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Abstract
Aims—U.S. college drinking data and a simple population model of alcohol consumption are
used to explore the impact of social and contextual parameters on the distribution of light,
moderate, and heavy drinkers. Light drinkers become moderate under social influence, moderate
drinkers may change environments and become heavy drinkers. We estimate the drinking
reproduction number, Rd, the average number of individual transitions from light to moderate
drinking that result from the introduction of a moderate drinker in a population of light drinkers.

Methods—Ways of assessing and ranking progression of drinking risks and data-driven
definitions of high- and low-risk drinking environments are introduced. Uncertainty and
sensitivity analyses, via a novel statistical approach, are conducted to assess Rd variability and to
analyze the role of context on drinking dynamics.

Results—Our estimates show Rd well above the critical value of 1. Rd estimates correlate
positively with the proportion of time spent by moderate drinkers in high-risk drinking
environments. Rd is most sensitive to variations in local social mixing contact rates within low-
risk environments. The parameterized model with college data, suggests that high residence times
of moderate drinkers in low-risk environments maintain heavy drinking.

Conclusions—With regard to alcohol consumption in US college students, drinking places, the
connectivity (traffic) between drinking venues, and the strength of socialization in local
environments are important determinants in transitions between light, moderate and heavy
drinking as well as in long-term prediction of the drinking dynamics.
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INTRODUCTION
College student drinking within the U.S. provides an ideal setting for the controlled study of
drinking dynamics, the process by which social structures produce change over time in
drinking patterns. Students seek out heavy drinking environments and live in social
environments where alcohol consumption is prevalent [1]. Hence, it is not surprising that
their drinking rates positively correlate with measures of the availability of drinking places
[2,3]. Observational studies of the relationship between interpersonal dynamics and drinking
behavior have been carried out in bars, fraternity houses and other environments [1,4-7].
Ideally, such studies should be carried out within theoretical frameworks where the impact
of context heterogeneity on drinking dynamics is assessed. Mathematical models of the
dynamics of college drinking that acknowledge the existence of an adaptive dynamic
drinking culture should be further developed [8]. Contagion models [9,10] have been used
effectively in the study of the dynamics of social processes (see [11-18] for various
examples) and in the alcohol field they have demonstrated that in populations where relapse
rates are high, long-term drinking trends depend on treatment rates and on the current
proportions of different drinking types [19]. Variations in the proportion of drinking time
spent in heterogeneous drinking venues can also impact a population's drinking patterns [8].

Our goals here are primarily to show the usefulness of mathematical models and highlight
the type of data sets that may be needed in the study of drinking dynamics. We examine the
effect of residence times in distinct drinking environments and contextual mixing on college
drinking patterns. Specifically, the distribution of the model's drinking reproduction
number, Rd (the average number of individual transitions from light to moderate drinking
that result from the introduction of a moderate drinker in a population of mostly light
drinkers), is estimated. The variability of Rd is assessed using a range of parameters
including the relative residence-times of drinkers in low- and high-risk environments, local
social-influences of drinkers within specific environments, rates of progression of drinkers
from the moderate to the heavy drinking state, and college drop-out and matriculation rates
of the population.

A Mathematical Framework And Approach
Drinkers are classified as “light” or “susceptibles” (S), “moderate” (M), and “heavy” (H)
(see Figure 1 and [8]). Drinkers interact in “low-risk” (E1), “high-risk” (E2) or non-drinking
environments. S- and H-drinkers primarily socialize in their preferred environments, outside
E2 and E1, respectively. M-drinkers (divided into M1 and M2 classes) socialize in non-
drinking environments and in E1 and E2, respectively. M-drinkers move between drinking
environments at the per-capita rates γi (i = 1, 2), average residence times per environment of
1/γi (i = 1, 2). Light drinkers transition into the moderate class at a rate that depends on the
strength and duration of M-drinkers' influence. Such simple parameter-scarce models have
been extensively and successfully used in other disciplines (see for e.g., [20,21]).

This simple model incorporates four major mechanisms: (1) local influence of M1 on S in
E1, the strength measured by β0, that enables progression from S to M1; (2) progression of
M2 to H at the rate α (1/α denoting the average time before an M-drinker becomes a heavy
drinker); (3) relative residence times, function of 1/γ1 and 1/γ2, the average residence times
of M-drinkers in the two distinct risk environments; and (4) the strength of influence of M2–
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drinkers on S-individuals, outside of the E1 and E2 environments, captured by β2. The
college population is assumed constant (N). Therefore, the S-recruitment rate,μN (where μ is
the per capita average departure rate), matches the total dropout and graduation rates of
college drinkers.

We assume that students enter the college-drinking population as light drinkers as data on
differential recruitment rates are unavailable. The dropout rate is assumed to be the same for
all groups and may not be realistic for some college campuses. However, since our focus is
on a typical US campus and since there are some studies that show no relationship of
drinking to academic problems (see for e.g., [22-24]), there does not seem to be sufficient
reason to build in an adjustment for differential dropout rates associated with drinking.
Additional assumptions are:

Movement takes place only between E1 and E2;

Drinking status pre-determines the drinker's drinking venue-type;

Only moderate drinkers frequent E1 and E2;

Social influences are modeled via frequency dependent contacts between moderate and
light drinkers in E1 or outside the drinking environments;

Moderate drinkers may (as a function of their residence time in E2) become H-drinkers;

The recovery and relapse are assumed to be negligible.

We arrive at the following equations:

(1)

(2)

(3)

(4)

where N = S + M1 + M2 + H and M =M1 + M2.

Figure 1 highlights the rates of change per compartment captured by these equations while
Table 1 collects the model parameter definitions. The basic reproductive number is given by
the unit-less expression

(5)
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 denotes the proportion of the relative drinking time spent by M-drinkers in
E2. Values of γ near 0 or 1 correspond to nearly “no movement” between E1 and E2 while γ
= 0.5 models the most traffic. Rd greater than 1 leads to the establishment of heavy drinking
while Rd less than 1 corresponds to the situation where the H and M classes cannot be
sustained. This would not be the case in a model where recruitment brings students directly
into the M- and H-classes. The college-drinking literature suggests comparatively fewer
incoming M- and H-drinkers than their S-counterparts, so we ignore them. Rd=1 is the
system's “change point” between maintenance and non-maintenance of the H- and M-
drinkers over time and a condition Rd>1 reflects the current drinking situation (existence of
high number of relatively stable heavy and moderate drinking population) in US. The
effectiveness of interventions (medical or behavioral) are evaluated by the ability of the
program to reduce Rd. Ideally, one would like to bring the system to the point where Rd<1,
that is, below the change point. Previous analyses of the model support the hypothesis that
the proportion of heavy drinkers is lower if E1 and E2 are weakly connected (γ is close to 0
or 1, see [8]), when Rd is above change point.

METHODS
The model uses the following three drinking categories: Light drinkers, those who drink at
least once a month but do not consume more than 3 drinks at any one sitting; Moderate
drinkers, those who drink at least once a month, consuming 3 to 5 drinks per sitting or drink
at least once a week consuming no more than 3 drinks per sitting; and Heavy drinkers, those
who drink 3 to 4 drinks at least once a week or consume 5 or more drinks at any one sitting
at least once a month (see Engs et al. [25,26]). Data from national college-drinking studies
([25,26]) are used to assess the frequency distribution of drinkers by class-year. On the basis
of these data, it was concluded that 64.2% of freshmen, 71.4% of sophomores, 76.1% of
juniors and 80.6% of seniors fall into one of the three drinking classes (see Table 2).
Additionally, we interpret the data as: 64.2% of college drinkers drink for four years, 7.2%
for three years, 4.7% for only two years and 4.5% for only one year. This interpretation
assumes no regression in drinking levels among the college students and is used to estimate
the mean (3.63) and variance (0.69) of the parameter 1/μ (the average time a typical student
remains a drinker while in college). Hence, an estimate for the mean of μ, college's dropout
and matriculation rate, is 0.27 (= 1 / 3.63) with a variance of 0.0039 (Var (1/μ) = (0.69)2/
(3.63)4; [27]).

The 2003-survey of 14 California and California State University campuses was used to
define high- and low-risk college-drinking environments [28]. The relative rate of context-
dependent alcohol-use or drinker residence times was used to introduce environment-
specific risk definitions [29]. Students reported whether or not they had consumed alcohol
since enrolling in college, drinking frequencies and quantities per sitting over the past four
weeks or since the start of the semester, and the frequencies with which they consumed
alcohol at different venues around campus (excluding their own homes).

For each drinking venue and drinking class, the number of times that alcohol was consumed
over 4 weeks is reported in the Table 3 with utilization rates per drinker (venue visits per
drinker type) in parentheses. This shows that drinking by all groups takes place at all venues
and that each group has “preferred” venues. Heavy drinkers are found most often at off-
campus parties. The second most frequented venue type by heavy drinkers is pubs, bars and
restaurants, and the third most fraternity parties. 83.4% of moderate-drinker visits are to
these three venue types (95% CI, 80.5% to 86.3%) but heavy drinkers are most likely to
drink at residence halls, fraternity parties, and outdoors where moderate drinkers are found
only 28.4% of the time (95% CI, 26.7% to 30.1%). Hence, the two definitions that we used
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for defining a high-risk setting were the places where heavy drinkers are most likely to be
found and the places where heavy drinkers are most likely to drink.

The data in Table 3 provide estimates of the parameter γ, the proportion of time that
moderate drinkers spend in E2. Hence, 28.4% and 83.4% of moderate-drinkers' drinking
occasions (assumed proportional to the time spent by moderate drinkers at these places) are
spent in high-risk environments. These estimates of γ (one per definition of high-risk setting)
are of limited value since they are generated using regional data sets and we lack universally
agreed definitions of high-risk. Thus, we carried out uncertainty and sensitivity analyses
over a wide range of γ values (19 distributions). It was assumed that γ comes from uniform
distributions with means of 0.05*k (k = 1…19) and variance 0.02. The results when γ is
centered at 0.284, 0.5 or at 0.834 are highlighted throughout the text based on the data in
Table 3.

Estimates of β0, β2, and α could not be found in the literature. Hence, a model-based
approach and the data on the proportion of drinking types were used to estimate these.
Specifically, the drinking proportions of S, M, and H individuals from data (represented by
s*, m* and h*; Table 4) were paired with the model steady state equations to obtain these
estimates. Steady state equation from Equation (4) generate the following estimate
expression for α

(6)

where  and . A linear relationship between β0 and β2 from the
remaining steady state equations of the model provided a relation for all feasible values of γ,
μ, α and class sizes. Interval bounds on β0 were generated using the sampled values of γ, μ,
and α, the β0-β2 linear relation, and the non-negativity requirement on the parameter β0. The
β0 bounds are used to define uniform distributions for β0. Estimates of β2 were obtained
from the linear relationship linking β0 to β2 (see [30] for details).

Uncertainty and Sensitivity Analyses
The uncertainty analyses were used to assess the variability in the empirical Rd distribution
generated from the variability in parameter estimates. The sensitivity analyses assess the
amount and type of change inherent in the model as captured by the terms that define Rd. If
Rd is very sensitive to a particular parameter, then a perturbation of the conditions that
connect the dynamics to such a parameter may prove useful in identifying policies that
reduce college-drinking prevalence. Sensitivity and uncertainty analyses are common in the
study of the role of variability in tipping point phenomena [31-33]. Reasonable distributions
of β0, β2, γ, μ and α (see Table 1 for mean and standard deviation) were either assumed or
obtained from the analyses. A uniform distribution was used for γ and a truncated (at 0; to
ensure positivity) normal distribution for the parameter μ with its mean and variance as
computed earlier (Figure 2). A random sample was taken from the distributions for γ (for
each k=1 to 19) and μ. An estimate for α was obtained from substituting this random sample
in Equation (6). The sample set, (γ, μ, α), was further used for obtaining estimates for β0,
and β2 as mentioned earlier.

105 independent samples of the vector (β0, β2, μ, α, and γ) were generated using the above
method via Monte Carlo sampling. An empirical frequency distribution for Rd as a function
of the variability of the five parameters, using Equation (5), was derived from these samples.
This entire sampling procedure was repeated 10 times for robustness. Table 1 collects the
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mean estimates. An empirical distribution (generated when γ was sampled from a uniform
distribution with mean 0.28) of Rd and its parameters are shown in Figure 2. Figure 3(a)
shows the Rd mean estimates and their variances as the assumed mean of γ varies from 0 to
1.

Partial rank correlation coefficients (PRCC) were calculated to estimate the size of
correlations between values of Rd and the five model parameters across 105 random draws
from the empirical distribution of Rd and its associated parameters. A large PRCC is
indicative of high sensitivity to parameter estimates while a small PRCC reflects low
sensitivity [34,35]. The PRCC of Rd with respect to each parameter was calculated using a
sequence of regression models [30] and the results are shown in Figure 4 (with varying
mean γ value). The signs of PRCC values determine whether a parameter is directly or
inversely correlated with Rd.

RESULTS
The results in Figure 3 and 4 were obtained under the assumption that the observed drinking
levels are at steady state. These steady state drinking levels are computed using the data in
Table 4. The estimates of β0, β2 and γ from our calculations are inter-related, that is, the
same distribution of drinking patterns can be obtained by different combinations of β0, β2
and γ. Figure 3(b) shows that if the residence time of moderate drinkers in high-risk
environments (γ) is high, then light drinkers are predominantly mixing with moderate
drinkers in low-risk environments (β0 is high and β2 is low). If γ is low (i.e., moderate
drinkers spend less time in high-risk environments) then light drinkers predominantly mix
with M2-drinkers (β0 is low and β2 is high). Communities where moderate drinkers have
higher average residence times in high-risk environments may insulate light drinkers from
interactions with moderate drinkers. Communities where moderate drinkers have higher
average residence times in low-risk environments may activate interactions between light
and moderate drinkers. Over the broad range of γ this effect is rather subtle, but suggests that
moderate drinkers spending more time in high-risk drinking environments will have less
influence on light drinkers as light drinkers are less likely to be found in these environments
by assumption. When γ is about 0.5, both β0 and β2 are low, that is, interactions between
light and moderate drinkers will be relatively low in the presence of substantial movement
of moderate drinkers between environments.

The mean estimate of the reproductive number is uniformly greater than 1.00 (but less than
3.00) for all values of γ (Figure 3a). The 95% CI for this measure drops below 1.00 only
when γ > 0.90. The mean estimate of the reproductive number is greater than 2.00 for the
two estimated values ofγ (Table 1). A large reproductive number means that the total rate of
conversion to the heavy drinking state is high. The more time a moderate drinker spends in
high-risk environments the less drinking-influence he/she will have on light drinkers, so Rd
decreases with increasing values of γ. However, the variability in the Rd estimates increases
with increases in γ. Highly connected (i.e., γ = 0.5) environments in which moderate
drinkers shift back-and-forth from low-risk to high-risk environments give an Rd estimate of
2.4 (95% CI, 1.91 to 3.04). In fact, we see that if γ≤0.47, then the probability that Rd will lie
between 2 and 3 is effectively 1.00. This probability is reduced to 0.5 as γ→1. That is, as
moderate drinkers spend more time in high-risk environments the reproductive number for
conversions of light drinkers to moderate state decreases towards 1.00.

Rd is most sensitive to changes in the social influence parameters β0 and β2. When γ≤0.81,
β0 is most influential on Rd. However, when γ > 0.81, β2 becomes the most influential
parameter (Figure 4). Whenever E1 and E2 are highly connected (i.e, γ=0.5), the ranking of
the parameters in decreasing order of their sensitivities to Rd is β0 (−0.69), β2 (+0.66), γ
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(−0.07), μ (+0.02), and α (−0.01). When γ≤0.68 the residence time parameter (γ) is the next
most crucial parameter after β0 and β2. γ remains influential even when γ>0.81, but its
influence on Rd is direct (not inverse as is the case when γ≤0.68; Figure 4). The rate of
progression of moderate drinkers to the heavy drinking class (α) and the arrival/departure
rate of drinkers to/from the system (μ) are least important when it comes to assessing the
variation of Rd for most γ values.

DISCUSSION
We studied the drinking reproduction number (Rd), which measures the average number of
additional moderate drinkers generated by a moderate drinker when introduced into a
population of mostly light drinkers. Rd turned out to be much greater than 1 over broad
ranges of values of γ, the proportion of time spent by a moderate drinker in high-risk
environments. For example, the near-exclusive use of high-risk venues by moderate drinkers
(γ near 1) only seems to alter the dynamics of heavy drinking population, that is, the
isolation of light drinkers from the influence of moderate drinkers is effective in reducing
heavy drinkers in the population.

The strength of local social mixing and the movement of drinkers are more crucial to
drinking dynamics than the progression rates to heavy drinking or the college dropout and
matriculation rates. Assessment of the correlations between Rd and each of the model
parameters show that the parameter associated with the local social interactions between
moderate and light drinkers in low-risk drinking environment is inversely related to Rd.
Specifically, the increased mobility of moderate drinkers between environments facilitates
the establishment of heavy drinking communities in college populations, while drinking
sustainability is driven by the strength of local mixing in low-risk environments and
socialization among drinkers outside the drinking environments.

This simple model captures relevant real world processes and shows how relatively few
assumptions can account for the development of heavy drinking behavior while providing
useful insights on which effective and lasting interventions can be built. Specifically, the
dynamic model presented here supports the use of environmental interventions that focus on
high-risk settings in and around college campus. This work suggests that interventions
aimed at altering observed patterns of socialization (e.g., through residence hall assignments
or fraternity and sorority recruiting policies) hold particular promise. Indeed, there is some
evidence that establishing substance-free housing for students is, in fact, tied to lower
alcohol consumption [36,37].

In conclusion we should note some of the limiations of the model presented and possible
directions for future research. First, our model took account of just two contrasting social
contexts (incorporating both on- and off-campus venues) that cater to the college drinking
population and we addressed how various enviornmental factors collectively affect drinking
patterns. While such a model could serve as an example for studies of other questions such
as between-campus differences, one would need data from specific settings to study any one
particular campus. In the present study we simply used data from various sources and tried
to draw conclusion about a “typical” campus. Indeed, one of the goals of this paper was to
highlight the type of data sets that may be needed to estimate parameters of the dynamic
model of the form used here. One substantive concern in this regard is the absence of
adequate data on selection of drinking environments, the reciprocal relationships of selection
on drinking itself, and social mixing and influences that take place among drinkers and non-
drinkers in those locations.
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Second, in the present simple form of the model, moderate drinkers retained their identity
outside the drinking environments but the model still included the influence of high-risk
moderate drinkers on light drinkers outside the high-risk environments. We did not consider
explicitly the movement and transition of drinkers and non-drinkers in non-drinking
environments. The need to introduce additional non-drinking environments in which these
influences occur, perhaps between drinking and non-drinkers classes, should be tested in
future models.

Finally, the model would be strengthened, were it to include parameters that quantify the
average residence times of different types of drinkers, the progression rates from one form
of drinking to another, the proportion of new recruits into each drinking class and the
strength of social influences in different venues. However, these contextual aspects of
college drinking are largely absent from the college drinking literature and hence we must
use frameworks and definitions that can be connected to current data. In future we hope to
carry out surveys to estimate these parameters for understanding college drinking dynamics
using complex models of a similar type.
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Figure 1.
College Drinking Population Model with Three Types of Drinkers (light (S), Moderate (M1
and M2) and heavy (H)) and Two Distinct Drinking Environments (low-risk (E1) and high-
risk (E2)). We use a dotted line to indicate that S-M2 influences happen outside the E1 and
E2 drinking environments.
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Figure 2.
Frequency distributions of the parameters including Rd when sampling γ from uniform
distributions with mean 0.28. The overall shape of the distribution remains same for the
cases when mean of γ-distribution was 0.50 and 0.83. Distributions were calculated from
one of the 10 Monte-Carlo samples, each of size 105 sampled parameter values using
approach described in the text. Horizontal axis has parameter values, and vertical axis
represents frequencies in the graphs.
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Figure 3.
Variation in estimates of parameters with change in distribution of γ.
Figure 3(a): Uncertainty in Rd when Mean(γ) is varied.
Figure 3(b): Variation in estimated values of β0 and β2 with change in γ estimates.
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Figure 4.
Sensitivity (measured by PRCC values) of the Rd with respect to its parameter when
Mean(γ) is varied.
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Table 1

Definition of the parameters and their estimates for two values of y. Two definitions of high-risk settings are
used to obtain two values of y.

Para-
meter

Definition Unit Mean
(Std.)

Mean
(Std.)

γ Proportion of residence time of a moderate drinker in
high-risk environments (Complement of this proportion
will be their time in low-risk environments)

No units 0.28
(0.01)

0.83
(0.02)

β 0 Average number of “effective” influences (environment
dependent) of one light drinker per unit time with
moderate drinkers in low-risk environments

Interactions per
person per year

0.71
(0.45)

1.69
(1.08)

β 2 Average number of “effective” influences (environment
dependent) of one light drinker per unit time with
moderate drinkers of high-risk environments mediated
by moderate drinkers of low-risk environments

Interactions per
person per year

2.20
(1.40)

0.75
(0.47)

μ Per capita arrival and departure rate for the system Per person per
year

0.27
(0.06)

0.27
(0.06)

α Per capita progression rate of moderate drinkers in
high-risk environments to heavy drinking class
(per capita linear transition rate)

Per person per
year

0.51
(0.12)

0.17
(0.04)

Rd Average number of secondary conversions of light to
moderate drinkers generated by the introduction of a
typical” moderate drinker into a population of primarily
light drinkers

No units 2.69
(0.16)

2.14
(0.47)

Addiction. Author manuscript; available in PMC 2012 April 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mubayi et al. Page 16

Table 2

Percentage of drinkers in four class-years along with their increase from previous class-year during academic
year academic year 1993-94 (data source: Engs et al., 1997).

Class Year Abstainers
(%)

Drinkers
(Light+Moderate+Heavy)

(%)

% Increase In Drinkers
From Previous Class Year

Freshman
N=3352

35.8 64.2

Sophomore
N=2883

28.6 71.4 7.2

Junior
N=2973

23.9 76.1 4.7

Senior
N=2527

19.4 80.6 4.5
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Table 3

Use of drinking venues by drinker class.

Visits by all Drinkers in Class

Drinking Venue Light Moderate Heavy Total Visits

Pubs, Bars, or Restaurants 1815 3664 2925 8404

(E2 by D1; E1 by D2) (0.330) (1.198) (2.321) (0.856)

Residence Halls 643 1268 1302 3213

(E1 by D1; E2 by D2) (0.117) (0.415) (1.033) (0.327)

Campus events 142 321 307 770

(E1 by D1; E1 by D2) (0.026) (0.105) (0.244) (0.078)

Off-Campus Parties 3338 5891 5050 14279

(E2 by D1; E1 by D2) (0.607) (1.926) (4.008) (1.455)

“Greek” Parties 969 1950 1966 4885

(E2 by D1; E2 by D2) (0.176) (0.638) (1.560) (0.498)

Outdoors 300 698 761 1759

(E1 by D1; E2 by D2) (0.055) (0.228) (0.604) (0.179)

Total

Number of Drinkers (%) 5497 (56.0%) 3058 (31.2%) 1260 (12.8%) 9815

Number of Visits 7207 13792 12321 33320

(Visits per Drinker type) (1.311) (4.510) (9.779) (3.395)1

1
The table collects the results of the responses of the 9,815 drinkers surveyed. The number in parentheses indicate number of venue visits per

drinker in drinking class. E1 and E2 represent low- and high-risk environments. We define high-risk setting as the place where either heavy
drinkers are most likely to be found (D1) or where heavy drinkers are most likely to drink (D2). The paraenthesis under each venue shows whether
that venue is low- or high-risk environment according to the two definitions (D1 and D2). For example, venue “Pubs, Bars or Resturants” is high-
risk according to the first definition, D1, and low-risk according to the second definition, D2. “Campus events” and “Greek” parties always remain
low- and high-risk, respectively.
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