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Abstract

The gut mucosa is exposed to a large community of commensal bacteria that are required for the
processing of nutrients and the education of the local immune system. Conversely, the gut immune
system generates innate and adaptive responses that shape the composition of the local microbiota.
One striking feature of intestinal adaptive immunity is its ability to generate massive amounts of
noninflammatory immunoglobulin A (IgA) antibodies through multiple follicular and
extrafollicular pathways that operate in the presence or absence of cognate T-B cell interactions.
Here we discuss the role of intestinal IgA in host-commensal mutualism, immune protection, and
tolerance and summarize recent advances on the role of innate immune cells in intestinal IgA
production.

Introduction

The gastrointestinal mucosa is a unique environment that becomes exposed to a massive and
diverse microbial ecosystem shortly after birth (Macpherson, 2006). The stomach and
proximal segments of the small intestine, including the duodenum and jejunum, have
relatively low bacterial densities of approximately 103-10° organisms per gram of luminal
contents, at least in mice. Higher bacterial densities of 108 organisms per gram can be found
in the ileum, which is the distal portion of the small intestine. In the large intestine or colon,
bacteria can reach a density of 1019-1012 organisms per gram and comprise more than 1000
species, including obligate anaerobes, such as Bacteroides, bifidobacteria, fusobacteria, and
peptostreptococci, as well as obligate and facultative aerobes, such as enterobacteria and
lactobacilli. Because of this massive colonization, the number of prokaryotic cells in our
body is estimated to exceed that of eukaryotic cells by one order of magnitude.

In general, intestinal bacteria establish a mutualistic relationship with the human host. The
peaceful nature of this relationship can be traced in the word commensal, which originates
from the Latin cum mensa, “sharing a table.” Indeed, the intestinal lumen provides bacteria
with a stable habitat rich in energy sources derived from the ingested food (Macpherson and
Harris, 2004). Conversely, bacteria breakdown otherwise indigestible food components,
generate essential nutrients, compete with incoming invasive species, stimulate the growth
and protective functions of intestinal epithelial cells, and facilitate the development of the
intestinal immune system (Macpherson and Harris, 2004; Rakoff-Nahoum et al., 2004; Rhee
et al., 2004). Thus, it is not surprising that the intestine has evolved multiple immune
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strategies to confine commensals to the intestinal lumen while preserving their number and
composition. An additional remarkable feature of the intestine is its capacity to select
appropriate effector and regulatory immune mechanisms to neutralize pathogens while
preventing bystander tissue damage (Holmgren and Czerkinsky, 2005). In this fashion, the
intestine provides immune protection without compromising the integrity of the epithelial
barrier.

A key intestinal strategy to generate immune protection in a noninflammatory manner is the
production of immunoglobulin A (IgA), the most abundant antibody isotype produced in our
body (Macpherson et al., 2008). IgA provides mucosal immune protection as a result of its
ability to interact with the polymeric Ig receptor (plgR), an antibody transporter expressed
on the basolateral surface of epithelial cells (Mostov and Deitcher, 1986). After binding to
plgR, IgA dimers secreted by intestinal B cells translocate to the surface of epithelial cells,
thereby generating secretory IgA (SIgA) complexes that play multiple protective roles
(Mestecky et al., 1999). SIgA promotes immune exclusion by entrapping dietary antigens
and microorganisms in the mucus, downmodulates the expression of proinflammatory
bacterial epitopes on commensal bacteria, and, in general, promotes the maintenance of
appropriate bacterial communities within specific intestinal segments (Fagarasan et al.,
2002; Peterson et al., 2007; Phalipon et al., 2002). In addition, SIgA blocks or sterically
hinders microbial components involved in epithelial attachment, mediates intraepithelial
neutralization of incoming pathogens and microbial inflammatory products, and facilitates
antigen sampling by binding to microfold (M) cells, an epithelial-like cell type specialized in
antigen-capturing functions (Brandtzaeg et al., 1999; Fernandez et al., 2003; Huang et al.,
2005; Kadaoui and Corthesy, 2007; Mantis et al., 2002; Rhee et al., 2004). Furthermore, IgA
dimers locally released by plasma cells remove microorganisms that have breached the
epithelial barrier in two ways: by transporting them back into the lumen through the plgR
and by promoting their clearance via FcaRlI (also known as CD89), an IgA receptor
expressed by dendritic cells (DCs), neutrophils, and other phagocytes (Pasquier et al., 2005;
Phalipon and Corthesy, 2003).

Here we discuss the function of intestinal IgA antibodies, the follicular and extrafollicular
inductive sites for intestinal IgA production, the T cell-dependent and T cell-independent
pathways regulating intestinal IgA responses, and the mechanisms mediating homing of
IgA-producing B cells to the intestinal lamina propria.

Follicular Inductive Sites for Intestinal IgA Production

Craig and Cebra were the first to show that Peyer’s patches are a source of IgA precursor
cells (Craig and Cebra, 1971). Using an elegant adoptive-transfer system based on different
Ig allotypes, they demonstrated that cells derived from Peyer’s patches were able to
replenish lethally irradiated rabbits with IgA-producing cells. They clearly showed that the
intestinal lamina propria of recipient animals was repopulated with IgA-secreting cells of
donor origin after transfer of Peyer’s patches, but not of popliteal lymph node cells.

Peyer’s patches are characterized by three important features. First, Peyer’s patches include
germinal centers that promote the interaction between antigen-specific T cells and B cells as
well as the expression of activation-induced cytidine deaminase (AID), a B cell-specific
enzyme required for the diversification of 1g genes through class-switch DNA
recombination (CSR) and somatic hypermutation (Muramatsu et al., 2000). Second, Peyer’s
patches contain a higher proportion of B cells versus T cells (four to six times more) as
compared to peripheral lymph nodes (Stevens et al., 1982). Third, Peyer’s patches are rich in
cytokines with 1gA-inducing functions, including transforming growth factor  (TGF-p)
(Gonnella et al., 1998).
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TGF-B cooperates with CD40 ligand (CD40L, also known as CD154), a tumor necrosis
factor (TNF) family member expressed by CD4* T cells, to trigger IgA CSR and generate
antigen-specific IgA* B cells (Figure 1), which represent nearly 70% of germinal-center B
cells in Peyer’s patches (Butcher et al., 1982;Cazac and Roes, 2000;Cerutti, 2008b;Coffman
et al., 1989;1slam et al., 1991;Mclintyre et al., 1995;Shockett and Stavnezer, 1991). Indeed,
B cell-conditional TGF-B-receptor-deficient mice show severely impaired steady-state and
antigen-induced IgA responses both systemically and in intestinal sites (Cazac and Roes,
2000). In addition to TGF-, Peyer’s patches contain inter-leukin-4 (IL-4), IL-6, and IL-10,
which facilitate the expansion of IgA-expressing B cells and their differentiation to IgA-
secreting plasma cells (Defrance et al., 1992;Fayette et al., 1997;0kahashi et al., 1996;Sato
et al., 2003;Xu-Amano et al., 1993).

Peyer’s patches are covered by the follicle-associated epithelium (Figure 1), an epithelial
area rich in M cells (Neutra and Kozlowski, 2006). M cells are specialized epithelial cells
that deliver antigen from the gut lumen to intra- and subepithelial DCs through a vesicular
transport system (Neutra, 1999). Not all antigens can gain access to M cells, given that size
restrictions are set by a glycocalix (Frey et al., 1996). Antigen-loaded DCs migrate from
epithelial and subepithelial areas to the T cell-rich interfollicular regions of Peyer’s patches,
where they initiate a polarized T helper type-2 (Th2) response characterized by the release
of noninflammatory cytokines with B cell-activating functions, including IL-4 (Rimoldi et
al., 2005). This response requires the “conditioning” of DCs by epithelial cells via thymic
stromal lymphopoietin (TSLP), an IL-7-like cytokine (Figure 2). TSLP stimulates DC
production of IL-10, an IgA-inducing cytokine that inhibits the generation of
proinflammatory Th1 cells releasing interferon-y (IFN-y) (Rimoldi et al., 2005). This
inhibitory effect stems from the ability of TSLP to block DC production of IL-12, a cytokine
essential for the initiation of Thl responses (Rimoldi et al., 2005). Thus, intestinal epithelial
cells may educate DCs to initiate noninflammatory T cell-dependent immune responses in
Peyer’s patches, including IgA responses.

TSLP-conditioned DCs may further enhance IgA production by releasing TGF-f (1.D. lliev
and M.R., unpublished data). However, the finding that mice with leukocytes lacking avp8
integrin, which is required for the activation of TGF-p (Travis et al., 2007), have increased
serum IgA concentrations might argue against a prominent role of DCs in TGF-B-induced
IgA CSR. Alternatively, TSLP-conditioned DCs may generate CD4* T cell subsets with
both IgA-inducing and regulatory functions (Figure 2). Indeed, TSLP-conditioned DCs
release IL-6 (Rimoldi et al., 2005), which cooperates with additional DC mediators,
including TGF-, retinoic acid, and IL-27, to induce CD4*CD25*Foxp3* T regulatory
(Treg) cells (1.D. lliev and M.R., unpublished data), CD4*CD25 Foxp3~ T regulatory type
1 (Tr2) cells, and regulatory Th17 cells (Li and Flavell, 2008). By releasing TGF-$ and
IL-10, Treg, Trl, and Th17 cells may not only promote intestinal homeostasis and tolerance,
but also stimulate intestinal B cell production of IgA (Cerutti et al., 1998; Defrance et al.,
1992; Fayette et al., 1997; Li and Flavell, 2008). Conversely, IgA-producing B cells and
their precursors might enhance the generation of Treg, Trl, and Th17 cells by releasing
IL-6, IL-10, and TGF-B (Cerutti et al., 1998; Zan et al., 1998; Fillatreau et al., 2008). SIgA
could amplify this process as a result of its ability to transport antigen from the lumen to
DCs via M cells (Kadaoui and Corthesy, 2007). In the presence of TSLP and possibly other
epithelial factors, these antigen-loaded DCs would initiate antigen-specific Treg, Trl, and
Th17 cell responses as described earlier. Although attractive, this model needs to be tested
in cell-type-specific protein-deficient systems. In this regard, CD4* T cell-specific TGF-p-
deficient mice showed increased IgA production, at least in the systemic compartment and
under steady-state conditions (M.O. Li and R.A. Flavell, personal communication). Should
this observation be extended to the intestinal compartment and to postimmunization
conditions, one may conclude that intestinal IgA responses require a TGF-B-producing cell
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type different from CD4"* T cells for their induction. In agreement with this possibility, DCs,
epithelial cells, stromal cells, mast cells, and B cells are good producers of TGF-3
(Babyatsky et al., 1996; Fagarasan et al., 2001; Gonnella et al., 1998; Zan et al., 1998).

In addition to TGF-B, Peyer’s patch DCs may utilize retinoic acid, IL-6, and inducible nitric-
oxide synthase (iNOS) to enhance intestinal IgA responses (Figure 1). Retinoic acid drives
intestinal IgA production through an elusive mechanism that might affect IgA CSR or, more
likely, the differentiation of IgA class-switched B cells into IgA-secreting plasma cells.
Furthermore, retinoic acid confers gut-homing properties to IgA class-switched B cells
through its ability to upregulate CCR9 and a4p7 expression on these cells (Mora et al.,
2006). As for IL-6, this cytokine enhances intestinal IgA production by promoting the
differentiation of IgA-expressing B cells into plasma cells (Sato et al., 2003). Finally, iNOS
enhances intestinal 1gA class switching through a mechanism involving upregulation of the
TGF-PB receptor on Peyer’s patch B cells (Tezuka et al., 2007).

In general, iINOS has a multifunctional role in the immune system, and therefore it may not
be surprising that both systemic and intestinal IgA responses are decreased in iNOS-
deficient mice (Nathan, 2006; Tezuka et al., 2007). Consistent with prior observations
showing that innate immune cells express iNOS upon activation of Toll-like receptors
(TLRs) by microbial ligands (Nathan, 2006), intestinal DCs require MyD88, a key TLR
signaling molecule, to express iNOS (Tezuka et al., 2007). Interestingly, iINOS expression in
the intestine is largely restricted to a discrete subset of TNF-o"iNOS* DCs. When
adoptively transferred into iNOS-deficient mice, lamina propria TNF-o*iNOS* DCs from
wild-type mice restore IgA production (Tezuka et al., 2007), confirming the central role of
DCs in intestinal IgA responses. Nonetheless, the presence of TNF-a*iNOS* DCs in Peyer’s
patches and their relationship with known intestinal DC subsets remain unclear. In this
regard, it must be noted that several populations of DCs have been described in Peyer’s
patches, each characterized by a distinctive CD11b, CD11c, CD8, CX3CR1, and CCR6
expression pattern and by different immune functions (lwasaki, 2007; Rescigno, 2006).

Peyer’s Patches in the Response to Pathogens

Peyer’s patches are critical to initiate antigen-specific immune response to pathogens
capable of penetrating M cells. One of these pathogens is Salmonella typhimurium, a
bacterium equipped with a type-111 secretion system that permits the invasion of
nonphagocytic cells (Martinoli et al., 2007). Salmonella strains deficient for the expression
of the invA gene, which is involved in the formation of a productive type 111 secretion
system, neither enter Peyer’s patches nor induce formation of fecal-antigen-specific IgA.
However, these strains can still enter the lamina propria, presumably via a DC-mediated
mechanism, and then reach the mesenteric lymph node and the spleen, where they induce
1gG production (Martinoli et al., 2007). Notably, mice vaccinated with strains of Salmonella
unable to elicit a fecal IgA response become infected if challenged with virulent Salmonella
through the oral route, suggesting that antigen-specific IgA antibodies exert a protective role
in the intestinal mucosa.

Together, these data tell us that protective IgA responses to pathogens are predominantly
initiated in Peyer’s patches. A similar scenario has been described for commensal bacteria.
Enterobacter cloacae injected intragastrically in wild-type mice can be detected in DCs
from Peyer’s patches and mesenteric lymph nodes (Macpherson and Uhr, 2004). This
localization is associated with induction of commensal-specific IgA responses. However,
bacteria cannot be recovered from the spleen, suggesting that mesenteric lymph nodes are
important to exclude commensals from the systemic immune system. It remains to be
established how noninvasive commensal species gain access to Peyer’s patches. One
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possibility is that commensal bacteria first become opsonized by natural polyreactive IgA
antibodies and then undergo IgA-mediated apical-to-basal transepithelial migration across M
cells (Kadaoui and Corthesy, 2007; Mantis et al., 2002). Interestingly, IgA responses in
mesenteric lymph nodes could also occur in response to transcutaneous immunization,
suggesting the existence of a functional link between the skin and mucosal sites (Chang et
al., 2008).

Payer’s Patches as the Major Site for the Induction of Antigen-Specific
Responses

IgA CSR can also take place in isolated lymphoid follicular structures that are characterized
by a cellular composition similar to that of Peyer’s patches (Hamada et al., 2002;
Moghaddami et al., 1998). These isolated lymphoid follicles are lined by a specialized
epithelium containing M cells and thus should mount IgA responses through pathways
similar to those utilized by Peyer’s patches. Mice treated postnatally with LTBR-Ig, a fusion
protein of lymphotoxin-p receptor (LTBR) and IgG Fc, showed reduced size and numbers of
Peyer’s patches and lacked isolated lymphoid follicles but were still able to generate
antigen-specific mucosal IgA responses after oral immunization, although to a lesser extent
than control mice (Yamamoto et al., 2004). Mice treated in utero with both TNF receptor
(TNF-R) of 55 kDa-1g and LTBR-Ig lacked Peyer’s patches and mesenteric lymph nodes but
retained intact isolated lymphoid follicles (Yamamoto et al., 2004). These mice failed to
induce antigen-specific IgA responses after oral immunization, although having unaltered
intestinal IgA antibodies. Together, these findings demonstrate that Peyer’s patches play a
key role in the induction of specific IgA responses to orally administered antigens. They also
indicate that isolated lymphoid follicles have a marginal role in these responses.

Remarkably, Peyer’s patches do not absolutely require germinal centers to initiate antigen-
specific antibody responses. Indeed, mice lacking CD28, a B7-binding T cell costimulatory
molecule necessary for germinal-center formation, not only retain 1IgA-producing plasma
cells in the intestinal lamina propria but can also mount high-affinity IgA antibodies to an
orally administered T cell-dependent antigen (Gardby et al., 2003). In contrast, CD28-
deficient mice cannot mount specific antibody responses when challenged with a T cell-
dependent antigen through a systemic route (Gardby et al., 2003). This evidence indicates
that Peyer’s patches can generate high-affinity 1IgA antibodies in the absence of canonical
cognate T-DC or T-B cell interactions in the germinal center. The unique nature of Peyer’s
patches is further emphasized by studies showing that Peyer’s patch B cells do not need to
express surface Ig receptors (also known as B cell antigen receptor, BCR) to produce
antigen-specific IgA antibodies (Casola et al., 2004). This production, rather, requires
antigen signaling via TLRs as well as help from CD4* T cells (Casola et al., 2004). Thus, it
is tempting to speculate that Peyer’s patches utilize both canonical and noncanonical
pathways for the generation of IgA antibodies to specific T cell-dependent antigens.

Extrafollicular Inductive Sites for Intestinal IgA Production

Although important, Peyer’s patches are not essential for intestinal IgA production. Indeed,
mice treated during gestation with an LTBR-1g fusion protein do not develop Peyer’s patches
and yet retain IgA-producing plasma cells in the intestinal lamina propria (Yamamoto et al.,
2004). These mice probably utilize mesenteric lymph nodes and isolated lymphoid follicles
to produce IgA, because these follicular structures are not affected by LTBR-Ig (Yamamoto
et al., 2004). Consistent with this possibility, IgA-producing plasma cells are profoundly
reduced in the intestinal lamina propria of LT-a-deficient mice and double-LT-a-TNF-
deficient mice, which lack mesenteric lymph nodes and isolated lymphoid follicles in
addition to Peyer’s patches (Kang et al., 2002; Ryffel et al., 1998). However, mesenteric
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lymph nodes and isolated lymphoid follicles are also not absolutely required for the
initiation of antigen-specific IgA responses. Indeed, reconstitution of LT-a-deficient mice
and double-LT-a-TNF-deficient mice with bone marrow from normal animals restores the
intestinal IgA response of these animals to a variable degree (Kang et al., 2002; Ryffel et al.,
1998).

The nonessential role of intestinal follicular lymphoid structures for the production of IgA is
further indicated by studies with mice lacking inhibitor of DNA binding 2 (1d2), an inhibitor
of helix-loop-helix transcription factors, or retinoic-acid-related orphan receptor yt (RORyt),
a member of the nuclear-receptor family of transcription factors (Eberl and Littman, 2004).
These proteins are instrumental for the generation of lymphoid-tissue-inducing cells, a cell
type that mediates the formation of organized intestinal lymphoid tissue through LT-a.
Similarly to bone-marrow-reconstituted L T-a-deficient mice (Kang et al., 2002), 1d2-
deficient mice and RORyt-deficient mice have no Peyer’s patches, mesenteric lymph nodes,
and isolated lymphoid follicles and yet retain some antigen-specific IgA-producing plasma
cells in the lamina propria (Eberl and Littman, 2004). It must be noted that in all of these
mice, the number of IgA-producing plasma cells varies considerably, depending on the
background and rearing conditions. Nonetheless, these models support the notion that the
gut-associated lymphoid tissue can generate IgA antibodies outside the organized
environment of lymphoid follicles.

IgA Class Switching in the Lamina Propria

The presence of IgA-producing plasma cells in the intestinal lamina propria of mice lacking
Peyer’s patches, mesenteric lymph nodes, and isolated lymphoid follicles points to the
lamina propria as an extrafollicular inductive site for IgA antibodies. Indeed, the intestinal
lamina propria contains IgM™* B cells that may function as a local precursor of IgA-
producing plasma cells (Fagarasan et al., 2001). These IgM* precursors comprise naive B
cells that migrate from the bone marrow to the intestine in response to chemotactic signals
generated by intestinal stromal cells through an LT-mediated NF-xB-inducing kinase (NIK)-
dependent pathway (Suzuki et al., 2005). Another subset of IgM* precursors is that of gut-
experienced IgM* B cells, which migrate from Peyer’s patches to the intestinal lamina
propria independently of stromal signals (Suzuki et al., 2005).

Of note, the intestinal lamina propria of normal but not AID-deficient mice also contains
IgA* B cells, indicating that resident IgM™* B cells may switch to IgA-producing plasma
cells in situ (Fagarasan et al., 2001). Although still debated (Cerutti, 2008a), the presence of
locally induced IgA class switching is consistent with the identification of AID transcripts in
both IgM* and IgA* B cells from the intestinal lamina propria of an AID-GFP (green
fluorescent protein) reporter mouse capable of recapitulating physiological immune
responses (Crouch et al., 2007). Active IgA class switching is also present in the human
intestinal lamina propria. Indeed, this site includes B cells that express AID transcripts and
protein and contain extrachromosomal S-S, switch circles, an episomal DNA byproduct of
ongoing IgA CSR (He et al., 2007).

Another strong indication of the IgA class-switch-inducing capability of the intestinal
lamina propria comes from studies showing abundant production of IgA class-switch-
inducing factors by various cell types dwelling at this site. For instance, intestinal lamina
propria CD4* T cells were recently shown to produce large amounts of I1L-10, a cytokine
involved in IgA class switching and production (Defrance et al., 1992; Fayette et al., 1997;
He et al., 2007; Kamanaka et al., 2006; Xu et al., 2007). Of note, CD4" T cells from the
intestinal lamina propria express an activated phenotype, which possibly results from local
activation by antigen-presenting DCs (Benson et al., 2007). In this regard, growing evidence
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indicates that M cell-mediated antigen entry is not restricted to the follicle-associated
epithelium but also occurs in the conventional epithelium in proximity of isolated lymphoid
follicles (Hamada et al., 2002). In addition to containing scattered M cells, the conventional
epithelium is extensively infiltrated by DCs, which form transepithelial projections while
capturing antigen in the intestinal lumen (Chieppa et al., 2006; Rescigno et al., 2001).
Uptake of antigen by these DCs may be followed by its presentation to lamina propria CD4*
T cells, including antigen-specific Treg and Tr1 cells, which may thereafter initiate local
IgA responses through CD40L and cytokines, including 1L-10 and TGF-f (Cerultti et al.,
1998; Defrance et al., 1992; Fayette et al., 1997; Li and Flavell, 2008).

Lamina Propria T Independent IgA Responses

Intestinal lamina propria DCs may also present antigen to B cells (Bergtold et al., 2005),
thereby inducing their activation via both somatically recombined and germline gene-
encoded antigen receptors, including BCR and TLRs. These DCs may further activate B
cells through B cell-activating factor of the TNF family (BAFF, also known as BLyS) and a
proliferation-inducing ligand (APRIL) (Figure 1), two B cell-stimulating factors structurally
and functionally related to CD40L (He et al., 2007; Litinskiy et al., 2002; Schneider, 2005;
Xu et al., 2007). In both mice and humans, BAFF and APRIL deliver CD40-independent
IgA CSR-inducing signals via transmembrane activator and calcium-modulating
cyclophilin-ligand interactor (TACI), a receptor that is preferentially expressed by B cells
(Castigli et al., 2005b; Chiu et al., 2007; He et al., 2003, 2007; Litinskiy et al., 2002; von
Bulow et al., 2001; Xu et al., 2007; Cerutti, 2008b). Growing evidence indicates that this
pathway may support intestinal IgA production in a T cell-independent fashion. Indeed,
mice lacking CD40 or T cells retain intestinal IgA responses to both commensal bacteria and
pathogens, although these responses are decreased compared to those occurring in wild-type
animals (Bergqvist et al., 2006; Macpherson et al., 2000). Similarly, intestinal IgA responses
are partially conserved in humans lacking CD4* T cells or CD40 as a result of HIV infection
and hyper-IgM syndrome, respectively (He et al., 2007). Conversely, mice lacking APRIL
or TACI and humans expressing mutant TACI molecules exhibit impaired IgA responses
(Castigli et al., 2004, 2005a; von Bulow et al., 2001).

Recent data indicate that recognition of bacterial signatures by TLRs at the intestinal
epithelial barrier is essential for the production of BAFF and APRIL by lamina propria DCs.
Indeed, TLR signaling not only stimulates DC production of BAFF and APRIL (He et al.,
2007; Xu et al., 2007) but also elicits DC expression of iNOS (Figure 1), an enzyme that
augments BAFF and APRIL synthesis through the generation of nitric oxide (Tezuka et al.,
2007). Recognition of bacteria through TLRs would also account for the production of
BAFF and APRIL by intestinal epithelial cells (He et al., 2007; Kato et al., 2006; Xu et al.,
2007). Intriguingly, epithelial cells further amplify BAFF and APRIL production by
stimulating DCs via TSLP (Figure 1), at least in humans (He et al., 2007; Xu et al., 2007).
Ultimately, BAFF and APRIL would induce IgA class switching by activating B cells in
cooperation with cytokines released by DCs or other cell types, including IL-10 and TGF-p1
(He et al., 2007; Kaminski and Stavnezer, 2006; Litinskiy et al., 2002; Xu et al., 2007;
Cerutti, 2008b). In humans, this process appears to be negatively regulated by secretory
leukocyte protease inhibitor (SLPI), a TLR-inducible epithelial factor endowed with both
antimicrobial and anti-inflammatory functions (Xu et al., 2007). These observations indicate
that epithelial cells orchestrate mucosal IgA responses through both positive and negative
regulatory pathways.

B cells undergoing T cell-independent IgA class switching in the lamina propria would
further differentiate into IgA-secreting plasma cells upon receiving additional signals from
BCR ligands, TLR ligands, and cytokines, including IL-6 and IL-10 (Fagarasan et al., 2001;
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Groom et al., 2007; He et al., 2007; Kaminski and Stavnezer, 2006; Katsenelson et al., 2007;
Litinskiy et al., 2002; Ng et al., 2006; Cerutti, 2008b). In this regard, it must be noted that
IL-6 and IL-10 are produced not only by mucosal DCs but also by mucosal macrophages,
stromal cells, and epithelial cells (Denning et al., 2007; Fagarasan et al., 2001; He et al.,
2007; Jarry et al., 2008; Xu et al., 2007). Sustained IgA secretion may also require DC and
epithelial cell production of BAFF and APRIL given that these factors have been shown to
deliver plasma cell survival and differentiation signals via BCMA (B cell maturation
antigen) and TACI (Castigli et al., 2007; O’Connor et al., 2004). This pathway is likely to be
important for the survival of intestinal IgA-secreting plasma cells generated in the context of
both T cell-independent and T cell-dependent responses.

In mice, T cell-independent IgA responses predominantly involve B-1 cells, a peritoneal
IgM* B cell subset with phenotypic and functional features distinct from those of
conventional B cells (or B-2) (Hayakawa and Hardy, 1988; Macpherson et al., 2000;
Macpherson and Uhr, 2004). B-1 cells migrate from the peritoneum to intestinal sites,
including the lamina propria, in response to microbial TLR ligands (Ha et al., 2006).
Consistent with this possibility, the peritoneal cavity of germ-free mice contains more B-1
cells that the peritoneal cavity of pathogen-free mice harboring a diverse intestinal
microbiota. In addition to secreting IgM antibodies in a seemingly natural fashion, B-1 cells
produce IgA antibodies to commensal bacteria upon exposure to antigen. Indeed, studies in
TCR-deficient animals show that B-1 cells initiate T cell-independent IgA responses upon
exposure to DCs loaded with commensal bacteria (Macpherson and Uhr, 2004). Whether
this response is highly dependent on engagement of TACI on B-1 cells by BAFF and APRIL
remains to be established.

As for humans, the origin, phenotype, and functions of IgM* B cells undergoing T cell-
independent IgA class switching in the intestinal lamina propria are not known. Of note, the
intestinal lamina propria from the human colon may also foster sequential 1gA2 class
switching and production in IgA1-expressing B cells originating from colonic lymphoid
aggregates (He et al., 2007). Compared to IgA1, IgA2 may be more appropriate to cope with
the dense flora of the distal intestine, possibly because of its increased resistance to bacterial
proteases (Brandtzaeg et al., 1999; Mestecky et al., 1999).

Homing of IgA-Producing B Cells to the Intestine

In mice, B cells activated in Peyer’s patches derived from the bone marrow are distinct from
B-1 cells, which originate in the peritoneal cavity (Hayakawa and Hardy, 1988). B-1 and
B-2 cells express distinct phenotypes and carry different Ig receptor repertoires but
contribute equally to IgA production (Kroese et al., 1989; Stoel et al., 2005). It is becoming
clear that IgA antibodies to T cell-dependent antigens derive mostly from B-2 cells, whereas
IgA antibodies to T cell-independent antigens derive predominantly from B-1 cells
(Fagarasan and Honjo, 2003; Macpherson et al., 2008). This probably reflects different
homing properties of B-1 and B-2 cells, their different thresholds of activation, and their
distinct sites for IgA CSR. Naive B-2 cells express higher amounts of the intestinal homing
receptor a4p7 and slightly lower amounts than T cells of L-selectin, which is required for
homing to peripheral lymph nodes (Andrew et al., 1996). Interestingly, B and T cells
undergo firm adhesion to specific regions of Peyer’s patches, adhesion being more
prominent in or near follicles for B cells and at interfollicular regions for T cells (Warnock
et al., 2000). This probably contributes to a greater homing of B cells to Peyer’s patches.

Once activated in Peyer’s patches, B cells that have undergone IgA CSR become IgA*
effector B cells, including memory B cells and plasmablasts (Macpherson et al., 2008).
These cells upregulate the expression of the gut-homing receptors a4f7, CCR9, and/or
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CCR10 (Figure 1), recirculate via the thoracic duct, and home to the intestinal lamina
propria (Mora et al., 2006). Here, a4f37 binds to mucosal addressin cell-adhesion molecule 1
(MadCAM-1) on endothelial cells, whereas CCR9 and CCR10 respond to TECK (also
known as CCL25) and MEC (CCL2), respectively, two chemokines released by epithelial
cells (Hieshima et al., 2004; Wagner et al., 1996). In the lamina propria, IgA* plasmablasts
terminally differentiate into IgA-secreting plasma cells (Brandtzaeg et al., 1999). These
plasma cells synthesize the joining (J) chain, which allows the formation of stable IgA
oligomers with increased avidity for antigen (Brandtzaeg, 1974; Mestecky et al., 1971). IgA
oligomers bind the pIgR on the basolateral membrane of epithelial cells through the J chain
and thereafter translocate into the lumen as an SIgA complex (Figure 1), which comprises
the secretory component (Brandtzaeg and Prydz, 1984; Mostov and Deitcher, 1986). This
polypeptide originates from intracellular cleavage of plgR and mediates binding of SIgA to
the mucus layer (Phalipon et al., 2002). The development of an antigen-specific SIgA
response is quite a long event; 3 to 4 weeks are needed to detect an appreciable amount of
SIgA antibodies in the feces. This could reflect the long time needed for B cells to get
activated, undergo affinity maturation, leave the Peyer’s patches, recirculate through the
thoracic duct, and reach the final gut destination.

A faster activation of a more primitive IgA response requires B-1 cells. This mouse B cell
subset is characterized by the expression of CD9, a surface tetraspanin that associates with
surface integrins to regulate cell motility (Won and Kearney, 2002). B-1 cells primarily
reside in pleural and peritoneal cavities and are retained in situ by a concerted action of
integrins and CD9 (Ha et al., 2006). After TLR signaling, B-1 cells transiently down-
regulate CD9 and integrins and move in response to chemokines (Ha et al., 2006). This
event provides a first innate immune defense to invading microorganisms through the
generation of a fast wave of TLR-activated B-1 cells migrating to infection sites, including
the gut. Of note, B-1 cells can undergo CSR in situ in the intestinal lamina propria, which
can give rise to IgA-secreting cells in a T cell-independent fashion (Crouch et al., 2007;
Fagarasan et al., 2001). Naive bone-marrow-derived B cells can also migrate to the lamina
propria, but this migration requires the presence of stromal cells expressing NIK (Suzuki et
al., 2005).

Role of IgA in Intestinal Homeostasis and Immune Protection

Intestinal IgA antibodies serve a variety of functions. In general, high-affinity IgA
antibodies emerging from T cell-dependent pathways are thought to protect intestinal
mucosal surfaces against colonization and invasion by pathogenic microorganisms
(Macpherson et al., 2008; Martinoli et al., 2007). Conversely, low-affinity IgA antibodies
emerging from T cell-independent pathways are important to confine commensal bacteria in
the intestinal lumen through a process known as “immune exclusion” (Macpherson et al.,
2008). This functional dichotomy is not absolute. Indeed, T cell-independent IgA (and IgM)
responses provide some degree of immune protection against certain intestinal pathogens,
such as rotavirus (Franco and Greenberg, 1997). Conversely, strong evidence points to an
important role of T cell-dependent IgA responses in the control of commensal bacteria
(Casola et al., 2004). In addition to controlling pathogens and commensals, IgA antibodies
neutralize microbial products with proinflammatory activity, such as lipopolysaccharide, in
intestinal epithelial cells (Fernandez et al., 2003). Hence, IgA can play a role both during
steady-state (unperturbed) conditions and infection.

IgA can also mediate apical-to-basolateral transcytosis of antigens across M cells via an
unknown receptor or across duodenal epithelial cells via the transferrin receptor, also known
as CD71 (Favre et al., 2005; Kadaoui and Corthesy, 2007; Mantis et al., 2002; Matysiak-
Budnik et al., 2008). By promoting “controlled” antigen entry, binding of IgA-antigen
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immune complexes by M cells could be critical for the initiation or amplification of
intestinal immune responses, including IgA production (Favre et al., 2005). The same
pathway could favor neutralization of bacteria in a cytosolic compartment. Consistent with
this possibility, Shigella flexneri, a Gram-negative bacterium unable to spontaneously enter
the mouse epithelium, was rapidly detected in Peyer’s patches and mesenteric lymph nodes
if coated with specific SIgA antibodies before its injection in intestinal loops (Kadaoui and
Corthesy, 2007). Yet, under these conditions, the epithelial barrier was preserved and the
bacterium was unable to spread to other nonmucosal tissues. It would be interesting to test
whether entrance of SIgA-coated bacteria also leads to IgA production or development of
tolerance toward the introduced bacteria.

IgA-mediated reverse transcytosis across M cells could target bacteria to intra- and
subepithelial DCs. These DCs may induce tolerogenic immune responses, including IgA
production, without delivering inflammatory signals (Kelsall and Rescigno, 2004), a
circumstance that could cause recruitment of immunogenic DCs. Unlike intestinal epithelial
cells, intestinal DCs express an IgA receptor complex comprising FcaRI and its signaling
subunit FcyR (Monteiro and Van De Winkel, 2003). Triggering of FcaRI can lead to either
inflammatory or noninflammatory responses, depending on the monovalent or multivalent
nature of the IgA ligand (Pasquier et al., 2005). Binding of monomeric IgA to FcaRlI leads
to reduced phosphorylation of an immunotyrosine activating motif (ITAM) embedded
within the FcRy chain and elicits recruitment of src homology 2 domain-containing protein-
tyrosine phosphatase-1 (SHP-1), a signal inhibitor that prevents inflammation by interfering
with the activation of multiple signaling pathways (Kanamaru et al., 2008; Pasquier et al.,
2005). Conversely, crosslinking of FcaRI1 by polymeric IgA causes inflammation by
triggering full phosphorylation of FcyR and subsequent recruitment of Syk, a protein
tyrosine kinase linked to multiple proinflammatory signaling pathways. Thus, IgA-
containing immune complexes retrotranscytosed across epithelial cells may initiate
noninflammatory or inflammatory immune responses depending on the monomeric or
polymeric nature of the IgA ligand.

In general, monomeric IgA antibodies are particularly abundant in systemic districts, at least
in humans (Macpherson et al., 2008). These IgA monomers may initiate FcaRI-mediated
noninflammatory responses against bacteria that breach the mucosal barrier (Pasquier et al.,
2005; van Egmond et al., 2000). On the contrary, IgA polymers may trigger FcaRI-mediated
inflammatory responses, particularly when these antibodies are present in large excess in a
nonmucosal context. Indeed, IgA polymers are frequently found in several autoimmune
conditions and might be an aggravating factor of IgA nephropathy, as recently shown in a
spontaneous model of this disease (Kanamaru et al., 2007). In any case, the Janus-like nature
of FcaRI might explain prior contradictory reports on the ability of IgA to activate DCs
(Geissmann et al., 2001; Heystek et al., 2002).

Of note, IgA-dependent retrotranscytosis can deliver intact antigen to the basolateral side of
epithelial cells (Phalipon and Corthesy, 2003). This process may be particularly relevant to
the pathogenesis of celiac disease, an intestinal autoimmune disorder caused by a
dysregulated immune response to the gluten protein gliadin. Indeed, CD71-mediated
retrotranscytosis of immunocomplexes comprising intact gliadin peptides and antigliadin
IgA antibodies might trigger inflammation as a result of a progressive accumulation of toxic
gliadin peptides in subepithelial districts (Matysiak-Budnik et al., 2008). These peptides
would be completely degraded if transported via fluid-phase transcytosis, indicating that
epithelial cells must tightly control retrotranscytosis to avoid tissue damage. Such control
might be lost in celiac disease, given that intestinal epithelial cells from celiac patients
display an increased expression of CD71 (Matysiak-Budnik et al., 2008). In addition to
gliadin, IgA antibodies from celiac patients target tissue transglutaminase and connective
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tissue. However, it must be remarked that IgA deficiency is more frequent among celiac
patients (1 in 40) than in the general population (1 in 400), suggesting a secondary rather
than a primary involvement of IgA in the pathogenesis of this intestinal disease (Green and
Cellier, 2007).

IgA can further participate in intestinal immune homeostasis by interacting with the local
microbiota. It is estimated that the number of intestinal bacteria is close to 1014 and is one
log higher than that of human cells (Macpherson and Harris, 2004). Mice kept under germ-
free conditions that lack the intestinal microflora have highly reduced intestinal IgA,
suggesting a direct correlation between IgA and commensals. But what is the role of IgA
antibodies? Do they protect the host from commensals? Or do they shape the composition of
the microbiota? IgA could be implicated in both functions. Indeed, mice lacking the pIgR
have no fecal IgA or IgM and display an increased penetration of commensals as well as a
systemic antibody response to commensals (Johansen et al., 1999). In this regard, it is
important to note that IgA usually limits the penetration of intestinal bacteria to mesenteric
lymph nodes (Macpherson and Uhr, 2004). In addition, AID-deficient mice lacking
somatically mutated SIgA have an aberrant expansion of anaerobic bacteria in the small
intestine, whereas mice lacking the pIgR show no changes in their microbiota (Fagarasan et
al., 2002; Johansen et al., 1999).

IgA antibodies to commensal bacteria can also limit the inflammatory response of intestinal
immune cells. This conclusion was suggested by results generated in the following
experimental system. Germ-free mice on a RAG-deficient background (i.e., withno Band T
cells) were monoassociated with Bacteroides betaiotaomicron in the presence of absence of
a hybridoma backpack releasing bacteria-specific SIgA in the intestinal lumen (Peterson et
al., 2007). The effect was dramatic in both the host and the bacteria. In the host, SIgA
significantly decreased the oxidative burst. In bacteria, SIgA downregulated the expression
of the targeted epitope and decreased the expression of genes involved in nitric-oxide
metabolism, without inducing cell death or growth arrest. Thus, IgA to a specific bacterial
epitope may have a profound effect not only on the expression of that epitope, but also and
on the oxidative response elicited by that epitope.

In principle, a dysregulation of intestinal antibody responses to commensal bacteria might
result in an excessive innate immune response, which in turn could precipitate or aggravate
intestinal inflammation. For instance, in patients with Crohn’s disease, 1gG and IgA
antibodies to Saccharomyce Cerevisiae or microbial flagellin could play a role in shaping
the microbiota (Lodes et al., 2004; Zholudev et al., 2004), with effects on both the host and
the microorganisms, including excessive activation of the innate immune response.
Altogether, the available evidence suggests that IgA is important not only to confine bacteria
in the intestinal lumen, but also to shape the overall composition of the intestinal microbiota.
A dysregulation of these processes may trigger inflammatory disorders like celiac disease,
IgA nephropathy, and Crohn’s disease.

Conclusions

Growing evidence indicates that intestinal IgA antibodies provide immune protection by
functioning through both high-affinity and low-affinity modes. It is also becoming
increasingly clear that the intestinal mucosa utilizes multiple follicular and extrafollicular
sites as well as multiple T cell-dependent and T cell-independent pathways to generate
protective IgA responses. More studies are needed to better define the relative contribution
of these pathways to the induction of protective IgA responses to pathogens, commensals,
and dietary antigens. It is also of paramount importance to better understand the mechanisms
through which IgA antibodies exert their protective role in a noninflammatory manner. In
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this regard, intestinal IgA are thought to lack complement-fixing activity, and intestinal
macrophages seemingly lack proinflammatory IgA receptors (Macpherson et al., 2008).
Although these factors are certainly important to limit inflammation, the mechanisms by
which IgA strikes the balance between immune protection and immune tolerance at
intestinal sites remain unclear.

Remarkably, a substantial proportion of patients affected with IgA deficiency develop
intestinal inflammation as well as autoimmune, allergic, and mucosal B cell
lymphoproliferative disorders in addition to mucosal infections (Cunningham-Rundles and
Knight, 2007; Daniels et al., 2007). This evidence indicates that IgA is important not only
for the establishment of intestinal immune homeostasis and immune protection, but also for
the control of autoreactive, proinflammatory, and neoplastic B cell clones present in both
intestinal and systemic districts. Such control might involve a crosstalk between Treg, Trl,
and Th17 cells and IgA-producing B cells or their precursors. A better understanding of this
crosstalk may help develop novel mucosal vaccines as well as more effective therapies for
the treatment of intestinal inflammatory disorders.
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Figure 1. Intestinal IgA Responses in Mice and Humans

In mice (left model), DCs lodged in the subepithelial dome of Peyer’s patches capture
bacteria or antigen internalized by M cells or by epithelial cells (ECs) via receptor-mediated
endocytosis. These DCs migrate to the interfollicular region (IFR) of Peyer’s patches, where
they present antigen to CD4* T cells. Antigen-activated CD4* T cells elicit IgA class
switching by stimulating IgM*IgD™ B cells through CD40L and TGF. A subset of Peyer’s
patch DCs, TNF-a*iNOS™* DCs, enhance IgA class switching by upregulating the expression
of the TGF-p receptor on B cells through nitric oxide (NO). In the presence of retinoic acid
(RA), IgA* B cells upregulate the expression of CCR9 and a4p7 and thereafter migrate to
the lamina propria, where they differentiate into plasma cells that release dimeric IgA
antibodies. This T cell-dependent pathway yields high-affinity, monoreactive IgA antibodies
that preferentially target pathogens and toxins. IgA class switching can also take place in the
lamina propria via a T independent mechanism that involves activation of B-1 cells and
possibly other IgM*1gD* B cell subsets by DCs, including TNF-a"iNOS* DCs. These DCs
release innate IgA class-switch-inducing factors, such as BAFF, APRIL, TGF-B, and NO, as
well as IgA secretion-inducing factors, such as IL-6 and RA, after sensing bacteria through
TLRs. NO amplifies IgA class switching by enhancing BAFF and APRIL production by
DCs. This T cell-independent pathway preferentially yields low-affinity, polyreactive IgA
antibodies to commensal bacteria.

In humans (right model), CD4"* T cells elicit IgA1 class switching by activating Peyer’s
patch IgM*IgD* B cells through CD40L and TGF-B. The resulting IgA1* B cells migrate to
the lamina propria through a mechanism presumably similar to that utilized by mouse IgA*
B cells. In the lamina propria, IgA1* B cells sequentially switch to IgA2 in response to
APRIL and IL-10 released by TLR-activated ECs. Also, DCs can release these cytokines in
response to TSLP produced by ECs. In the lamina propria, additional IgM*1gD* B cells can
undergo direct class switching from IgM to IgA1 or IgA2 in response to BAFF or APRIL
and IL-10. In general, IgA2 is more resistant to bacterial proteases than IgAl and may
therefore have a longer half-life in the lumen of the distal intestinal tract.
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Figure 2. Putative Role of IgA in Intestinal Tolerance and Homeostasis

Intestinal M cells transfer IgA-bound antigen from the lumen to DCs. In the presence of
TSLP and other epithelial cell (EC) products, possibly including retinoic acid (RA), TGF-B,
and IL-10, multiple subsets of Peyer’s patch DCs initiate noninflammatory CD4* T cell
responses. By blocking DC production of IL-12 and inducing DC production of IL-10,
TSLP prevents intestinal DCs from initiating proinflammatory Th1 responses, including
IFN-y-dependent activation of macrophages and cytotoxic T lymphocytes (CTLs). The
resulting Th2 response triggers IgA (and 1gG) class switching and production by activating
B cells via CD40L (not shown) as well as IL-4 and IL-10. By upregulating DC release of
TGF-B, IL-6, IL-27, and RA, TSLP alone or combined with other epithelial factors might
also initiate Treg, Trl, and Th17 cell responses. Treg cells dampen Th1-Th2 immunity
through contact-dependent mechanisms and TGF-, whereas Tr1 cells and regulatory-stage
Th17 cells attenuate Th1-Th2 immunity via IL-10. Treg, Trl, and Th17 cells might also
trigger IgA (but not 1gG) class switching and production by activating B cells via CD40L
(not shown) as well as TGF-p and IL-10. Intestinal Treg, Trl, and Th17 cell responses might
be further amplified by TGF-pB, I1L-10, IL-6, and IgA derived from B cells.
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