of reward expectation (vt) and is used to adapt
the parameters of the Actor for choosing actions that lead to reward. In this entire system, there is in intrinsic coupling between the motor system,
reward system, and the environment.
doi:10.1371/journal.pone.0014760.g001

Figure 2. Conceptual diagram of reward expectation modula-
tion of the user based on IA actions. The temporal structure of
NAcc neuronal activity indicates the expectation of reward or aversion
in goal directed tasks. The Critic must interpret this activity and
transform it to a scalar error signal.
doi:10.1371/journal.pone.0014760.g002
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Processing Element for estimating a scalar evaluative feedback

from the multi-channel NAcc neural activity.

Actor structure. The Actor was a parameterized policy

estimator that treated neural activity in M1 as a Markov process.

The role of the actor is to find a mapping between user’s neural states

and robot actions to maximize a measure of the user’s reward

expectation that was presented by the Critic. The user’s reward

expectation (n) was a function of the IA’s actions and user’s neural state.

nt s,að Þ~E rtz1 st~s,at~aj½ �,Vs [ S,Va [ A ð1Þ

At each time step, the Actor, which was parameterized by h, took

action under policy p.

p a s; hjð Þ~ Pr at~a st~sjð Þ ð2Þ

The cost function was defined as the average of expected reward over

time.

J(h)~
1

T

XT{1

t~0

nt s,að Þ ð3Þ

The Actor should find a set of h�that maximized J over time,

i.e. h�~ arg maxpJ hð Þ. As the Actor converged to the optimal

policy, the user can actively control the actions by modulating

appropriate neural states. During adaptation, the Actor estimated

the gradient of J with respect to states and actions and improved

the policy by adjusting its parameters h in the direction of +J
therefore an instantaneous measure of gradient direction was

required. We defined an instantaneous error that resembled the

temporal difference error in the regular Actor-Critic architecture

as an estimate of +J

et~cnt{nt{1 ð4Þ

To approximate the optimal policy, we used a Time-Delayed

Neural Network. As in other BMI experiments, we use the firing

rate as the input over all channels within 100 msec windows,

which have been embedded in longer time windows using a

gamma memory structure [35]. The network architecture was

composed of a set of nodes that received the M1 neural state as

input. A hidden layer formed a set of basis functions and finally the

output layer, which spanned an action space for IA. The exact

specification of the number of processing elements is presented in

the results section. In a discrete action space, each output

processing element represented one action and computed the

value of the corresponding action given parameter set h and input

neural state St (Eq. 2). The Actor executed the action with the

highest value and received an evaluative feedback from the Critic.

The evaluative feedback was computed by Eq. 4 and back-

propagated [34] to the Actor network to adjust the parameters of

the selected action (Eq. 5).

hi
tz1~hi

tzgety stð Þ ð5Þ

Here y(st) represented the projection of input M1 neural state to a

feature space spanned by the hidden layer of the multi-layer

perceptron in the Actor structure. The superscript in Eq. 5

corresponds to the index of selected action. Table 1 summarizes

the Actor’s adaptation procedure in the S-BMI architecture.

B. Neurophysiology
Since the Actor-Critic architecture depended heavily on the

evaluative feedback from the NAcc, we first performed neuro-

physiological studies to characterize the evaluative feedback

information in it and its appropriateness as a training signal for

the S-BMI architecture. We implanted microwire array electrodes

into the left NAcc of three Sprague-Dawley rats and chronically

recorded single unit activity of accumbal neurons during a

reaching task. Each array was 862 electrodes (16 total) with 250

mm row and 500 mm column spacing (Tucker-Davis Technologies,

Alachua FL). The arrays were positioned stereotaxically and

lowered with a hydraulic micro-positioner to an approximate

depth of 7.060.2 mm (Figure 3) [36]. This site was chosen because

of the high density of medium spiny neurons at this level [37].

Additional details of the surgical technique are given in [38]. The

rats were given up to two weeks to recover from surgery before

resuming the experiment. All procedures were approved by the

university Institutional Animal Care and Use Committee (IA-

CUC). All rats were trained in a two-lever choice task via operant

conditioning to earn water reward by pressing retractable levers

(Med Associates, St. Albans VT) inside their behavioral chamber

cued by lights (LEDs) (Figure 4). A solenoid controller (Med

Associates) dispensed 0.04 mL of water into the reward center on

successful trials. The press and hold time was variable between

0.125 to 0.5 seconds. An IR beam (Med Associates) passed

through the most distal portion of the reward center. The

workspace used low-level lighting and was designed to maximize

the rat’s visual abilities. After the rats reached the operant

conditioning inclusion criteria of 80% on each side, neural data

was recorded for six sessions.

Electrophysiological recordings were performed using commer-

cial neural recording hardware (Tucker-Davis Technologies,

Alachua FL). A system (one RX5 and two RP2 modules) operated

synchronously at 24414.06 Hz to record neuronal potentials from

microelectrode arrays. The neuronal potentials were band-pass

filtered (0.5–6 kHz). Next, online spike sorting [39] was performed

to isolate single neurons in the vicinity of each electrode. Prior to

the in vivo recording, the experimenter reviewed each sorted unit

over multiple days to refine the spike sorting thresholds and

templates. The number of sorted single units varied between rats:

rat01 had 12 units, rat02 had 13 units (including one multi-unit),

and rat03 had 41 units. The isolation of these units was repeatable

over sessions with high confidence from the recordings. Once the

Table 1. Adaptation algorithm of the Actor structure.

1 The user generates motor state st and its reward expectation is nt .

2 The Actor associates st to action ai and executes the selected action.

3 Execution of action ai increases or decreases the reward
expectation, which would be reflected by ntz1 .

4 The error is defined as et~cnt{nt{1

5 If etw0

This error is used to update the parameters of selected action.

The hidden layer weights are not changed.

If etv0

Parameters of selected action would be updated.

The error back propagates to the hidden layer and updates the
hidden layer weights.

6 Return to step one.

doi:10.1371/journal.pone.0014760.t001
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neurons were isolated, the data acquisition system recorded unit

firing times and a firing rate estimate was obtained by summing

firing within non-overlapping 100 ms bins. Additionally, all

behavioral signals (e.g. water rewards, light activation) were

recorded synchronously using the shared time clock.

C. Closed-loop Simulator
The first step in systematically testing the functionality of the

Actor-Critic architecture driven by both M1 and NAcc was to

develop a simulator. The simulator offers the possibility of

presenting environmental changes and inputs with known

characteristics that allows the study of how both interact with

the model initial conditions, parameter selection, convergence

and overall performance. Since it was difficult to control every

aspect of neuronal responses during in vivo experiments, the

simulator offered a method to investigate these aspects before

running closed-loop experiments with the animal in the loop. The

simulator was composed of three main modules: neural firing

synthesizer, Actor-Critic controller, and environment. The

environment could be specified as 2D or 3D. However, for

simplicity we first began with a 2D environment that consisted of

a 20620 grid world with 0.1 spacing between each node. The

task was to navigate a robotic arm from the center of the grid to

any target in 2D space based on the neural representation of the

motor commands and a scalar evaluative feedback. The neural

firing synthesizer in our simulation consisted of an ensemble of

synthetic M1 neurons that were generated based on the model

presented in [40]. The main parameter of neural firing module

was the tuning properties of the neurons. The ensemble of

cortical neurons was composed of four subsets where neurons in

each subset were tuned to a principal direction (up, down, right,

and left) in the workspace. At each time step, the neural firing

synthesizer produced a motor command that was encoded into

M1 neural activity by exciting the corresponding subsets of

neurons. For example, if the user decided to navigate the robot in

the up-right direction, those neurons in the ensemble which were

tuned to the right direction and up direction were activated. The

Actor-Critic controller received neural input from the neural

firing simulator and used it to navigate. Next, we required a

synthesizer of the NAcc evaluative feedback. To approximate

both rewarding and aversive evaluative feedback we used the

cosine of the angle between the robotic arm movement and the

direct path to the target. With this simulation, behaviors that are

maximally rewarding are directly in the direction of the target

and would yield the cosine of zero, which is a maximally positive

value. Conversely if the movement was in the opposite direction

of the target the behavior would be aversive and maximally

negative. Based on the robot movement with respect to the target,

movement and target vectors were computed at each time step.

We selected cosine function because it converted movements

towards target (290,h,90) into a positive and movements away

from the target (90,h,270) to a negative value. This error signal

resembled the temporal-difference error d in the Actor-Critic

algorithm. Each experiment was composed of 100 trials where

each trial consisted of a single reach to a specified target. In each

trial, if the agent could not reach the target in 50 steps the trial

was considered unsuccessful.

Figure 3. Stereotaxic neurosurgical methods were used to
target the NAcc and M1. In experiments involving simultaneous
recording of NAcc and M1, a dual electrode array was implanted.
doi:10.1371/journal.pone.0014760.g003

Figure 4. Top view of the animal behavioral box. A nose poke into the IR beam initiated the random selection of a target level cued by a light
(LED). The animal had up to 4 seconds to press a lever. If the correct lever was pressed, a water reward was delivered.
doi:10.1371/journal.pone.0014760.g004
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D. Simultaneous Decoding using M1 and NAcc
After the simulator analysis was completed, a real S-BMI

experiment was conducted to test the Actor-Critic decoding

performance using real M1 and NAcc neural activity. Here a 3-

D reaching task was completed by modifying the experiment

setup in section II.B by adding a robotic arm as in [28]. The

robot workspace was in front of the rat’s cage and the rat was

able to see it through Plexiglas cage wall. Two levers on the left

and right sides of the robot workspace were used as targets. The

distal target was cued by light (LED) and the task was to navigate

the robot to the distal target. Once the robot reached the target,

a water reward was delivered to the rat. A Male Sprague-Dawley

rat was trained in a two-lever choice task via operant

conditioning to associate robot control with earning water

reward [41]. The behavioral procedure was similar to those in

II.B. except that instead of the rat manually pressed the levers

inside the cage to obtain water reward, a robotic arm was used

to press the set of distal levers. The training paradigm was

designed to shift the attention of the rat to the movements of the

robot. Once the rat made association between the reward and

robot actions, catch trials were introduced in which the robot

moved to the lever that was not cued (non-target lever). In this

case the rat received an aversive feedback (negative tone with no

water reward). These catch trials provide contrast between

rewarding and aversive target and allow more detailed study of

the evaluative feedback signal used to train the S-BMI. The

order of target and non-target trials was random throughout the

training session but they were balanced to keep the rat

motivated.

After reaching an 80% operant conditioning inclusion

criterion, the rat was chronically implanted unilaterally with a

custom designed microelectrode array (32 electrodes) that

simultaneously targeted the layer V of the forelimb area in the

M1 [42,43] and the NAcc (see Figure 3). Each array was 862

electrodes with 250 mm row and 500 mm column spacing (Tucker

Davis Technologies (TDT), Alachua FL) but the length of arrays

for MI and NAcc were different to target each structure. The

arrays were positioned stereotaxically and lowered simultaneously

with a hydraulic micro-positioner to an approximate depth of 1.6

mm for the MI array and 7.5 mm for the NAcc array. Spatio-

temporal characteristics of neuronal signal during insertion

provided additional information about the array location relative

to neurophysiologic landmarks. The rat was given up to two

weeks to recover from surgery before resuming the experiment.

Prior to the first closed-loop experiment, the experimenter

reviewed each sorted unit over multiple days to refine the spike

sorting thresholds and templates. In this experiment, 20 single

units in M1 and 23 single units in NAcc were isolated. The

isolation of these units was repeatable over sessions with high

confidence from the recordings. The simultaneous M1 and NAcc

recordings were used to derive the Actor-Critic architecture in

Figure 1. Testing of the decoding performance consisted of

adapting a naı̈ve Actor (randomized weights) using the output of

the Critic.

Figure 5. Perievent time histogram of 3 representative NAcc neurons. Dual-nonselective neurons (both decrease firing after cue) for (A) left
and (B) right trials. Dual-selective neurons (increase and decrease firing for both targets) (C) left and (D) right trials, and uni-selective neurons
(decrease for one and stay constant for the other target) for (E) left and (F) right trials.
doi:10.1371/journal.pone.0014760.g005
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Results

The development of the Actor-Critic architecture for S-BMI

required testing and validation of three characteristics of its design.

Innovation in the Actor-Critic design is rooted in the new training

signal from NAcc, the ability to adapt to environmental changes,

and the ability to respond to neural plasticity. Therefore we

quantified the properties and performance in the following areas.

N Temporal properties of the evaluative feedback signal from

NAcc which will be used to train the network

N Convergence properties of the Actor-Critic during environ-

mental changes

N The effect of neural reorganization on Actor-Critic general-

ization

N Simultaneous use of real M1 and NAcc activity in decoding

The results section is composed of four parts. First, we

performed a neurophysiology study of NAcc during a reaching

task and quantify and model the temporal structure of neural

ensemble firing leading up to reward. This defined the expected

nature of the temporal-difference error signal. Second, we tested

how changes in sequential novel target locations affect the

convergence of the network. Third, we introduced neural plasticity

at the input to the Actor-Critic model and tested the performance

over time. Fourth, we used real M1 and NAcc activity to test

decoding performance of the full system.

A. Temporal Properties of NAcc Activity Leading up to
Reward

Since a biological, neural-based error signal was used to adapt

the network using reinforcement learning, a set of guidelines for

what can be expected from the temporal modulation of the NAcc

leading up to target acquisition was developed here. We are

interested in the segment of time between target selection and

acquisition and measure how accumbal neurons are excited or

inhibited leading up to the target providing reward. To investigate

this aspect, the data from the rat lever pressing experiments was

segmented so that each trial was time aligned to the onset of the

lever press indicated by time 0 in Figure 5 (panels A–F). Next, 4

seconds of data leading up to this point was extracted which we

will call the ‘‘target acquisition time’’. This duration was selected

because it corresponded to the maximum time between cue and

press for all animals and trials. During the target acquisition time,

neuronal firing was binned into 100ms windows and a firing rate

was computed. The perievent time histograms in Figure 5 (panels

A–F) correspond to the average firing rate over left or right trials

during the target acquisition time. Also included are the individual

raster plots for each trial.

Figure 6. Decoding performance during sequential presentation of the targets in the four-target configuration. (A) Sequential
presentation of 4 targets as indicated by red stems. Blue stems indicate if the target was acquired (1) or missed (0). Note that when a new target is
introduced the performance decreases but within a few trials it recovers. (B) Temporal sequence of action values. Each colored trace represents the
value of one action (i.e. up, down, left, right). Note that for each target only certain actions have high value since they are required to acquire the
target. (C) Weight values for the output layer of the Actor. Each colored trace corresponds to an individual weight. Note that when a new target is
introduced that the weights adapt then plateau once the performance improves. (D) The temporal difference error becomes maximally positive when
the targets are acquired.
doi:10.1371/journal.pone.0014760.g006
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In this analysis, three groups emerged in the neuronal firing and

representative plots of the firing are presented. We performed

statistical analysis to identify neurons in each group quantitatively.

For each neuron we compared the baseline activity (2 seconds

before the cue as indicated by the red bar) with the neural activity

during 2 seconds before the lever press using Kolmogorov-

Smirnov test (KS-test). The first group of neurons responded non-

selectively to both targets. As the animal approached to each

target, the neurons in the first group increased or decreased their

firing rates. In the second group, neurons selectively responded to

each target. The neurons in this category exhibited excitatory and

inhibitory activity when the animal approached the left and right

targets respectively. The neurons in the third group responded

only when the rat approached either target and they did not

respond to the other target. Out of 66 isolated neurons (63%)

significantly changed their firing rate during goal-approach

behavior compared to their baseline activity. In accordance with

the three categories that we identified, (46%) belonged to the first

category, (25%) belonged to the second category and (39%)

belonged to the third category.

The result of our neurophysiology study suggested that there is a

hetereogeneous and rich representation of goal information in the

NAcc during goal-approach behavior. The next step in the design

of the Actor-Critic was to transform this neural representation into

a scalar evaluative feedback error signal for adaptation of the

Actor. As in the conventional Actor-Critic learning, both the

negative and positive reinforcement are required for training the

Actor. Extracting the positive and the negative components of

evaluative feedback is supported by both our observations here

and in the literature with respect to representation of reward and

aversion prediction [44].

B. Convergence of the Actor-Critic during environmental
changes

One of the primary advantages of the Actor-Critic architecture

is that it is designed to symbiotically adapt with the user during

environmental changes. The goal here is to perform simulated

closed-loop experiments will be to determine how the Actor-Critic

model performance is affected when a new target (unforeseen to

the user) is introduced to the behavioral workspace. The addition

of new targets is a common occurrence in the activities of daily life

and it is expected that with each new target there are unseen

aspects of the control scheme that need to be learned and the

process will take time. Because the Actor-Critic learns on-line and

can respond to changes (unlike static BMIs which learn from a

training set), we will test the condition where the navigation of

robot to a new target will require the selection of a new action (or

action set) to be learned to reach the new target. The new target

will be located outside the space spanned by the previously leaned

control policy therefore the IA will not be able to reach the new

target without the learning to acquire this new action set. The

experimental approach was designed to introduce a perturbation

to the BMI control paradigm so that the performance difference

could be measured. In this section, we specifically focus on an

important question regarding the applicability of BMI in daily life

activities. How does learning a new task affect the previously

learned functional mapping for BMI control?

For these experiments, the task was to navigate to a set of targets

located at each of the corners of a square 2D workspace. However,

all of the targets are not presented at the same time. Targets were

numbered as following: 1-Upper-right, 2-Lower-left, 3-Upper-left

and 4-Lower-right. Starting from a naı̈ve state (random small initial

Actor weight values between 20.5 and 0.5), the Actor-Critic

decoder was required to adaptively find a control policy to reach

each target using only the synthesized M1 and NAcc activity. Once

the decoder found an appropriate control policy for the task, a new

target was introduced. In this way, we presented all the four targets

sequentially (1–4) therefore the decoder had to change its control

policy for reaching each target. For the first target, the parameters of

the decoder were initialized randomly but afterward the network

started from the previously learned control policy (i.e. previous

Actor weight values). Once the Actor-Critic learned each task

individually, we presented all the four targets where, one of the four

targets was presented randomly in each trial. In this task, the

decoder had to derive a control policy that enabled switching

among all the targets. In other words the network had to remember

its previous control policies. In each of the tasks, to consolidate the

control, as the decoder learned a control policy the learning rate was

annealed to zero and parameters of the decoder were frozen.

However, at the introduction of a new task, the learning rate was

reset and the network resumed adaptation. The learning rate

annealing is an important aspect of co-adaptation because it

controls to what extent the BMI adapts to the user. In this S-BMI

architecture in particular, there were two reasons for annealing the

learning rate. First, from machine learning point of view, every time

the decoder successfully completes the task the association between

the M1 neural states and Actor-Critic actions are reinforced by

increasing the corresponding network weights. Annealing the

learning rate prevents the network weights from growing unlimit-

edly. Second, based on the representation of reward, the NAcc

become habituated to specific goals over time [45,46] and may

reduce the amount of evaluative feedback over time.

Figure 6 shows the performance of the decoder during this set of

experiments. The red stem plot in Figure 6A shows the targets that

were presented during each trial. The blue stems in Figure 6A

show whether the decoder was successful or not in the

corresponding trial. Here, we can see by introducing a new target

(e.g. at trial 100), performance degraded at the beginning but after

a few trials the decoder was able to learn all the new tasks. Table 2

summarizes the decoding performance during sequential target

Table 2. Decoding performance during sequential target acquisition.

Target 1 Target 2 Target 3 Target 4 All 4 Targets

Trials 1–100 1–100 1–100 1–100 101–200 1–100 101–200

Speed1 5 8 22 - 6 - 10

Accuracy2 100% 100% 96% 46% 100% 40% 98%

1Speed is defined by the number of trials to converge to a control policy to solve the task consistently.
2Accuracy is defined by the rate of success after convergence. For the first 100 trials of ‘‘Target 4’’ acquisition and ‘‘All 4 Targets’’ tasks that the decoder did not
converge, the accuracy is computed during adaptation.

doi:10.1371/journal.pone.0014760.t002
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acquisition task. For each target, 100 trials were presented. The

number of trials that took for the decoder to find the target during

the first 50 trials of each target was used as a measure of speed of

learning. The percentage of successful trials during the second 50

trials was used as a measure of performance. If the performance

was less than 90%, another epoch of 100 trials was presented to

the decoder. Recall, that the output of the Actor network provides

the value of each action take. Figure 6B shows the values of the

Actor output processing elements over time where actions left,

right, up and down are represented by colors blue, green, red and

light blue respectively. For each task, we can see the network

adjusted its parameters in such a way that maximized the

probability of selecting actions that were required for accomplish-

ing the task. For example, in trials 100–200 actions down and right

were necessary for reaching the target. These are the actions with

the highest value (green, light blue). However, when all targets

were presented during trials 500–800 we can see that a mixture of

actions had high value and these modulated depending on the

target and feedback from NAcc. In Figure 6C we can see how the

network adjusted the output layer weights to find a mapping

between neural states and optimal actions based on the error

signal. It is important to note that at the introduction of a new

target, we can observe adaptation in the weight values and then

consolidation of the control scheme through the plateau of the

weight values. When an environmental change occurred, again the

weights adapted appropriately. To guide the adaptation, the Critic

provided the reinforcement signal here. It was the reward

expectation of the user, which was approximated by the cosine

of the angle between movement vector and target vector. From

Figure 6D, we can see that when a new target was introduced, the

evaluative feedback was the largest in the negative direction (21

because the movement direction and desired direction are 180

degrees apart). Over time, through adaptation the movement

direction and target direction become collinear and the cosine

becomes maximally positive. We emphasize here that all of the

adaptation of the decoder was through NAcc evaluative feedback

and there was no a priori training or any external training signal.

C. Reorganization of neural representation
Brain plasticity is an important design factor of BMI and it has

been observed in the context of many research areas [47,48].

From signal processing point of view, changes in the pattern of

neural activity can be a challenging problem for decoding because

standard, static input output models assume stationarity in the

neural input [49]. In this section, we investigated the reorganiza-

tion in the neural pattern in an extreme situation where after the

decoder converged to a control policy the input pattern for all

neurons was perturbed by shuffling the action preferences. During

these experiments, the task again was reaching targets that were

located at each corner of the workspace (4-target task).

We defined a specific tuning map by dividing 12 neurons in an

ensemble into four subgroups each tuned to one of the principal

directions that were mentioned in the previous section (see

Figure 7A). Here neurons 1–3 were tuned to left, 4–6 right, 7–9

up, and 10–12 down. In this environment, a naı̈ve decoder learned

to perform the task perfectly. The first 100 trials of Figure 8 shows

the performance of the decoder with this tuning map. For each

trial, one of the four targets was picked randomly. We can see the

decoder reached 100% accuracy after 3 trials as shown by the

convergence of the weights and maximally positive error signal. At

Figure 7. Neural tuning map of the synthetic M1 neurons. (A) before and (B) after reorganization. Here ‘hot’ colors indicate maximal firing.
doi:10.1371/journal.pone.0014760.g007
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this point, the tuning map was perturbed by shuffling the preferred

action of the neurons. Figure 7B shows the tuning map of the

neural ensemble after reorganization. Here, the tuning is

randomly distributed among the 12 neurons.

In Figure 8 (trials 100–300) we can see after reorganizing the

neural tuning map, the performance degraded at trial 100 but the

decoder was able to recover performance. By letting the decoder

adapt more, we can see during trials 200–300 the performance

could reach to the level that was before reorganization where the

decoder performed the task perfectly.

D. Robot control using simultaneous M1 and NAcc
Knowledge of NAcc representation and Actor-Critic BMI

adaptation were tied together in a full closed-loop experiment with

real data. In this section, we used the NAcc neural activity that was

recorded simultaneously with M1 to navigate a robotic arm in 3-D

space. Since we have learned that goal approach behavior affected

the reward expectation and modulation of the NAcc neural

activity, here the Critic feedback was defined based on the robot

movement trajectory toward the targets. In this way, the Critic was

designed as a state estimator. If the robot moved towards the target

(Rewarding states) the NAcc neural activity was classified as

rewarding and a positive value (+1) was generated; otherwise, if the

robot moved away from the target (Aversive states) then the NAcc

neural activity was mapped to a negative value (21). The output of

the Critic then was used to adapt the Actor to find mapping

between M1 neural activity and robot actions that lead to the

target. The robot actions were defined as 12 movement directions

in 3D space and the task of the Actor was to select the correct

sequence of actions (based on M1 and NAcc neural activity) that

navigated the robot to the target. In this setup, the Actor was

initialized as completely naı̈ve (small random weight values) and

the task was reaching to one target in 3D space.

The same Critic and Actor structures that were introduced in

section II.A were used in this experiment. For the Critic, 3 tap-

delayed lines were used at the input of the Multi-Layer Perceptron

(MLP) network. The MLP was composed of 5 non-linear

Processing Elements (PEs) at the hidden layer and 1 linear

Processing Element at the output. The output value was

thresholded at zero and at each time step during the trial the

NAcc neural vector was mapped to +1 or 21. Half of the trials

were used for training the Critic and its performance was tested on

the other half. The classification performance on the test set was

72% for providing the correct evaluative feedback of +1 or 21. In

the test set, the parameters of the Critic were fixed and the output

of the Critic was used to train the Actor. The architecture of the

Actor was composed of 3 gamma-tap delay lines at the input with

an MLP network with 3 non-linear PEs at the hidden layer and 12

linear PEs at the output. At each time step, the Actor received M1

neural vector at the input and computed robot action (movement

Figure 8. Network adaptation after reorganization of the tuning map. At trial 100, the reorganization was imposed. (A) Performance
degradation as indicated by the blue stems marking (0) were observed at trial 100. However, with adaptation perfect performance was regained at
trial 200. (B–C) A decrease in performance was matched with adaptation of the action values and weight values to compensate for neural changes.
(D) Evaluative feedback in terms of the error here is shown to modulate more frequently when the performance is poor but it stabilizes once
performance is regained.
doi:10.1371/journal.pone.0014760.g008

Brain-Machine Symbiosis

PLoS ONE | www.plosone.org 10 March 2011 | Volume 6 | Issue 3 | e14760



directions) values at the output. The Critic’s response was used to

adapt the Actor parameters.

Figure 9A shows the learning performance of the Actor during

test trials (40 trials) based on M1 neural activity and Critic’s

evaluative feedback. Here it can be seen that after 16 trials the

Actor converged to the solution and consistently navigated the

robot to the target successfully. After this point, the performance

was 100% for navigating to the target. Analysis of the trajectories

formed by the Actor (see Figure 9B) indicated that early in the

learning there was exploration of the space however, as the system

converged to the solution the trajectory was focused on the direct

path to the target. In order to show the effectiveness of the Critic’s

response based on the real NAcc neural activity, we performed a

surrogate analysis in which the evaluative feedback from Critic

was replaced by a random sequence of feedback values (+1 or 21).

This surrogate analysis destroys the true evaluative feedback from

the NAcc. If the Actor is relying on the evaluative feedback from

the NAcc, then by altering its structure the Actor performance

should degrade. In Figure 9C we can see the Actor was not able to

solve the task with this random value since only one target was

randomly acquired. In addition, the trajectories that were visited

in 3D space were randomly distributed and did not follow the

direct path to the target (see Figure 9D).

Analysis of the parameters of the Actor-Critic revealed

interesting properties of the adaptation that indicated how the

system was able to solve the task. Figure 10A shows the

cumulative performance of the Actor-Critic architecture over

time (concatenating the trials). In this figure it can be seen that

the Actor initially had poor performance up to trial 15 but after

this point performance rapidly increased. It was able to solve the

task by increasing the value of the appropriate action needed to

acquire the target. The red trace in Figure 10B corresponds to

the action Forward-Right-Up that navigates the robot to the

direct path to the target. Increasing the value of the appropriate

action was a consequence of finding the right projection at the

hidden layer weights (see Figure 10C). A powerful property of this

architecture that can be seen in Figure 10C is that prior to the

increase in performance there is large adaptation of the model

parameters indicating the learning process. However, once the

performance begins to increase the adaptation of these param-

eters reduces and they stabilize indicating a consolidation of the

performance.

Figure 9. Actor-Critic decoding performance in navigating the robot to the target based on M1 neural activity. Target acquisition
performance and robot trajectory in 3D space during adaptation of the Actor using: (A–B) an evaluative feedback extracted from the NAcc. (C–D)
Random values as evaluative feedback.
doi:10.1371/journal.pone.0014760.g009
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Discussion

During daily life activities, BMIs should be able to perform well

in complex tasks under conditions of dynamic environments and

neuronal activation. In this paper, we developed a new framework

to contend with these conditions in which goal-directed BMIs

evolve with the user as an Intelligent Assistant through a value-

based decision making process. The main research question in this

regard was how two different entities (artificial and biologic) could

engage in a symbiotic relationship. The key concept in promoting

a symbiotic relation between the user and IA was to link the

Perception-Action-Reward Cycles of the user and IA by sharing

their goal. A challenge in this regard was to match the neural

representation of goal in the brain with the mathematical

definition of goal in the IA. We adopted an Actor-Critic method

for the implementation of S-BMI because it was a goal-driven

architecture that had separate structures for representation of goal

(Critic) and action (Actor). Here, action selection in the Actor-

Critic architecture was based on biologic goal information

presented by Critic in the form of an evaluative feedback.

Therefore, by extracting an evaluative feedback directly from the

brain, the Actor could learn how to take action based on user’s

goals. We formulated the S-BMI control as a decision making

process where the Actor learned action values in each neural state.

Instead of a specific context dependent mapping, in a S-BMI, the

Actor learned a control policy for associating neural states to

actions. Goal-directed adaptation of the Actor played a pivotal

role in aligning the control policy in the direction of the user’s goal.

For the control of neuroprosthesis, the evaluative feedback was

used only for adaptation of the Actor structure when the user

needed help (e.g. novel environment; otherwise, the S-BMI would

not change the control policy).

Compared to other BMIs trained with an external teaching

signal, the first step in the Actor-Critic design of S-BMI was to

extract an internal measure of user’s goal in the form of evaluative

feedback from the brain. We investigated the possibility of

extracting such a signal from NAcc for adaptation of the Actor.

Our results suggested that NAcc contained rich representation of

goal information during goal-approaching behavior. An important

aspect of an evaluative feedback is that it has to contain both

positive and negative reinforcement where the positive component

predicts reward the negative component predicts aversion. We

identified that bilateral selective neurons showed preference

specific targets by decreasing their firing rate as the animal

approached that target. These neurons were good candidates for

extraction of evaluative feedback because they could predict both

positive and negative reinforcement.

In a simulation study, we tested the adaptation of the Actor

based on the NAcc evaluative feedback in two conditions;

changing environments and in presence of dynamic neural states

in M1. The Actor was able to adapt its control policy in changing

environments to solve novel tasks. In all of our simulations, we

observed that by changing the environment the Actor adapted its

control policy accordingly to utilize actions that were required for

Figure 10. Actor’s parameter adaptation during closed-loop control. (A) Cumulative reward over time. (B) Action values computed at the
output layer of the Actor. Each color represents the value of a specific action. Here the red corresponds to the action that navigates the robot in a
direct path to the target. (C) Output of the 3 hidden layer processing elements of the Actor. Larger adaptation of the values occurs before the ‘‘knee’’
of the cumulative reward curve. After the ‘‘knee’’ the system parameters stabilize their relative values indicating consolidation of the performance.
doi:10.1371/journal.pone.0014760.g010
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solving the task. One of the appealing characteristics of S-BMI was

that if a new task was within the space spanned by a learned

control policy, the Actor was able to accomplish the task without

need for adaptation. In other words, the Actor adapted its control

policy only if it was not able to accomplish the task. In the S-BMI

framework the Actor adapts to the user only if the performance

degrades however, adaptation of the learning rate based on a

measure of performance is the subject of future research.

Adaptation of the control policy for novel tasks required utilizing

new sequence of actions; however, in the case of changing neural

patterns, the Actor needed to find a new mapping between the

neural state and actions. We introduced a new neural pattern by

shuffling the action preference of neurons. Again, the IA could

associate the new neural state to appropriate actions just using an

evaluative feedback.

Knowledge from the simulations was used to fine tune closed-

loop S-BMI using real M1 and NAcc recordings. Compared to a

surrogate analysis, the real NAcc evaluative feedback provided a

useful method for adapting the Actor to solve a 3-D reaching task.

One of the challenges we encountered was determining the scalar

feedback needed to adapt the actor from the neural population

information. Here, a standard MLP was used but more

sophisticated methods in the future could be used to complete

this task in either a supervised or unsupervised manner. In

addition for real-time BMI control, evaluative feedback on single

trial basis with high temporal resolution is desirable. This is one of

the challenges in the Actor-Critic design of S-BMI because

incorrect prediction of the NAcc neural activity can lead to

inaccuracy in the Critic’s response and degrade the Actor’s

performance. By increasing the information bandwidth of the

evaluative feedback, more advanced signal processing techniques

should be incorporated to increase the robustness of the value

estimation. Another alternative to mitigate this problem is to

decrease the sensitivity of the Actor to inaccuracy in the evaluative

feedback. Based on the learning algorithm that was presented in

this work the Actor was reasonably robust and able to converge to

a solution based on 72% classification performance of the Critic.

Our preliminary results also systematically showed how the S-BMI

was robust to various noise properties in the evaluative feedback

[50].

The Actor-Critic architecture gives IA great flexibility to adapt

to both changes in the environment and the neural states. As far as

there are repeatable sets of neural states that correlate with the

task, the IA autonomously associates them to appropriate actions

in such a way to maximize user’s goals. Since the IA uses the

brain’s computational capability for reward/punishment predic-

tion, the S-BMI is more computationally efficient than the

conventional Actor-Critic method. However, we should consider

the computation required for estimating the evaluative feedback

from the neural ensemble activity in the brain. Adaptation of value

estimator is the subject of our future research.
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