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Abstract
Using a functional high-throughput screening (HTS) and subsequent solution-phase parallel
synthesis approach, we have discovered a novel series of positive allosteric modulators for mGlu4,
a G-protein coupled receptor. This series is comprised of a homopiperazine central core. The
solution-phase parallel synthesis and SAR of analogs derived from this series will be presented.
This series of positive allosteric modulators of mGlu4 provide critical research tools to further
probe the mGlu4-mediated effects in Parkinson’s disease.

1. Introduction
The development of new strategies for the treatment of Parkinson’s disease (PD) continues
to be a major focus of attention.1–4 PD is a neurodegenerative disease caused by the
degeneration of dopaminergic neurons in the substantia nigra pars compacta of the basal
ganglia which leads to a debilitating movement disorder. Metabotropic glutamate receptor 4
(mGlu4) is expressed at a key synapse in the indirect pathway of the basal ganglia circuitry.
5, 6 Several studies have shown that the activation of mGlu4 has anti-parkinsonian and
neuroprotective effects in rodent PD models.6, 7 These results have established this receptor
as a viable target for the symptomatic and disease modifying treatment of PD. We have
taken the approach of selectively activating mGlu4 using positive allosteric modulators
(PAMs), compounds which increase the potency of the endogenous neurotransmitter
glutamate at mGlu4.8, 9

Compounds in Vanderbilt’s small molecule library were screened in a triple-add assay
format at 10 µM to identify agonist, antagonist, or allosteric modulator activity in CHO cells
stably expressing human mGlu4 and the chimeric G protein Gqi5. Test compounds were
added to cells 140 seconds prior to addition of an EC20 concentration of glutamate; 90
seconds later an EC80 concentration of glutamate was added. Response was measured in a
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fluorometric calcium assay, and data were analyzed by finding the maximum value for each
fluorescence trace. This “triple add” approach to HTS is utilized in order to identify
compounds with different modes of pharmacology (agonists prior to EC20 addition,
antagonists and negative allosteric modulators after EC80 addition, and positive allosteric
modulators after EC20 addition) in a single experiment.

Using this functional high-throughput screening protocol, we have previously identified a
number of novel mGlu4 PAM scaffolds. In addition to known mGlu4 PAM, PHCCC, 1,7, 10

we have reported a number of distinct structural classes of mGlu4 PAMs, such as
VU0155041, 2,11, 12 VU0080241, 3,13 VU0001171, 4,14 VU0092145, 5,14 VU0361737,
6,15 VU0364439, 7,16 and VU0366037, 8 (Figure 1); of which, two analogs (2 and 6) have
been shown to display efficacy in anti-Parkinsonian animal models.11, 15 However, all of the
reported compounds bear striking resemblance in that they all contain polyaromatic
moieties, making these compounds planar, and they do not contain any basic nitrogens. We
now report a novel scaffold, represented by VU0105737, 9, as possessing mGlu4 PAM
activity (Figure 2). This new chemotype is comprised of a nonplanar homopiperazine central
core which contains a basic nitrogen (which can presumably lead to more soluble
compounds than previously identified). Due to this structural novelty and the encouraging
calculated properties, this scaffold provided an excellent opportunity to explore the SAR
around this initial HTS lead as part of our hit-to-lead program.

2. Results and Discussion
The SAR surrounding compound 9 centered around 4 structural motifs: 1, exploring the 2,4-
dimethoxyphenylamide; 2, exploring the linker chain length; 3, exploring the central
homopiperazine ring; and 4, exploring the 4-methoxyphenylsulfonamide (Figure 2). The
homopiperazine, 9, was readily modified using commercially available acid chlorides,
carboxylic acids, sulfonyl chlorides and other core starting materials. The parallel synthesis
and biological evaluation of this structure class is detailed below. All parallel synthetic
procedures were conducted utilizing either test-tube reaction blocks or stir-plate mounted
vial racks.

Modification of the central homopiperazine core was performed in order to address the
basicity of the homopiperazine nitrogens (piperazine, oxohomopiperazine, oxopiperazine) as
well as to change the shape by introduction of the bridged [3.3.0] scaffold (Scheme 1. All
experimental procedures are contained in the Supplemental Materials). The piperazine
compound, 11, and [3.3.0]-compound, 13, were prepared from N-Boc starting materials, 10
and 12, via a three step protocol of sulfonylation, Boc removal and alkylation. The oxo-
containing compounds started from piperazin-2-one (14a) or 1,4-diazepan-5-one (14b).
Thus, sulfonamide formation with 4-methoxybenzenesulfonyl chloride (CH2Cl2, DIEA,
43%-quant.), followed by alkylation of the amide with methyl bromoacetate (Cs2CO3,
CH3CN, 80°C, 45–50%) and saponification of the ester (LiOH, THF/MeOH/H2O, 35%-
quant.) afforded the penultimate acid. Finally, HATU-mediated amide coupling with 2,4-
dimethoxyaniline (DMF, DIEA) provided the final compounds, 15a and 15b.

Results from Table 1 show that little modification of the core portion of the molecule is
tolerated. All modifications of the core structure led to compounds that were inactive and
showed no potentiation of glutamate (as assessed by the %GluMax). We utilized the
Chinese hamster ovary cells expressing human mGlu4 and the chimeric G protein Gqi5 to
induce calcium mobilization as our pharmacological assay to determine mGlu4 potency.
This assay does show fluctuation in the day-to-day maximal PAM response; due to this, all
data have been normalized to the control compound, 1, as a comparison of relative efficacy
(as noted in % PHCCC).10, 16
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Keeping the right-side of the molecule constant, investigation of replacement of the amide
aromatic ring with various heterocycles and alkyl groups, and exploration of the linker was
next undertaken (Scheme 2, see Supplemental Material for full experimental procedures). To
this end, commercially available N-Boc homopiperazine, 16, was reacted with 4-
methoxybenzenesulfonyl chloride (CH2Cl2, DIEA) to give 17 in high yield (98%).
Deprotection of the Boc group (4 M HCl, dioxane, quant.) furnished the key intermediate 18
which was converted to the urea, 20i, via reaction with 2,4-dimethoxyphenyl isocyanate
(CH2Cl2, DIEA) in good yield (80%). Alternatively, 18 was N-alkylated with methyl
bromoacetate (Cs2CO3, CH3CN, 80 °C, 76%) followed by saponification of the ester
(LiOH, THF/H2O/MeOH, quant.) which gave the penultimate intermediate, 19, in good
overall yield. The carboxylic acid was then coupled to a variety of anilines and amines
utilizing HATU as the coupling reagent (HATU, DMF, DIEA, 45–85%) to provide the
desired compounds (20a–j).

The results in Table 2 show that the original hit with the 2,4-dimethoxyphenyl substituent
was weakly active (9, >10 µM, 69.5% PHCCC) as was the 2-methoxyphenyl substituent
(20a, >10 µM, 63.9% PHCCC); however, both compounds showed good efficacy (>100%
PHCCC). Replacing the 2-methoxyphenyl with 4-methoxyphenyl led to an inactive
compound (20b, 14.8% PHCCC). Other substitution patterns, such as 2,4-difluorophenyl
(20c), 2-fluorophenyl (20d), 4-pyridyl (20e), cycloalkyl (20f, 20g) and cyclicdioxoaryl
compound (20h) were all inactive. In addition, changing the length of the carbon linker also
produced inactive compounds (20i, 20j). This rather ‘shallow’ SAR is a common occurrence
with allosteric modulators.4,5

The last portion of the molecule for modification was the right-hand sulfonamide moiety
(Scheme 3, Table 3, see Supplemental Material for full experimental details). Starting with
2,4-dimethoxyaniline, 21, amide formation with bromoacetyl bromide (CH2Cl2, DIEA,
81%) gave the desired α-bromo-amide, 22, which was N- alkylated with Boc-
homopiperazine (Cs2CO3, CH3CN, 80 °C, 79%) to give 23 in 64% yield (2 steps). The Boc
protecting group was removed (4 M HCl, dioxane, quant.) giving the key homopiperazine
intermediate, 24, which was coupled with the appropriate sulfonyl chloride (CH2Cl2, DIEA,
45–85%) to furnish the desired sulfonamides 25a–al.

The compounds evaluated in Table 3 cover a range of phenyl, benzyl, alkyl and heteroaryl
groups. The phenyl group showed good activity and efficacy (25a, 3.5 µM, 69.7% PHCCC).
However, substitution at the 2- position only tolerated F (25b, 3.5 µM, 36.6% PHCCC) and
Cl (25c, >10 µM, 25.8% PHCCC) with the latter being only a weak potentiator. The 4-
position was the most tolerated with 4-CF3-phenyl (25g, 2.1 µM, 26.6% PHCCC) and 4-Me-
phenyl (25i, 3.3 µM, 48.7% PHCCC) being the most potent. Disubstituted phenyl groups in
general showed good activity especially with dimethylated phenyl groups where the 2,4-
dimethylphenyl was the most potent compound of this series (25n, 1.3 µM, 42.8% PHCCC)
along with 2,5-dimethyl phenyl (25o, 2.7 µM, 32.5% PHCCC). 2,4,5-Trisubstituted phenyl
groups also showed potencies as good or better than the original HTS hit (25x, 3.1 µM,
43.6% PHCCC and 25y, 2.7 µM, 36.9% PHCCC).

The limited SAR around the benzyl group showed contrasting activity compared to the
phenyl group. For example, the benzyl group was a weak potentiator (25z, >10 µM, 46.5%
PHCCC). Furthermore the 2,4-dichlorobenzyl group showed good potency (25aa, 2.8 µM,
34.4% PHCCC) which in the case of the dihalogenated phenyl groups were all inactive.
Compounds 25ab and 25ac showed that alkyl groups were not tolerated. Substitution with
heteroaryl groups led to 3 compounds with acceptable potency. The most potent was the 2-
thienyl (25ae, 1.8 µM, 52.9% PHCCC) followed by the 2-methyl-4-
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trifluoromethylthiazol-5-yl (25al, 2.5 µM, 28.1% PHCCC) and the 2-furyl (25af, 3.3 µM,
36.2% PHCCC).

Compounds 9, 20a, 25a, 25i, 25ae were selected based on potency and efficacy for further
in vitro pharmacokinetic (PK) studies which included CYP450 inhibition, metabolic stability
(ClINT)18 and rat plasma protein binding (rPPB) (Table 4, see Supplemental Material for
assay details). Although these compounds possessed favorable free fraction when tested for
plasma protein binding in rats (>3% free), this class of compounds was very unstable in liver
microsomes (ClINT) and were equipotent with inhibiting CYP activity (2C9 and 3A4 < 10
µM).

Conclusions
In summary, through a functional HTS campaign, we identified a novel chemotype as an
mGlu4 PAM and SAR was explored around 4-structural motifs. These compounds represent
a series of homopiperazine sulfonamides. Limited SAR around this scaffold suggests a
possible alternate allosteric binding site compared to previously disclosed mGlu4 PAMs
where more robust SAR was identified. Unfortunately, these compounds possess less than
ideal PK properties (poor metabolic stability, CYP 2C9 and CYP 2D6 inhibition) preventing
their further study. However, as this class of compounds represent a novel chemotype in the
mGlu4 PAM area, we anticipate these compounds will inform the community for future
scaffold design.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structures of PHCCC, 1, and other recently reported mGlu4 PAMs, 2–9.
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Figure 2.
Areas of SAR Exploration of VU0105737, 9.
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Scheme 1.
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Scheme 2.
Synthetic procedure for the initial homopiperazine analogs, 20a–j.
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Scheme 3.
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Table 1

SAR Evaluation of Linker and Scaffold

Cmpd R hEC50 (µM)a % PHCCCa Yieldc (%)

11 Inactiveb 20.8 ± 1.1 45

13 Inactiveb 25.3 ± 2.3 49

15a Inactiveb 18.1 ± 1.3 19

15b Inactiveb
3.1 ± 0.3

16.4 ± 0.8 60

a
EC50 and GluMax, are the average of at least three independent determinations performed in triplicate (Mean ± SEM shown in table). PHCCC is

run as a control compound each day and it, and the maximal response generated in mGlu4 CHO cells in the presence of mGlu4 PAMs varies
slightly in each experiment. Therefore, efficacy data were further normalized to the relative PHCCC response obtained in each day’s run.

b
Inactive compounds are defined as %GluMax did not surpass 2X the EC20 value for that day’s run.

c
All yields were obtained by reverse phase preparative HPLC and were optimized for purity (>95%) not yield.
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Table 3

SAR Evaluation of Sulfonamide Aromatic Ring

Cmpd R hEC50 (µM) % PHCCC Yieldc
(%)

25a phenyl 3.5 ± 0.7 69.7 ± 5.1 80

25b 2-fluorophenyl 3.5 ± 0.5 36.6 ± 1.8 3d

25c 2-chlorophenyl >10 25.8 ± 2.5 58

25d 2-methoxyphenyl Inactiveb 21.8 ± 1.0 87

25e 2-(trifluoromethyl)phenyl Inactiveb 20.1 ± 0.2 24d

25f 3-(trifluoromethyl)phenyl Inactiveb 18.2 ± 1.9 6d

25g 4-(trifluoromethyl)phenyl 2.5 ± 0.5 26.6 ± 2.3 36

25h 4-(trifluoromethoxy)phenyl >10 48.2 ± 4.6 5d

25i 4-methylphenyl 3.3 ± 0.2 48.7 ± 1.1 77

25j 4-fluorophenyl >10 27.6 ± 1.3 33d

25k 4-chlorophenyl 4.1 ± 0.6 43.6 ± 4.4 41

25l 4-tertbutylphenyl >10 32.6 ± 3.1 32

25m 4-acetylphenyl >10 42.9 ± 2.7 65

25n 2,4-dimethylphenyl 1.3 ± 0.5 42.8 ± 4.1 58

25o 2,5-dimethylphenyl 2.7 ± 0.6 32.5 ± 1.2 67

25p 2,5-dichlorophenyl Inactiveb 22.7 ± 0.7 67

25q 2-chloro-6-methylphenyl Inactiveb 18.1 ± 0.9 75

25r 2,6-dichlorophenyl Inactiveb 22.3 ± 1.7 23

25s 3,4-dimethylphenyl 3.2 ± 0.2 42.4 ± 5.0 67

25t 3-chloro-4-methylphenyl 3.4 ± 0.2 39.2 ± 1.2 43

25u 3,4-dichlorophenyl >10 24.3 ± 1.5 31

25v 3,4-difluorophenyl >10 27.0 ± 1.8 64

25w 4-chloro-3-fluorophenyl 4.5 ± 0.7 25.5 ± 1.2 53

25x 2,4-dichloro-5-methylphenyl 3.1 ± 0.9 43.6 ± 4.7 44

25y 4-chloro-2-fluoro-5-methylphenyl 2.7 ± 0.2 36.9 ± 2.7 36

25z benzyl >10 46.5 ± 4.8 12d

25aa 2,4-dichlorobenzyl 2.8 ± 0.01 34.4 ± 3.5 44

25ab isopropyl Inctiveb 17.5 ± 0.7 22d

25ac isobutyl Inactiveb 21.3 ± 0.9 27d

25ad 2-pyridyl Inactiveb 20.6 ± 0.3 36

25ae 2-thiophene 1.8 ± 0.3 52.9 ± 5.0 83

25af 2-furyl 3.3 ± 0.3 36.2 ± 2.2 98
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Cmpd R hEC50 (µM) % PHCCC Yieldc
(%)

25ag 3-pyridyl >10 25.6 ± 4.6 20

25ah 3-furyl >10 34.1 ± 3.6 70

25ai 3-thiophene >10 35.0 ± 3.3 79

25aj 2-acetamidothiazol-5-yl >10 46.4 ± 5.5 60

25ak 2,4-dimethylthiazol-5-yl >10 47.7 ± 2.1 73

25al 2-methyl-5-(trifluoromethyl)thiazol-5-yl
(±)-PHCCC

2.5 ± 0.4
3.1 ± 0.3

28.1 ± 4.8 49

a
EC50 and GluMax, are the average of at least three independent determinations performed in triplicate (Mean ± SEM shown in table). PHCCC is

run as a control compound each day, and the maximal response generated in mGlu4 CHO cells in the presence of mGlu4 PAMs varies slightly in
each experiment. Therefore, data were further normalized to the relative PHCCC response obtained in each day’s run.

b
Inactive compounds are defined as %GluMax did not surpass 2X the EC20 value for that day’s run.

c
All yields were obtained by reverse phase preparative HPLC unless otherwise stated and were optimized for purity (>95%) not yield.

d
Yields obtained by mass directed HPLC17
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