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Abstract
The quest to characterize each of the genes of the yeast Saccharomyces cerevisiae has propelled
the development and application of novel high-throughput (HTP) experimental techniques. To
handle the enormous amount of information generated by these techniques, new bioinformatics
tools and resources are needed. Gene Ontology (GO) annotations curated by the Saccharomyces
Genome Database (SGD) have facilitated the development of algorithms that analyze HTP data
and help predict functions for poorly characterized genes in S. cerevisiae and other organisms.
Here, we describe how published results are incorporated into GO annotations at SGD and why
researchers can benefit from using these resources wisely to analyze their HTP data and predict
gene functions.

Gene Ontology annotations aid functional genomics
Saccharomyces cerevisiae was the first eukaryotic organism whose nuclear genome was
completely sequenced [1]. This paved the way for the development of strain collections in
which every protein-coding gene in the genome was modified – for example, by deletion,
tagging with green fluorescent protein (GFP) or engineering for overexpression [2–4].
Coupled with advances in technology that allow transcribed regions of the genome to be
detected on microarrays or protein abundance to be detected by mass spectrometry, these
resources have enabled researchers to experimentally survey the S. cerevisiae genome and
proteome [5–7].

The pioneering position of S. cerevisiae as a model organism in the genomics era is based
not only on its experimental tractability and a complete genome sequence but also on the
fact that the extensive literature is curated using Gene Ontology (GO), which enables
researchers to make sense of large quantities of data [8]. The GO Consortium has developed
and continues to update three structured, controlled vocabularies to describe a gene product:
molecular function, biological process and cellular component [9] (Box 1). With these three
vocabularies, GO provides a common language – used by a growing number of research
projects and information resources working in different model organisms – to describe the
functions of gene products from many species [10]. This widespread use has facilitated the
comparison of shared functions among hundreds of organisms, the functional annotation of
newly sequenced genomes and the analysis of many types of data. GO annotations have
become the primary resource used to facilitate the annotation of microarray expression
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profiles, protein interaction networks and regulatory modules [8,10]. The interested reader
can find more articles on GO and its applications in this issue of Trends in Microbiology.

Box 1

Key elements of a Gene Ontology annotation

The Gene Ontology (GO) develops three structured vocabularies, also referred to as GO
aspects [9]. The Molecular Function vocabulary represents basic activities, such as
catalysis or binding. The Biological Process vocabulary represents the larger cellular
goals that are accomplished by multiple molecular functions, such as signal transduction
or pyrimidine metabolism. The Cellular Component vocabulary represents locations in
the cell, from large structures such as the nucleus to smaller structures such as a protein
complex. More information about these vocabularies is available from the GO website
(http://www.geneontology.org/GO.doc.shtml#ontologies)

For many users, it is the association of GO terms with individual genes that makes GO
useful. Scientific curators associate a specific GO term to a specific gene to create a GO
annotation [12]. All genes that produce a gene product, whether protein or RNA, can be
associated with a GO term. In addition to a gene and a GO term, a GO annotation also
includes the source of the information supporting the association, as well as an evidence
code (Figure I). The reference is usually a published paper with a PubMed ID but is
sometimes an unpublished abstract describing a method of assigning GO annotations
used within the GO Consortium. The evidence code indicates the type of evidence that
supports the annotation (Box 2). To avoid possible confusion caused by multiple uses of
the same gene name in the published literature or from GO terms with similar names, the
annotations are made using unique alphanumerical IDs for genes, GO terms and
references. More information about GO annotations is available from the GO website
(http://www.geneontology.org/GO.format.annotation.shtml). The ribbon diagrams of
URA3 [70] and URA6 [71] were contributed to the Protein Data Bank (PDB;
www.pdb.org) [72].

Since 2001, the Saccharomyces Genome Database (SGD) has used GO to provide
descriptions, or annotations, of the functional roles of gene products in S. cerevisiae based
on the published literature (http://www.yeastgenome.org/) [11]. In 2003, S. cerevisiae
became the first organism with at least one GO annotation in each of the three GO
vocabularies for every protein-coding and RNA gene. In this article, we describe how these
GO annotations are curated at SGD to represent the current state of knowledge about the
biology of S. cerevisiae, as well as how the scientific community has used these annotations.
Because we cannot provide a comprehensive review of the entire body of S. cerevisiae
literature that uses GO annotations (over 700 publications, as of April 2009) here, we
highlight applications that facilitate the functional characterization of genes in S. cerevisiae
and other organisms. We also describe why understanding the process of making GO
annotations can improve the results produced by these applications.

How GO annotations are made at SGD
The core of a GO annotation comprises a gene product, a GO term from one of the three
vocabularies, a literature reference and an evidence code (Box 1,2) [12]. At SGD, GO
annotations for all genes are curated from the primary research literature. This means that a
curator – a PhD-level biologist who is an expert at abstracting information from the
literature – has read the published work and determined the appropriate GO annotation(s) to
describe the experimental results in that paper. For this purpose, all available literature for a
gene is reviewed to identify experimental data and sequence-based predictions that
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characterize its molecular activity, cellular localization or biological role (Figure 1a,b).
Thus, the set of manually curated GO annotations for all protein-coding and RNA genes
represents the current collective view of the yeast research community.

Box 2

GO evidence codes

The GO Consortium uses a small set of evidence codes to provide a general idea of the
type of evidence supporting an annotation. Curator-assigned evidence codes require that
a curator has read the paper or analyzed the data to use one of these codes. The curator-
assigned evidence codes can be divided into four categories: experimental, computational
analysis, author statement and curator statement (Table I). Experimental evidence codes
indicate experiments (mutants, genetic analyses, enzyme assays, physical interactions,
etc.) reported in the paper cited. Computational analysis codes indicate annotations based
on computational analyses of various types, often involving sequence data, high-
throughput experimental data or a combination of multiple data types. Author statement
codes indicate that the annotation is based on an author statement in a published paper,
often a review. The statement is considered traceable when another reference is cited and
non-traceable when no reference is associated with that statement. Curator statement
codes indicate judgments made by the curator based on understanding of the biology; for
example, a gene shown to be a transcription factor for RNA polymerase II must be in the
nucleus to function, so the curator can make an annotation to the term ‘nucleus’ using the
IC (inferred by curator) code, or when an overall review of the literature indicates that
there is no information, the ND (no biological data available) code can be used. There is
also one code, IEA (inferred from electronic annotation), for use when annotations are
made automatically by a computational method without curator review (e.g. running
InterProScan and applying the interpro2 go mapping file without any curatorial judgment
to approve the resulting annotations).

Some protein-coding genes also have GO annotations derived from high-throughput (HTP)
experimental data (Figure 1c) or from computational prediction methods (Figure 1b,d) [13].
At present, RNA genes have only manually curated GO annotations because these genes are
generally not included in HTP experiments.

As a pioneer model organism with a small, completely sequenced genome, there are a wide
range of HTP studies for S. cerevisiae (papers describing HTP or genomic studies are listed
at http://www.yeastgenome.org/cache/genome-wide-analysis.html). Some of these HTP
studies can be used to support GO annotations, whereas others are incorporated as
alternative types of annotations: phenotypes are curated using SGD’s new phenotype
curation system [14], and the full dataset is available
(http://downloads.yeastgenome.org/literature_curation/phenotype_data.tab); curated
protein–protein and genetic interactions are available from BioGRID (a curated database for
interaction data; see http://www.thebiogrid.org/) [15]; and expression and functional
genomic data are available via the Yeast Functional Genomics Database
(http://yfgdb.princeton.edu/).

HTP data are incorporated as GO annotations when the data indicate a gene product is
directly involved in the process being studied. We believe that HTP phenotype data often
identifies many genes whose mutations affect broad processes owing to an indirect,
downstream effect. For example, abnormal telomere length is a mutant phenotype observed
for hundreds of genes [16,17]. Although the observation of shortened telomeres is
biologically relevant, additional analysis must be done to judge whether the identified genes
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have a direct role in telomere maintenance [18,19]. Therefore, although these HTP datasets
are used to make phenotype annotations in SGD [14], they are generally not represented as
GO annotations. Similarly, large-scale expression studies are not used to assign GO
annotations. For example, genes whose expression changes in response to sulfite are not
annotated to the biological process terms ‘sulfite metabolism’ or ‘sulfite detoxification’ [20].
Although it is true that the expression of these genes changes, it is not clear from these data
which genes have a direct role in the response of the cell to the tested condition.

As a consequence of our selectivity in the use of HTP data, only ~40% of the genome’s
protein-coding genes have such GO annotations (Table 1). Almost all of these annotations
are from studies that examined the localization of proteins using a single experimental
method, such as visualization using a GFP marker or purification of an organelle [3,21,22],
and the cellular component terms used are general ones, such as ‘cytoplasm’ or ‘nucleus’.
Fewer than 300 genes, ~5.5% of the protein-coding genes in the genome, have molecular
function or biological process annotations based on HTP data (Table 1).

In the absence of published literature describing focused or HTP experimental
characterization of a gene, an annotation is made in each GO vocabulary using the ND (no
biological data available) evidence code (Box 2). This indicates that the literature for the
gene has been reviewed by curators and no information characterizing the role of the gene
has been published.

GO annotations based on computational analyses (Figure 1b,d) were added to SGD in 2007
[13]. These annotations help researchers generate hypotheses of potential functions to test,
particularly for experimentally uncharacterized genes. Two types of computational
predictions available at SGD are protein domain predictions (from sequence analysis) and
high-confidence predictions (based on integrated computational analyses of multiple HTP
experimental datasets). The sequence-based predictions are provided by the Gene Ontology
Annotation (GOA) group at the European Bioinformatics Institute (EBI) [23,24]. The
predictions based on integrated computational analyses of various types of HTP experiments
and sometimes sequence or other information are produced by published algorithms [25,26].
Because these annotations are not individually reviewed by curators, we require these
annotations be updated at least once a year. Computational annotations that have not been
recalculated after one year are removed from SGD.

Thus, the manually curated set of GO annotations primarily represents the results of small-
scale, gene-by-gene characterizations. For the majority of the protein-coding genes (over
90%), these are supplemented by computational predictions. For slightly less than half of the
protein-coding genes (44%), there are also HTP annotations, mostly to cellular component
terms (Table 1, Figure 1).

Using GO annotations to advance S. cerevisiae experimental research
The availability of GO annotations in each of the three GO vocabularies for every S.
cerevisiae protein-coding and RNA gene has transformed the analysis methods available to
bench biologists. As HTP resources and methods have become more widely available, the
use of tools based on GO annotations has become more important for identifying a function,
process or localization shared among a set of genes. The frequency of this type of usage is
underestimated when searching the published literature (for instance, using PubMed):
although authors might cite the reference for a specific GO analysis tool, it is rare to find a
citation for the GO project or SGD as the source of the S. cerevisiae annotations. In fact,
some researchers make no citation, demonstrating that the classification of genes using GO
terms has become an accepted tool for molecular genetics.
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One of the first suggested applications for GO is still widely used: the identification of a
common biological role for genes that are part of an interesting cluster of microarray
expression data [9,27]. However, there are many other experimental methods that produce
lists of genes that can be analyzed with GO. Examples include gene sets having a genetic
interaction with a target gene [28–30], genes whose mutants share a common phenotype
[31–33], genes whose transcription levels might contribute to different morphological traits
in different strain backgrounds [34], genes whose messenger RNAs (mRNAs) are poorly
translated [35], protein interaction networks [36,37] and proteins that interact with a tagged
protein or an mRNA [38,39].

Regardless of the type of experiment that generates the list of genes, many researchers use
freely available tools to identify the function, process or localization that is enriched in the
list. Such tools include GO Term Finder from SGD
(http://www.yeastgenome.org/TermFinder) [40] and other analytical tools listed on the GO
Consortium website (http://www.geneontology.org/GO.tools.shtml) [41]. Although each
tool has its unique features, its input is typically a list of genes and its output is the
identification of GO terms significantly shared by those genes. For instance, Georgiev and
collaborators used the SGD GO Term Finder to discover that the Syh1p and Smy2p proteins
(both containing a particular domain known as GYF) might be involved in mRNA
catabolism, based on a list of proteins that interacted with them. This result enabled the
researchers to test and confirm that these two GYF proteins localize to cytoplasmic mRNA
processing bodies [42].

The use of GO annotations to identify the commonalities within a set of genes to make
hypotheses for subsequent experiments has clearly become routine in the research
community, but knowing which annotations are being used for the analysis and what types
of evidence support these annotations can provide more accurate results [10,41] (Figure 1).
For example, the GO Term Finder available at SGD does not use computationally predicted
annotations when finding a function, process or localization shared among a list of genes.
Excluding these computational predictions ensures that the analysis is based on annotations
made from the primary literature, both small-scale and HTP experiments. Therefore, we
advise that researchers should consider removing annotations made from computational or
automated methods (including the RCA and IEA evidence codes; Box 2) when using other
tools, to avoid propagating untested hypotheses.

The availability of GO annotations for S. cerevisiae and web-based tools that analyze gene
lists based on these annotations have facilitated the analysis of HTP data. However, it is
essential that the researcher understand how GO annotations are made to select the correct
set of annotations to analyze their HTP results effectively.

Extracting functional information from HTP data in S. cerevisiae
Any list of genes derived from an experimental assay might contain one or more S.
cerevisiae genes that lack an informative GO annotation because of the absence of direct
experimental evidence. Once a shared biological process has been identified for the
characterized genes in the list, it has been common practice to transfer that process to the
experimentally uncharacterized genes solely based on their presence in the same list [43].
Although this transfer of annotations can be misleading, the continued development of
sophisticated algorithms has strengthened the predictive power of HTP data by using
existing GO annotations in novel approaches.

Functional predictions for experimentally uncharacterized genes have benefited from the
inclusion of S. cerevisiae GO annotations and the GO vocabularies as integral components
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of algorithms that analyze microarray and protein–protein interaction data. Some of the
newer algorithms that group genes according to similar microarray expression patterns also
include GO annotations to help generate biologically relevant clusters and improve
functional predictions [44–46]. Not surprisingly, functional predictions using two or three
GO vocabularies uncover details about the expression data more effectively than those using
annotations from only one GO vocabulary [47]. In addition to using more than one
vocabulary, integrating the relationships between GO terms defined in the GO biological
process with protein–protein interactions improves the accuracy of the annotations [48].

More recent methods have taken an integrated approach, combining multiple types of
experimental data to identify the functions of proteins [49]. For example, algorithms
developed by the Troyanskaya, Marcotte and Roth groups analyze data from diverse
experimental sources based on genes that have common GO annotations or use the
annotations to describe the genes that have been grouped together based on data with similar
patterns [25,26,50–52]. The utilization of multiple types of HTP experimental data (such as
expression and protein–protein interaction datasets), in addition to more sophisticated uses
of GO (such as including GO annotations from more than one vocabulary or taking
advantage of the GO structure), might improve the functional predictions [26,53].

In addition to developing more sophisticated algorithms, an understanding of GO annotation
practices and guidelines is essential to obtain the best quality results [10]. It is important not
to include the same information twice, once as primary data and a second time as the GO
annotation derived from it (Figure 1). For example, to avoid falsely emphasizing the
significance of a single HTP dataset or the GO annotations derived from it, algorithms that
combine annotations with HTP datasets must exclude any annotations derived from the
publications describing those HTP datasets. Similarly, algorithms that include protein
domains should exclude GO annotations assigned based on the presence of those protein
domains. However, researchers evaluating a new prediction algorithm might choose
annotations from a single source as an appropriate comparison set (e.g. using all the
annotations based on InterProScan, a tool that detects specific motifs and signatures in
proteins [24], from the GOA group at EBI to benchmark a new algorithm based on protein
domains).

New algorithms and bioinformatics tools have been developed to extract functional
information from numerous HTP data. We advise those groups combining GO annotations
with HTP datasets to review the references used to make the annotations to select
appropriate annotations for their analysis.

Use of S. cerevisiae annotations to predict gene functions in other
organisms

An early prediction by Ashburner and collaborators was that GO would enable the transfer
of functional annotations to newly sequenced genomes [9]. This vision has been realized
with the use of S. cerevisiae annotations to make functional annotations for genes in newly
sequenced genomes with small research communities. Based on sequence similarity, the S.
cerevisiae annotations were transferred to genes of the filamentous fungus Ashbya gossypii;
the fungal pathogens Pneumocystis carinii, Sclerotinia sclerotiorum and Candida albicans;
and more distant organisms, such as the compost worm Eisenia fetida [54–58].

Because the majority of S. cerevisiae GO annotations are derived from experimental
evidence, they have been used to determine the accuracy of predictions. For example,
SGD’s annotations have been used to validate functional predictions based on sequence
similarity, by determining whether the predicted function matches the manually curated GO
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annotation [59]. Some researchers have even compared the results from their analysis based
on the full set of annotations to those from the same algorithm run with only a subset of the
annotations, as proof of concept that their method would be suitable for predicting gene
functions for poorly annotated genomes [60]. In these methods, S. cerevisiae GO
annotations provide a gold standard for measuring the accuracy of functional predictions.
Once validated using S. cerevisiae GO annotations, new algorithms utilizing microarray
expression data, protein–protein interactions, sequence similarity or a combination of these
data can improve the functional predictions for genes from many other organisms.

Caution must be exercised in transferring annotations [43]. Genes in closely related species
that seem to have a common evolutionary origin might have a conserved function, such as
transcription factor activity, but be involved in regulating very different processes [61,62].
Snitkin and collaborators showed that phylogenetic profiling methods exploring the co-
occurrence of multiple genes between genomes do not work well for eukaryotic genomes
[63]. In summary, although GO annotations from S. cerevisiae have been successfully used
to facilitate the annotation of other genomes, the question of which annotations should be
transferred depends on the specific species and the role of the gene.

Automated methods to extract information from the literature
Although they are informative, annotation transfers based on sequence similarity are still
hypotheses for gene functions that need to be proven experimentally. Thus, the standard for
functional annotations is a comprehensive set of GO annotations derived from the scientific
literature. Unfortunately, the development of such a set might not be possible for model
organism communities with a large body of literature but limited curation resources. Natural
language processing and text mining can facilitate the identification of literature to be used
for GO annotations and, thus, maximize the effectiveness of a small curatorial staff [64,65].
For instance, S. cerevisiae GO annotations have been used to validate a full-text analysis
that identified papers supporting GO annotations in the molecular function vocabulary by
searching for specific experimental methods [66]. Like gene function prediction algorithms,
these tools – once developed and validated using S. cerevisiae GO annotations – can be used
by other model organism communities.

Continuing to improve the functional annotation of genes in S. cerevisiae
Intriguingly, the number of S. cerevisiae genes lacking any functional annotations has
remained consistent through the years [67]. Despite the vast body of literature for this
organism, 554 out of 5796 protein-coding genes (almost 10%) remain uncharacterized for all
three GO vocabularies. Approximately 500 additional genes only have annotations to very
general locations, such as ‘cytoplasm’, defined by HTP localization experiments. Thus, we
believe that the set of uncharacterized genes is better represented by the number of genes
with GO annotations indicating that no information is available in both the molecular
function and the biological process vocabularies. As of April 2009, there are 1134 protein-
coding genes in this group. Computational predictions based on either sequence similarity or
integrated computational analysis of experimental and other data provide hypotheses about
the biological process of only one-third of these 1134 genes and about the molecular
functions of only one-fifth of them (Figure 2). Although broad terms like ‘cytoplasm’ and
‘membrane’ have been assigned for many of these genes by computational predictions, we
again believe that these annotations are not informative about the gene’s role in the cell.
Thus, for the majority of these undercharacterized genes, there is not a prediction for either
the function or the process, and we still have no inkling what role they have in the cell.

Christie et al. Page 7

Trends Microbiol. Author manuscript; available in PMC 2011 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although predicting gene functions based on the integrated analysis of multiple datasets can
provide hypotheses for genes that lack GO annotations, this analysis is wholly dependent on
the experimental conditions examined. Perhaps some uncharacterized genes cannot be
classified because the experimental condition necessary to observe their function has not yet
been examined. For example, to the best of our knowledge, no publications have reported
HTP protein interaction networks or genetic interaction datasets during meiosis and
sporulation in S. cerevisiae. Experiments during meiosis or sporulation would provide
additional data specific for these conditions, which could help identify any uncharacterized
genes involved in these processes.

In March 2007, Peña-Castillo and Hughes [67] revisited a prediction made three years
earlier [68] that all S. cerevisiae genes would have a function by mid-2007. However, they
determined that 1253 genes, over 20% of the genome, were still classified as
‘Uncharacterized’ at SGD [67]. They identified ~200 genes that were found only in fungi
[67]. Therefore, more research in other fungal species could help characterize some of the
fungal-specific genes found in S. cerevisiae; of particular interest are those fungi that are
studied specifically for their niche specialization, such as C. albicans (with respect to the
medical implications of biofilm formation) or Aspergillus fumigatus (a common pathogen in
immunocompromised patients). Another group of more than 150 uncharacterized genes
contained sets of genes having at least 50% sequence similarity to each other [67]. Owing to
their redundancy, the corresponding proteins will be difficult to analyze via single
mutations, and those in groups with more than two members will probably remain resistant
to characterization by techniques such as synthetic genetic analyses, which generally involve
two mutations. However, for the majority of the uncharacterized genes, there is no clear
single explanation for why they are refractory to characterization [67]. To begin to learn
what these genes do might take more refined experimental genomic approaches, in addition
to exploring other environmental conditions and developing more sophisticated
computational analyses that are enabled by GO, as discussed above.

Concluding remarks and future directions
SGD strives to maintain a high-quality set of GO annotations that reflect the experimental
literature to aid the efforts of the scientific community to generate new data and methods
that facilitate the functional characterization of genes in S. cerevisiae and other organisms.
To this end, SGD continues to review and update our oldest GO annotations as needed,
based on current research. We also plan to replace all GO annotations derived solely from
author statements with annotations supported by experimental results. In addition, future
efforts will involve comparing computationally predicted GO annotations with manually
curated ones to refine the manually curated set by identifying inaccurate or missing
annotations. This comparison will also improve the accuracy of some computational
prediction methods.

This review has focused on how S. cerevisiae GO annotations made by SGD have been used
to analyze results from HTP experimental methods and predict functions of uncharacterized
genes in S. cerevisiae and other organisms. However, GO annotations are also used to
construct cellular pathways, construct protein interaction networks and build transcriptional
regulatory networks to understand the budding yeast at the systems biology level [8,69].
Although GO annotations can provide a summary of the S. cerevisiae research literature, it
is important for researchers to understand what types of data are represented by the
annotations so they can use the information effectively and appropriately in their research
(Box 3).
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Box 3

How to find functions for uncharacterized genes in S. cerevisiae

• Understand how GO annotations are made and identify which ones should be
included in or excluded from your analyses.

• Use mutant phenotype data from SGD [14], as well as genetic and physical
interactions from BioGRID [15], to complement the GO annotations.

• Generate datasets using different experimental conditions to expand the
experimental conditions tested. For example, because no HTP protein
interaction networks or genetic interaction datasets have been published for S.
cerevisiae during meiosis, it is difficult to predict which uncharacterized genes
might be involved in meiosis using current algorithms that group genes
according to similar patterns across multiple datasets.

• Include RNA genes in HTP studies and computational predictions. New RNAs
whose functions are not yet known have been reported and added to the set of
genes in S. cerevisiae at SGD [73,74]. Including these RNA genes in HTP
studies might facilitate identifying their functions.

• Algorithms should consider more than one GO vocabulary at a time and/or the
structure of the GO vocabularies.
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Figure 1.
GO annotation types at SGD and sources of information. At SGD, GO annotations are made
based on a wide range of published literature. Each GO annotation is further categorized
with an annotation type: manually curated, high-throughput or computational [13]. (a)
Manually curated GO annotations are made individually for each gene by curators reading
the published literature describing experimental characterizations of that gene. We attempt
to find experimental evidence whenever available. However, in our first pass through the
genome to generate at least one annotation in each GO vocabulary for all genes, we
sometimes made annotations from reviews using the TAS (traceable author statement) code
(Box 2). We are working to replace these with annotations from the primary experimental
papers with appropriate experimental evidence codes. (b) Sequence-based predictions can be
classified as either manually curated or computational GO annotations. Sequence similarity
comparisons from published papers are categorized as manually curated GO annotations
because an expert in the field generated the comparison and a curator read the publication to
determine the appropriate annotation. Predictions generated by the Gene Ontology
Annotation group at the European Bioinformatics Institute are categorized as computational
annotations because they are not reviewed by curators. (c) HTP annotations are made from
published papers describing results of HTP experimental techniques. (d) Computational
annotations are based on a variety of computational techniques, including sequence
similarity and integrative analysis of experimental data. Computational methods that
incorporate HTP data and sequence analysis should take caution to remove GO annotations
derived from the source data to avoid including the information more than once.
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Figure 2.
Computational predictions for the uncharacterized protein-coding genes in S. cerevisiae. Out
of 5796 protein coding genes, 1134 of them have no published information with regard to
their molecular function (MF) or their biological process (BP). Predictions for the biological
process can be made for only 416 (36.7%) of them, and predictions for molecular function
can be made for even fewer, only 211 (18.6%). For the majority (654, or 57.7%), no
prediction can be made for either molecular function or biological process to provide
hypotheses for biologists to test experimentally.
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Figure I.
Examples of S. cerevisiae GO annotations. Each row is an example of a GO annotation,
which includes a protein or RNA gene product, a GO term, a reference and an evidence code
(Box 2). The ribbon diagrams of URA3 [70] and URA6 [71] were contributed to PDB [72].
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Table 1

Numbers of protein coding genes (5796 total) annotated by each annotation type for each Gene Ontology
vocabulary, as of April 2009

Gene Ontology vocabulary

Molecular function Biological process Cellular component

Annotation type

Manually curated 5771 (99.6%) 5770 (99.6%) 4696 (81.0%)

High-throughput 153 (2.6%) 172 (3.0%) 2344 (40.4%)

Computational 3388 (58.5%) 4554 (78.6%) 4395 (75.8%)
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Table I

Categories of GO evidence codes

Evidence code category Code Evidence code full name Type of evidence

Curator-assigned evidence codes

Experimental EXP Inferred from experiment Any experimental evidence

IDA Inferred from direct assay Enzyme assays, in vitro reconstitution,
immunofluorescence, etc.

IPI Inferred from physical interaction 2-Hybrid interactions, co-purification, co-
immunoprecipitation, etc.

IMP Inferred from mutant phenotype Mutations, allelic variation, phenotypes of altered
expression, etc.

IGI Inferred from genetic interaction Genetic suppression, synthetic lethality,
complementation, etc.

IEP Inferred from expression pattern Northerns, Westerns, microarray expression, etc.

Computational analysis ISS Inferred from sequence or structural similarity Any sequence-based evidence

ISO Inferred from sequence orthology Assertion of orthology to gene in another species

ISA Inferred from sequence alignment Pairwise or multiple alignment

ISM Inferred from sequence model Sequence models (e.g. Hidden Markov Models,
tRNASCAN, InterPro domains, etc.)

IGC Inferred from genomic context Operon structure, syntenic regions, pathway analysis,
etc.

RCA Inferred from reviewed computational analysis Predictions based on one or more data types

Author statement TAS Traceable author statement Author statements citing a reference

NAS Non-traceable author statement Author statements not citing a reference

Curator statement IC Inferred by curator When a curator makes an inference based on another
GO annotation

ND No biological data available When there is no information available on that gene
product

Automatically assigned evidence codes

IEA Inferred from electronic annotation From computational methods without curatorial
involvement
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