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Abstract
AIM: To investigate miR-200 family expression in Bar-
rett’s epithelium, gastric and duodenal epithelia, and 
esophageal adenocarcinoma. 

METHODS: Real-time reverse transcriptase-polymerase 
chain reaction was used to measure miR-200, ZEB1 and 
ZEB2 expression. Ingenuity Pathway Analysis of miR-200 
targets was used to predict biological outcomes. 

RESULTS: Barrett’s epithelium expressed lower levels 
of miR-141 and miR-200c than did gastric and duodenal 
epithelia (P  < 0.001). In silico  analysis indicated roles 
for the miR-200 family in molecular pathways that dis-
tinguish Barrett’s epithelium from gastric and duodenal 

epithelia, and which control apoptosis and proliferation. 
All miR-200 members were downregulated in adeno-
carcinoma (P  < 0.02), and miR-200c expression was 
also downregulated in non-invasive epithelium adjacent 
to adenocarcinoma (P  < 0.02). The expression of all 
miR-200 members was lower in Barrett’s epithelium de-
rived high-grade dysplastic cell lines than in a cell line 
derived from benign Barrett’s epithelium. We observed 
significant inverse correlations between miR-200 family 
expression and ZEB1 and ZEB2 expression in Barrett’s 
epithelium and esophageal adenocarcinoma (P  < 0.05). 

CONCLUSION: miR-200 expression might contribute 
to the anti-apoptotic and proliferative phenotype of 
Barrett’s epithelium and regulate key neoplastic pro-
cesses in this epithelium.
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INTRODUCTION
Barrett’s esophagus is characterized by the replacement 
of  the normal stratified squamous esophageal epithelium 
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with metaplastic columnar epithelium. Metaplasia to Bar-
rett’s esophagus is probably an adaptive response to the in-
sult from reflux of  gastric acid and duodenal bile salts into 
the esophagus, which occurs in chronic gastroesophageal 
reflux[1]. Barrett’s esophagus epithelium possesses secre-
tory and absorptive cell types, and these closely resemble 
those found in normal gastric and intestinal epithelia[2,3]. 

mRNA expression profiling studies confirm its similarity 
to gastric and duodenal epithelia[4-6]. However, Barrett’s 
esophagus epithelium also expresses a specific cluster of  
genes, including those associated with alterations in cell 
cycle/proliferation, apoptosis, stress response, and cel-
lular migration pathways, and these distinguish it from all 
related gastrointestinal mucosae[4]. Other studies have con-
firmed unique phenotypic characteristics of  Barrett’s epi-
thelium that correspond with this specific gene expression 
cluster. For example, unlike gastric and duodenal epithelia, 
cellular proliferation in Barrett’s esophagus continues 
along the upper crypt and at the luminal surface, possibly 
due to abnormal cell cycle entry or exit[7]. Furthermore, 
Barrett’s esophagus epithelium expresses unusually high 
levels of  anti-apoptotic proteins[8] and can mount a unique 
anti-apoptotic and proliferative response to reflux[9-12].

Barrett’s esophagus is clinically important because it 
is the only visibly identifiable precursor to esophageal ad-
enocarcinoma[13]. Progression to dysplastic stages involves 
increased abnormalities in the cell cycle and overall prolif-
eration[13]. Neoplastic progression commonly occurs without 
obvious symptoms, and at the time of  diagnosis, most pa-
tients with esophageal adenocarcinoma have local invasion 
or metastases[14]. Several lines of  evidence suggest that epi-
thelial to mesenchymal transition is required for local inva-
sion and metastasis[15]. Epithelial to mesenchymal transition 
involves inhibition of  E-cadherin expression and transition 
from epithelial to fibroblastic cell type, with associated al-
terations in cellular adhesion and migration[15]. Other studies 
have presented immunohistochemical, gene expression and 
cell line data that suggest a role for epithelial to mesenchy-
mal transition in esophageal adenocarcinoma[16,17].

miRNAs downregulate target gene expression at the 
post-transcriptional level through the binding of  their “seed” 
sequences with complementary sites in the 3’-untranslated 
region of  target mRNAs[18]. The miR-200 family of  miR-
NAs (miR-141, 200a, 200b, 200c and 429) are key regula-
tors/inhibitors of  epithelial to mesenchymal transition, and 
act to maintain the epithelial phenotype by targeting the ex-
pression of  the E-cadherin transcriptional repressors ZEB1 
and ZEB2[19-21]. Accordingly, the number of  studies report-
ing downregulation of  miR-200 family expression in cancer 
is increasing[19-25]. In addition, members of  the miR-200 fam-
ily have recently been shown to affect other cell behaviors 
including proliferation, cell cycle and apoptosis[26-28].

Given the unique gene expression profile and cellular 
behavior in Barrett’s esophagus epithelium, the pheno-
typic features that characterize its neoplastic progression, 
and the potential relevance of  epithelial to mesenchymal 
transition to esophageal adenocarcinoma, we sought to 
determine the expression of  miR-200 family members in 
gastric, duodenal and Barrett’s esophagus epithelium, and 

to assess their expression with neoplastic progression 
of  Barrett’s esophagus. We hypothesized that Barrett’s 
esophagus epithelium may possess a miR-200 expression 
profile different to gastric and duodenal epithelia, and 
that downregulation of  miR-200 family expression may 
occur upon progression to esophageal adenocarcinoma.

MATERIALS AND METHODS
Tissue collection and processing
Tissues from patients diagnosed with either Barrett’s 
esophagus (n = 17) or esophageal adenocarcinoma (n = 
20) were collected at endoscopy or after surgical resection. 
The clinical research ethics committees of  Flinders Uni-
versity and Erasmus Medical Centre approved the proto-
col for this study. Details of  the collection process, infor-
mation about the clinical characteristics of  the patients, 
and RNA isolation from tissues have been published in 
full elsewhere[29]. In brief, endoscopic biopsy samples were 
obtained from the second part of  the duodenum, proxi-
mal stomach, and distal esophagus. All biopsies were im-
mediately stored in RNAlater (Ambion, Austin, TX, USA) 
and frozen at -20℃ until required. All biopsy samples 
used in this study were collected from the most distal level 
of  endoscopically visualized Barrett’s esophagus epithe-
lium, which was confirmed by concurrent histopathology 
to be from columnar mucosa with intestinal metaplasia. 
In individuals with esophageal adenocarcinoma, a similar 
biopsy collection protocol was used for endoscopic bi-
opsy. Samples were obtained from the second part of  the 
duodenum, proximal stomach and the adenocarcinoma. 
Samples from surgical resection specimens were obtained 
from the normal upper stomach, and the tumor site, and 
immediately stored in RNAlater (Ambion) and frozen at 
-20℃ until required. If  any Barrett’s esophagus epithelium 
was present proximal to an esophageal adenocarcinoma, 
this was also sampled using the same protocols. Samples 
from patients with adenocarcinoma of  the esophagus 
were always obtained before any neoadjuvant chemothera-
py or radiotherapy was commenced, if  clinically indicated. 

The stored endoscopic biopsies and resection tissues 
were thawed in RNAlater as required. Thirty percent of  
each endoscopic biopsy sample, or a small portion of  the re-
section samples, was dissected from the thawed tissue sam-
ple, fixed in formalin, embedded in paraffin, and processed 
for conventional histopathology. This was done to confirm 
that the biopsy contained only the appropriate tissue type. 
The remaining tissue had any remaining RNAlater removed, 
and was then processed in Trizol (Invitrogen, Carlsbad, CA, 
USA) for RNA extraction. RNA was also extracted from 
cell lines derived from benign Barrett’s esophagus (Qh) and 
high grade dysplastic (Ch and Gi) epithelium[30].

Quantitative reverse transcriptase-polymerase chain 
reaction analysis of miR-200 family, ZEB1 and ZEB2 
expression
miR-200 expression was determined using commercially 
available TaqMan® miRNA assays specific for each member 
of  the miR-200 family (Applied Biosystems, Foster City, CA, 
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USA). ZEB1 and ZEB2 mRNA expression was assessed 
using the Quantiscript® RT kit for reverse transcription and 
the Quantitect® SYBRGreen mastermix for polymerase 
chain reaction (PCR). Primer details are available upon re-
quest. miRNA expression was normalized using RNU44, 
and mRNA expression was normalized using 18S rRNA. 
Data were analyzed quantitatively using Q-Gene software[31]. 
Apparent differences in gene expression between the tissues 
were assessed for statistical significance using the Kruskal-
Wallis test (significance cut-off  P < 0.05). If  significance was 
reached for this analysis, then the post hoc Holm-Bonferroni 
test was used for pairwise comparisons. Statistical testing 
was performed using Microsoft Excel. Spearman rank order 
correlation tests between miRNA and mRNA expression 
were conducted on-line (http://www.wessa.net/rankcorr.
wasp). In addition to miR-200 expression, we also tested 
miR-215 because we have previously demonstrated down-
regulation of  this miRNA in esophageal adenocarcinoma[29], 
and it was recently shown to target ZEB2 directly[32]. 

miRNA target prediction and pathway analysis
Target prediction using miRecords (http://mirecords.bio-
lead.org/)[33] and a core analysis using Ingenuity Pathway 
Analysis (www.ingenuity.com) were combined to elucidate 
possible implications of  reduced miRNA expression. Pre-
dicted targets used in this analysis were required to be pre-
dicted by at least five databases in the miRecords search 
engine. Ingenuity Pathway Analysis parameters were set to 
assess a knowledge base derived from direct and indirect 
associations between genes in human experiments, and 
also in epithelial cell lines. In the Ingenuity Pathway Anal-
ysis, genes are grouped according to function and are al-
located to top associated networks and cellular functions. 
Ingenuity Pathway Analysis uses a right-tailed Fisher’s 
exact test to assign P values to each grouping, testing each 
result against a result from random groups of  input pre-
dicted genes. Networks and cellular functions are ranked 
according to their score with the highest scoring networks 
representing the greatest statistical significance. 

RESULTS
miR-200 family expression analysis in Barrett’s 
esophagus, gastric and duodenal epithelia
Taqman Quantitative reverse transcriptase-PCR (qRT-

PCR) revealed that expression levels of  miR-141 and 200c 
were significantly lower in Barrett’s esophagus epithelium 
compared with gastric and duodenal epithelia (Table 1). 
miR-200a and miR-200b expression was significantly 
lower in Barrett’s esophagus epithelium than in gastric epi-
thelium, but did not differ in expression between Barrett’s 
esophagus and duodenal epithelia. The expression level of  
miR-429 was not significantly different across these three 
epithelial types.

Predicted implications of reduced miR-200 family 
expression in Barrett’s esophagus
Core Ingenuity Pathway Analysis on predicted targets of  
miR-141 and miR-200c were performed to determine 
the probable biological effects of  their reduced expres-
sion. The collection of  target predictions from multiple 
algorithms, presented in miRecords, listed 272 gene tar-
gets for miR-141 and 429 targets for miR-200c. The top 
associated biological networks for these targets are illus-
trated in Figure 1, and the biological functions associated 
with these targets are listed in Table 2.

miR-200, ZEB1 and ZEB2 expression in Barrett’s 
esophagus and esophageal adenocarcinoma
Expression of  all members of  the miR-200 family was sig-
nificantly lower in esophageal adenocarcinoma compared 
with Barrett’s esophagus epithelium (Table 3). The median 
expression of  all miR-200 family members was lower in 
Barrett’s esophagus epithelium proximal to esophageal 
adenocarcinoma than in Barrett’s epithelium from patients 
without cancer or dysplasia. However, after post hoc analy-
sis, only the difference in miR-200c expression was statisti-
cally significant. To determine whether this could indicate 
downregulation of  miR-200 expression in dysplasia, prior 
to the development of  adenocarcinoma, miR-200 family 
expression was further assessed in a non-dysplastic Bar-
rett’s esophagus derived cell line (Qh), and two cell lines 
derived from Barrett’s esophagus with high-grade dys-
plasia (Ch, Gi). Figure 2 shows that the expression of  all 
miR-200 members was markedly reduced in both dysplas-
tic cell lines compared to expression in the benign cell line.

To determine whether the miRNA switch for epithe-
lial to mesenchymal transition might be active in esopha-
geal adenocarcinoma development, we also assessed the 
mRNA expression of  miR-200 targets ZEB1 and ZEB2. 
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Table 1  Relative miRNA expression in Barrett’s esophagus, gastric and duodenal mucosal tissues

MiRNA Duodenal (n  = 10) Barrett’s esophagus (n  = 17) Gastric (n  = 15) P  value (Kruskal-Wallis test)

miR-141 0.076 (0.039, 0.167) 0.026 (0.023, 0.036) 0.051 (0.042, 0.092) 0.00021,2

miR-200a 0.148 (0.067, 0.340) 0.148 (0.126, 0.177) 0.247 (0.154, 0.509) 0.03142

miR-200b 0.796 (0.606, 1.276) 0.833 (0.750, 0.993) 1.233 (1.089, 1.963) 0.00112

miR-200c 2.700 (1.890, 3.511) 1.049 (0.929, 1.170) 2.335 (1.792, 2.773) < 0.00011,2

miR-429 0.095 (0.042, 0.070) 0.070 (0.061, 0.087) 0.078 (0.072, 0.153) 0.259

Relative expression for each epithelial tissue type. Relative expression values are median (95% CI). The group P value was the result of a Kruskal-Wallis test 
across the three tissue groups. Significant differences were identified by post hoc testing by the Holm-Bonferroni method for: 1Duodenal versus Barrett’s 
esophagus mucosa - miR-141 (P = 0.0008) and miR-200c (P < 0.0001); 2Gastric versus Barrett’s esophagus mucosa - miR-141 (P = 0.0004) miR-200a (P = 0.0078), 
miR-200b (P = 0.0001), and miR-200c (P < 0.0001).

Smith CM et al . miR-200 expression in Barrett’s adenocarcinoma
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Table 2  Top molecular and cellular functions of miR-200 gene targets

miRNA Molecular and cellular functions Molecules involved P  value

Cell cycle 41 1.90E-07-2.82E-02
Gene expression 53 4.94E-07-2.82E-02

miR-141 Cellular movement 39 2.45E-05-2.82E-02
Cellular assembly and organization 61 2.88E-04-2.82E-02
Cellular growth and proliferation 68 2.88E-04-2.28E-02
Gene expression 84 1.37E-09-2.32E-02
Cellular growth and proliferation 108 5.65E-05-2.32E-02

miR-200c Cell cycle 53 9.17E-05-2.32E-02
Cell death 95 9.62E-05-2.32E-02
Cellular assembly and organization 55 1.19E-04-2.32E-02

The top five functions associated with the predicted targets of miR-141 and miR-200c, as determined by Ingenuity Pathway Analysis, are shown in this ta-
ble. This analysis used a right-tailed Fisher’s exact test to calculate the probability (P value above) that each cellular function ascribed to the predicted target 
gene list was due to chance alone. For each miRNA, the molecular and cellular functions are ranked according to their P value.
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ZEB1 and ZEB2 expression was significantly higher in 
esophageal adenocarcinoma compared to Barrett’s esoph-
agus epithelium from patients without cancer or dysplasia 
(Table 4). There were significant inverse correlations be-
tween the expression of  ZEB1/ZEB2 and the expression 
of  some miR-200 members. miR-215 and ZEB2 expres-
sion were inversely correlated (Table 4).

DISCUSSION
We found that miR-141 and miR-200c were expressed at 

lower levels in Barrett’s esophagus epithelium, compared 
to normal gastric and duodenal epithelia. Bioinformat-
ics analysis indicated that this might contribute to the cell 
cycle, stress response (proliferation, apoptosis), and cellular 
migration behavior, which are known to make Barrett’s 
esophagus epithelium different to gastric and duodenal ep-
ithelia[4,7-12,34]. The reduced miR-200 levels that we observed 
in Barrett’s esophagus epithelium adjacent to adenocarci-
noma, and Barrett’s esophagus with high-grade dysplasia 
derived cell lines suggested an association between down-
regulation of  miR-200 expression and neoplastic progres-
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Figure 1  Top associated network functions for miR-141 and miR-200c. A: Ingenuity Pathway Analysis predicted that the top associated network functions for 
miR-141 were gene expression, cell death and cell cycle (P = 1 × 10-35). B: The top associated network functions for miR-200c were cell morphology, cellular assem-
bly and organization, cellular function and maintenance (P = 1 × 10-38). Predicted targets of miR-141 or miR-200c are highlighted in grey. Uncolored entries represent 
molecules that are associated with the pathway but are not predicted miR-141 or miR-200c targets. The P values were derived from a right-tailed Fisher’s exact test to 
calculate the probability that each predicted miRNA target matches the ascribed network function due to chance alone.
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Table 3  miRNA expression in Barrett’s esophagus and esophageal adenocarcinoma

sion in Barrett’s esophagus. The increased expressions of  
ZEB1 and ZEB2 in esophageal adenocarcinoma, and their 
inverse correlations with miR-200 expression, are consis-
tent with induction of  epithelial to mesenchymal transition 
mediated by loss of  miR-200 expression. Taken together 
with the known biological functions of  the miR-200 fam-
ily[26-28], our study provides evidence for their influence in 
patterning the known unique gene expression[4] and phe-
notypic characteristics[4,7-12,34] of  benign Barrett’s esophagus 
epithelium, as well as features that characterize its neoplas-
tic progression[13]. Furthermore, our data indicate that the 

miRNA switch for turning on epithelial to mesenchymal 
transition[20] might be activated during the development of  
esophageal adenocarcinoma.

Although the miR-200 family has some redundancy in 
seed sequence, and therefore the genes they target, they act 
co-operatively to control the expression of  their targets, and 
a change in expression of  just one member is sufficient to 
alter target transcript levels[20]. miR-141 and miR-200c are 
known to modulate apoptosis, cell cycle and proliferation, 
and cellular migration through regulation of  their target 
genes[26-28]. Several in vivo and in vitro studies have elucidated 
the molecules/complexes that are upregulated/activated in 
Barrett’s epithelium and are responsible for its unique anti-
apoptotic and proliferative responses to reflux-induced 
stress. These include three mitogen-activated protein kinases 
(MAPKs), extracellular signal-regulated kinase, p38 and 
C-Jun N-terminal kinase[35]; protein kinase C[11]; phospha-
tidylinositol 3-kinases (PI3K) and downstream Akt[36]; and 
transcription factors nuclear factor (NF)-kB[37] and activator 
protein-1[36]. Our combined target prediction and Ingenuity 
Pathway Analysis predicted indirect (or direct in the case of  
Akt) targeting of  all of  the aforementioned molecules/com-
plexes in the top associated network functions of  miR-141 
and/or miR-200c. Overall, this suggests that reduced 
miR-141 and miR-200c expression in Barrett’s esophagus 
epithelium (vs gastric and duodenal epithelia) might activate 
molecular pathways that are known to promote the specific 
response of  Barrett’s esophagus epithelium to the insult of  
gastroesophageal reflux.

Our analysis predicted direct targeting and downregu-
lation of  fibronectin by miR-200c, and this was evident 
in the top associated network. A recent study has shown 
that fibronectin expression is reduced in cell lines in direct 
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Figure 2  miR-200 family expression in benign Barrett’s and dysplastic cell 
lines. Relative expression of all miR-141, miR-200a, miR-200b and miR-429, 
normalized to U44 expression is shown on the left hand y axis. Relative ex-
pression of miR-200c is shown on the right hand y axis. The pattern of relative 
expression of miR-200 members in the Qh (benign Barrett’s) cell line closely 
resembled that in benign Barrett’s esophagus mucosa (see relative expression 
values in Table 1). 

miRNA BE (n  = 17) Adeno carcinoma (n  = 20) BEC (n  = 9) P  value (Kruskal-Wallis test)

miR-141   0.026 (0.023, 0.036)   0.012 (0.011, 0.025) 0.015 (0.01, 0.04) 0.033981

miR-200a   0.148 (0.126, 0.177)   0.057 (0.013, 0.042)       0.08 (0.017, 0.201) 0.000791

miR-200b 0.833 (0.75, 0.993)   0.387 (0.316, 0.572)   0.399 (0.258, 1.13) 0.000681

miR-200c    1.05 (0.929, 1.170)   0.551 (0.461, 0.939)     0.662 (0.438, 0.965)   0.003231,2

miR-429    0.07 (0.062, 0.087) 0.039 (0.029, 0.06)    0.042 (0.036, 0.09) 0.013551

Relative expression for each tissue type. Relative expression values are median (95% CI). BE = Barrett’s esophagus epithelium from individuals without cancer, 
BEC = Barrett’s epithelium taken proximal to adenocarcinoma and confirmed by histology to be free of invasive cancer. The group P value was the result of a 
Kruskal-Wallis test across the three tissue groups. Significant differences were identified by post hoc testing by Holm-Bonferroni method for: 1Adenocarcinoma 
versus Barrett’s esophagus mucosa from individuals without cancer - miR-141 (P = 0.0126), miR-200a (P = 0.0001), miR-200b (P < 0.0001), and miR-200c (P = 
0.0014) and miR-429 (P = 0.0031); 2Barrett’s esophagus mucosa from individuals with versus without cancer - miR-200c (P = 0.0191).

Table 4  ZEB1 and ZEB2 expression in Barrettt’s epithelium and esophageal adenocarcinoma

Fold ↑ miR-141 miR-200a miR-200b miR-200c miR-429 miR-215

ZEB1 2.9 R = -0.2 R = -0.4 R = -0.5 R = -0.5 R = -0.3 R = -0.3
P < 0.0001 P = 0.341 P = 0.046 P = 0.009 P = 0.006 P = 0.159 P = 0.152

ZEB2 1.5 R = -0.3 R = -0.3 R = -0.5 R = -0.5 R = -0.4 R = -0.4
P = 0.029 P = 0.101 P = 0.085 P = 0.008 P = 0.015 P = 0.067 P = 0.044

The fold increase (↑) in median ZEB1 and ZEB2 expression in esophageal adenocarcinoma versus Barrett’s esophagus mucosa from individuals without cancer, 
and the P value derived using the Mann-Whitney test are given. Spearman correlations (R = Spearman’s rho) between ZEB1/2 expression and each miR-200 
member, with associated P values are also shown. 
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response to miR-200c expression[38]. Therefore, it is rea-
sonable to expect that fibronectin expression should be 
higher in Barrett’s esophagus epithelium than in gastric and 
duodenal epithelia; due at least partly to reduced miR-200c 
expression in Barrett’s esophagus. In agreement with this, 
fibronectin is in the gene expression cluster that separates 
Barrett’s esophagus epithelium from gastric and duodenal 
epithelium[4]. Fibronectin has key roles in cellular adhesion 
and migration[39]. In the development of  Barrett’s esopha-
gus, its expression is proposed to help facilitate expansion 
of  epithelial cell populations in order to replace areas of  
denuded squamous epithelium with metaplastic cells[4]. Fur-
thermore, fibronectin expression contributes to increased 
proliferative and anti-apoptotic behavior through NF-kB 
and PI3K signaling[40]. Taken together, these observations 
lend support to the biological validity of  our bioinformat-
ics-based approach, and further promote a likely role for 
reduced miR-200c expression in Barrett’s esophagus.

The development of  high-grade dysplasia significantly 
increases the risk of  progression to esophageal adenocar-
cinoma[41,42]. Features of  dysplastic epithelium that make 
it distinct from benign Barrett’s esophagus epithelium in-
clude increased proliferative and anti-apoptotic behavior[13]. 
We found that miR-200c expression is downregulated in 
Barrett’s esophagus sampled from patients with a concur-
rent esophageal cancer, and the entire miR-200 family 
was downregulated in cell lines derived from patients with 
high-grade dysplasia. Our pathway analysis indicates that 
this could result in the molecular events known to con-
tribute to the features of  dysplastic Barrett’s esophagus, 
including increased signaling through MAPK pathways[43], 
increased activation and expression of  NF-kB[44,45], and in-
creased activation of  Akt[43,46]. Activation of  Akt is stimu-
lated by interaction of  the obesity-related hormone leptin 
and its receptor, and this results in increased proliferation 
and resistance to apoptosis in Barrett’s esophagus derived 
cancer cell lines[46]. The leptin receptor is downregulated 
in vitro in response to miR-200c expression[38], and our 
miRecords searches predicted direct targeting of  the leptin 
receptor by miR-200c. We speculate that reduced miR-200 
family expression in dysplasia could be an important 
mechanism for leptin receptor mediated activation of  Akt, 
and this could contribute to the established link between 
obesity and an increased risk of  esophageal adenocarci-
noma development[47]. In further support of  the direct rel-
evance of  decreased miR-200 expression to the molecular 
features of  neoplastic progression of  Barrett’s esophagus, 
we found that three gene transcripts (EGR3, HS3ST1 and 
RPS6KB1), listed in miRecords to be targets of  miR-200c, 
were present in a panel of  18 transcripts that are upregu-
lated in Barrett’s epithelium, from which cancer has arisen 
versus benign Barrett’s esophagus epithelium[48].

Downregulation of  E-cadherin expression via transcrip-
tional repression is a central mechanism for epithelial to 
mesenchymal transition[15]. ZEB1 and ZEB2 are amongst a 
group of  transcription factors that repress transcription of  
E-cadherin[15]. ZEB1 and ZEB2 are targets of  the miR-200 
family, and an increase in ZEB1 and ZEB2 activity caused 
by downregulation of  miR-200 expression is sufficient to 

induce epithelial to mesenchymal transition[20]. Epithelial to 
mesenchymal transition that is promoted by downregula-
tion of  the miR-200 family has now been implicated as an 
important mechanism for invasion and metastasis in several 
cancers[20,22-25]. Previous epithelial and mesenchymal cell 
marker studies have provided evidence for the involvement 
of  epithelial mesenchymal transition in the development 
of  esophageal adenocarcinoma[16,17], but to the best of  our 
knowledge, no studies have investigated loss of  miR-200 
mediated control of  ZEB1 and ZEB2 expression as a pos-
sible mechanism for epithelial to mesenchymal transition 
in this disease. We found downregulation of  the entire 
miR-200 family and upregulation of  ZEB1 and ZEB2 tran-
scription levels upon progression of  Barrett’s esophagus to 
adenocarcinoma. We observed significant inverse correla-
tions between expression of  miR-200 members and ZEB1/
ZEB2 transcripts. miR-215 expression, which we have pre-
viously reported as downregulated in neoplastic progres-
sion of  Barrett’s esophagus[29], was also inversely correlated 
with ZEB2 expression. miR-215 has recently been shown 
to target ZEB2 expression directly in kidney cells[32], and 
our results suggest the same in Barrett’s esophagus. Togeth-
er, these results suggest that the miR-200 family contrib-
utes to control of  ZEB1 and ZEB2 expression in Barrett’s 
esophagus, and this might be important for maintaining the 
epithelial phenotype. They add to the current evidence for 
the involvement of  epithelial to mesenchymal transition in 
esophageal adenocarcinoma, and indicate downregulation 
of  miR-200 expression as a potential mechanism for this.

With regard to the potential clinical relevance of  our 
findings, we hypothesize that the miR-200 family might 
be useful biomarkers for identifying patients with Barrett’
s esophagus who are at increased risk of  adenocarcinoma. 
They may also be helpful for assessing the potential an-
tineoplastic effects of  medical and surgical treatment of  
Barrett’s esophagus. Further studies are required to evalu-
ate this hypothesis. Recent advances in delivery of  small 
RNAs in a clinical setting[49], and the demonstrated in vitro 
antineoplastic effects of  endogenous miR-200 expres-
sion[38,50], suggest a possible future role for the therapeutic 
use of  this family of  miRNAs in treating early cancer in 
Barrett’s epithelium. 

Our study had some limitations. First, we used Barrett’s 
esophagus epithelium proximal to cancer, and cell lines de-
rived from dysplastic epithelium, to determine evidence for 
reduced miR-200 expression in dysplasia. We did not dem-
onstrate miR-200 downregulation in dysplastic epithelium 
from patients who did not have invasive cancer, and this is 
an important area for investigation in future studies. Sec-
ond, although our study provides evidence for effects of  
miR-200 expression on known gene-expression and pheno-
typic features of  benign and dysplastic Barrett’s esophagus, 
we did not expand this evidence using functional studies. 

In summary, we showed that the miR-200 expression 
profile in Barrett’s esophagus distinguished it from gas-
tric and duodenal epithelia, and that downregulation of  
miR-200 expression was associated with dysplasia and ade-
nocarcinoma. Further investigation is warranted to evaluate 
whether changes in the expression of  these miRNAs can 
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be used to identify patients with Barrett’s esophagus who 
are at risk of  progression to esophageal adenocarcinoma.
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of the miR-200 family in Barrett’s esophagus and esophageal adenocarcinoma 
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tic progression. 
Innovations and breakthroughs
This study is the first to identify differential expression of the miR-200 family in 
Barrett’s esophagus and esophageal adenocarcinoma. The miR-200 family ex-
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types provides evidence that aberrant miR-200 family member expression may 
contribute to the increased proliferation and decreased cell death associated 
with Barrett’s esophagus. The complete downregulation of the miR-200 family 
and subsequent upregulation of mRNA targets ZEB1 and ZEB2 in esophageal 
adenocarcinoma mimics what is seen in epithelial to mesenchymal transition 
and other invasive solid tumors, which suggests that the miR-200 family is in-
volved in invasive esophageal adenocarcinoma development. 
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The authors hypothesize that the miR-200 family might be useful biomarkers 
for identifying patients with Barrett’s esophagus who are at increased risk of 
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Terminology
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