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Abstract
Cancer is a complex, multiscale process, in which genetic mutations occurring at a subcellular
level manifest themselves as functional changes at the cellular and tissue scale. The multiscale
nature of cancer requires mathematical modeling approaches that can handle multiple intra- and
extracellular factors acting on different time and space scales. Hybrid models provide a way to
integrate both discrete and continuous variables that are used to represent individual cells and
concentration or density fields, respectively. Each discrete cell can also be equipped with sub-
models that drive cell behavior in response to microenvironmental cues. Moreover, the individual
cells can interact with one another to form and act as an integrated tissue. Hybrid models form part
of a larger class of individual-based-models that can naturally connect with tumor cell biology and
allow for the integration of multiple interacting variables both intrinsically and extrinsically and
are therefore perfectly suited to a systems biology approach to tumor growth.
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Mathematical and computational modeling of tumor growth is not new – in fact it goes back
over 50 years. However, to some extent it has largely been ignored by the biological and
medical communities. There are multiple reasons for this but two of the most significant
revolve around the reductionist focus of biology and the lack of directly testable hypotheses
from the models. By necessity much of the models of cancer were general,
phenomenological and not specific to a type of cancer and therefore were plagued by a lack
of experimental data to both parameterize and validate. That is not to say they were not
useful. At their heart most mathematical models are mechanistic – focusing on the core
processes that drive tumor growth and integrating them leading to predictions that are
holistic by definition. This further contributed to the lack of biological interest in combining
laboratory experiments with computational simulations. Most of the experimental biologists
working in this field were more focused on the reductionist route revolving around specific
genetic mutations or signaling pathways that were found to be important in cancer
development. This led to the data explosion that motivated the advent of early systems
biology and the development of bioinformatics. Mathematical biology and the mechanistic
cancer models it produced were somewhat left behind, but little by little they have matured
moving from simple non-spatial growth laws (gompertz) all the way to hybrid multiscale
models discussed in this review. See also a list of previously published reviews in the Future
Reading section. In the last few years mathematical and computational models of cancer
have become more accepted by the biological community both as means to motivate
experimentation but also as a route to integrate multiple experimental measurements to
generate testable predictions. This shift has been partly driven by the emergence of new
modeling approaches (such as hybrid models) but also by the refocusing of the biological
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community on cancer as a system. Mathematical and computational models of cancer have
almost always viewed cancer as a system of multiple interacting variables and processes and
therefore should really be considered part of systems biology.

In this review we will focus on the recent development of hybrid models of tumor growth.
Whilst not an exhaustive review we have tried to incorporate all of the most up to date
models, constraining our search to key references within the last five years. Hybrid models
integrate both continuous and discrete variables and are able to incorporate biological
phenomena on various temporal and spatial scales. These models represent cells as
individual discrete entities and often use continuous concentration or density fields to model
cell intracellular and extracellular environments. By their very nature, hybrid models are
ideal for examining direct interactions between individual cells and between the cells and
their microenvironment, but they also allow us to analyze the emergent properties of
complex multi-cellular systems (such as cancer). It is worth noting that since these
interactions take place on the intra- and inter-cellular levels, but are manifested by changes
on the tissue level, the emergent behavior of growing multi-clonal tumors are almost
impossible to infer intuitively. Hybrid models can facilitate our understanding of the
underlying bio-physical processes in tumor growth. For example, by using high-throughput
simulation techniques, we can examine the impact that changes in specific cell interactions
(or their microenvironment) have on tumor growth and treatment. Hybrid models are often
multiscale by definition integrating processes on different temporal and spatial scales, such
as gene expression, intracellular pathways, intercellular signaling, cell growth or migration.
There are two general classes of hybrid models, those that are defined upon a lattice and
those that are off lattice. The structure of this review will be to view these two broad classes
in terms of increasing cellular complexity. We will then revisit these models in terms of the
level of biological detail of the tumor growth process they recapitulate. Finally, we will
discuss the critical role that integration needs to play if we want to make a direct impact on
cancer research and treatment both from the perspective of integrating models with
experiments but also from the perspective of integrating multiple modeling approaches.

Hybrid models complexity
Hybrid models can be divided into two classes that depend reciprocally on the number of
cells these models can handle and the included details of each individual cell structure, i.e.
models dealing with large cell populations but with simplified cell geometry, and those that
model small colonies of fully deformable cells (Fig.1). Simplified geometry models are
capable of handling large numbers of cells (thousands to millions) and still treat them as
individual entities that can both act independently of other cells (individual cell cycle, cell
mutations, cell phenotype) and interact with their immediate neighbors (cooperate or
compete). With these kind of models one can simulate tumor growth up to clinically relevant
sizes, thus allowing for incorporation of different kinds of tumor treatments, and enabling us
to test in silico new and preexisting treatment protocols. Models with deformable cells
allows us to investigate the intimate interactions between individual cells and between cells
and their environment. Various cellular processes can be represented in these models in a
more realistic way, by incorporating for example, the time- and space-dependent
enlargement of growing cells, the orientation of cell division, the elongation during cell
migration. Both classes however can be coupled with additional equations, such as ordinary
differential (ODE), partial differential (PDE) and/or stochastic equations, to describe
signaling or metabolic pathways, as well as mechanical or molecular details of cell life
processes. Technically, hybrid models can also be divided into two classes, on- and off-
lattice (Fig.1), however this term actually refers only to the imposed positions of the cells (a
square, hexagonal or cubic lattice vs. unconstrained locations in the two or three
dimensional space) but the underlying chemical or physical fields are typically defined on
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regular grids in both kinds of models (as the simplest way to solve standard reaction-
diffusion equations). We elaborate on both classes of model below, discussing in briefly the
different models that fit in each class and how they have been applied to tumor growth.

On-lattice models
On-lattice models are constrained by a lattice structure (square, hexagonal, cubical) that
defines the locations of cells and cell-cell interaction neighborhoods. Technically, they may
seem to be more straightforward to program than the off-lattice models, since usually the
underlying grid is common for modeling both cellular locations and the chemical/metabolic
fields. Also, the algorithms for cellular neighborhood and cellular microenvironment are
easier to handle in computational implementation since cell neighborhood relation is defined
by the fixed number of surrounding grid sites, and therefore the search for cell neighbors
(for example to determine cell-cell adhesion or communication) is simplified. However, the
common underlying grid implies that changes in the chemical fields are modeled on the cell
scale (unless a multi-grid approach is used), and therefore the “jumps” in these values may
not reflect the smooth changes in chemical gradients. Another disadvantage of the lattice-
based models is a limited number of directions in which the cells can move and
communicate with their neighbors. Several examples of on-lattice models are shown in Fig.
2a–h.

1. Multi-compartment cellular automata may contain more than one cell in each
grid site, however they have a predefined grid capacity and upon reaching this limit
some cells need to be replaced to another grid site. The efficient algorithms for cell
migration between neighboring grid sites need to be defined. In the context of
tumor development the multi-compartment cellular automata (CA) were used to
model multicellular spheroids growth [1] and the emergence of invasive tumors [2].

2. Square-lattice cellular automata assume the mutually exclusive space
management, i.e. each grid site can accommodate at most one cell. Typically, each
cell has ether four or eight potential neighbors (von Neumann neighborhood or
Moore neighborhood, respectively). Cells move to the one of the unoccupied lattice
sites (either randomly or via the directional stimulus, such as chemo- or
haptotaxis). This kind of models has been widely used to simulate avascular
[3,4,5,22,24,29,30] and vascularized tumor growth [6,7], tumor cell invasion
[8,9,10,20,31] and tumor interactions with various environmental factors, including
oxygen, glucose, growth factors [11,12,13,14,21,23,28], stromal composition
[15,16,17,25,27] and tissue architecture [18,19,26,32].

3. Hexagonal-lattice cellular automata use a hexagonal grid to define cell positions
and cell neighborhood consisting of six symmetrically located cells surrounding the
host cell. This kind of model has been used to simulate multicellular tumor growth
[33,34,38], to investigate different arrangements of growing ductal carcinoma in
situ [35], and to the reproduce patterns of migrating glioma cells [36,37].

4. Potts models or GGH (Glazier-Granier-Hogeweg) models extend the square CA
by allowing individual cells to occupy several 2D square or 3D cubical lattice sites
that together define cell volume and cell surface area. Cell shape deformation and
direct cell-cell interactions are based on the concept of Monte Carlo simulations
and energy minimalization. This model has been used to model tumor growth and
invasion [39,40,41,42,43], and angiogenic vascularization [44,45,46].

Off-lattice models
Off-lattice models, in comparison to on-lattice models, have a more realistic representation
of cell spatial locations in the sense that they do not need to be uniformly spaced on a fixed
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grid. However, to determine cell placement of daughter cells during cell division some
additional steps need to be undertaken to account for mutually exclusive cell areas or
volumes (i.e. non-overlapping). Moreover, the main advantage of the lattice-free models,
i.e., the freedom to move each cell in any direction, brings a risk that an inappropriately
chosen discrete time step will result in cell collisions (especially in densely packed
populations). The main disadvantage of this kind of model is that one needs to design
special algorithms to efficiently handle cell-cell neighborhoods, and some interpolation
techniques need to be applied to transfer values between the cellular off-lattice individuals
and the chemical fields that are usually computed on regular grids. Several examples of on-
lattice models are shown in Fg.2i–l.

1. Spherical cell-centered models represent the cells as single points with either the
springs or energy potentials defined between the neighboring cells to keep them
within a minimum predefined distance (circular or spherical geometry). These have
been used to simulate tumor cell colonies growing in the form of monolayers and
spheroids [47,48,53,54], various patterns of ductal carcinoma in situ [55], tumor
invasion [49,50,51] and blood vessel intravasation [52].

2. Ellipsoidal cell-centered models are similar in concept to the spherical cell-
centered models, however, each cell in this model is defined by two axes with
different lengths to form an elliptical shape. Thus allow for a more intuitive
definition of cell orientation and polarization [56,57].

3. Voronoi tesselation technique can be used for the cell-centered models to overlay
polygonal shapes around cell nuclei, that in turn leads to a variable number of cell
neighbors, but also defines cell-cell interactions based on variable contact between
neighboring cells, e.g. based on the length of adherent cell sides. This model has
been used to simulate growth of multicellular spheroids [58,59] and the
development of colorectal tumors [60,61].

4. Fluid based elastic cell models allow for modeling cell plasticity, geometrical
adaptability and cell deformation during migration, polarization and differentiation.
Moreover, since cell elastic boundaries are discretized, all boundary points may be
treated as cell membrane receptors/sensors and various cell-cell and cell-ECM
(extracellular matrix) interactions can be defined based on cell membrane receptor
dynamics. These kind of models has been used to simulate growth of multicellular
spheroids [62,63], various cellular patterns in developing ductal carcinoma in situ
[64,69], invasive tumors [65,68] as well as to model normal development of
epithelial ductal monolayers and their various mutants [66,67].

Biological complexity
Cancer development is a complex multiscale process that depends on both the intrinsic
factors (such as genetic mutation, gene expression, cell adaptability, robustness and
phenotypic evolution) and on extrinsic cues sensed from the cell microenvironment (such as
multiple metabolite and nutrient gradients, different densities and alignments of ECM fibers
or diverse tissue architectures). Experimentally, cancer evolution and development are
generally only considered at the gene or protein scale, however, recently there has been a
great deal of interest in the impact of this evolution at the cellular scale. After all, selection
occurs upon the cellular phenotype even if mutations take place in the genotype. This
selection pressure is often driven by changes in the tumor microenvironment. Hybrid models
seem particularly well suited to investigate the evolutionary aspects of cancer and various
strategies have been developed to model evolution of both cell phenotypes and genotypes, as
well as the complex interactions between cancer cells and their surrounding
microenvironment. Evolution of cell phenotypes is often modeled using deterministic flow
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charts in which a decision to enter the specific cellular process (such as cell growth,
division, death or movement) is determined sequentially by comparing cell status (e.g. cell
age, nutrients level, the number of cell neighbors or the configuration of cell membrane
receptors) to predetermined thresholds [5,16,18,20,66]. Another approach involves the
introduction of random mutations that determine the evolution of a given cellular phenotype
(e.g. doubling time, death rate or sensitivity to contact inhibition), or cell interactions with
external factors (such as concentration of metabolites or ECM degradation) [19,20]. Such
interactions can be also modeled using the neural networks [12,21] or systems of ODEs
defining certain signaling pathways or protein networks [10,16,40,61].

Evolution of cell phenotypes depends not only on cell genotype, but also on cues sensed by
the cells from their neighborhood. Moreover, the evolving cells modify also their immediate
vicinity, and these mutual interactions may lead to the emergence of certain
microenvironments promoting tumor development. The establishment of a three-layered
structure (consisting of a proliferating rim, a ring of quiescent cells and a necrotic core) that
arises in tumor spheroids as a consequence of nutrient depletion has been reproduced by
virtually every kind of modeling approach, and has become a test problem for every newly
developed mathematical model of solid tumor growth [see
3,20,22,34,40,42,46,49,53,56,61,68,69,70]. Gradients of nutrients, such as oxygen or glucose,
are not the only chemical species present in the stroma surrounding normal and tumor
tissues. In fact tumor cells are exposed to various enzymes (more than 20 kinds of MMPs:
matrix metalloproteinases, and TIMPs: tissue inhibitors of matrix metalloproteinases), a
multitude of growth factors and a range of chemokines. Mathematical models were used
extensively to investigate relations between gradients of various metabolites and the
emerging morphologies of developing tumors [13,16,20,21,23,24,34,40,43,56,61,68]. In
addition to responding to various chemical factors tumor cells can mechanically interact
with other tumor cells as well as with various other stromal cells, such as fibroblasts,
macrophages, immune cells. Tumor cell behavior depends also on the interactions with its
physical environment, e.g. variable densities and alignment of different ECM fibers (such as
collagen, laminin, elastin or fibronectin). The intimate adhesive relations between
neighboring tumor cells, cells and the ECM, and interactions between tumor cells and other
stromal cells have been addressed by multiple investigators
[7,16,17,20,25,37,42,45,48,49,51]. The initiation and progression of most tumors depends
strongly on the architecture of the host tissue. Various computational models have addressed
the issues arising from confined microenvironments such as the structure of epithelial ducts
[18,38,61,62,64] or brain geometry [19,71].

Bridging scales and models
In principle, it is possible to build a model that will span multiple scales from the genotype
and various biochemical reactions to the details on cell morphology, and the collective
behavior of millions of individual cells forming the whole tumor tissue. However, such a
model may acquire structural complexity that is comparable with biological cells and far less
effective computationally than the real living organism. It is therefore more desirable to find
ways to bridge independent models rather than build a single “mega-model” that
encompasses all the complexity of tumor development. This bridging may be in terms of
separate models that consider distinct parts of the cancer process or the same process but on
different scales. Our group has undertaken such an approach to address genetic, mechanistic
and evolutionary mechanisms of disruption of tissue homeostasis and initiation of tumor
growth [26], as well as to investigate how the local tumor microenvironment can select for
cells with an invasive advantage [9,65]. Similarly, the questions of VEGF (vascular
endothelial growth factor) transport in healthy and cancerous vascular systems were
investigated by Popel and collaborators using a multicompartment model [72,73]. The
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emergence of glycolytic phenotype in carcinogenesis was addressed by Gatenby and
collegues using a combination of approaches including cellular automata, evolutionary
dynamics, information or competition theories [74,75,76,77]. The advantage of applying
several distinct models in answering the same scientific question is manifold. If these
models produce similar (or comparable) outcomes, the common assumptions underlying the
investigated phenomena can be identified, and used to infer underlying mechanisms which
can then be further investigated experimentally. If these models result in different outcomes,
further investigation can be carried to determine which features specific to each model have
influenced the contrasting results and how this relates to the underlying biology. Again, this
may lead to further experimentation to confirm or rule out the contrasting results.

Conclusion
As we hinted at in the opening section of this article, computational models developed and
implemented without real experimental data to neither parameterize nor validate their
predictions was one of the major limitations in them gaining biological acceptance. What
has recently become clear is that there is not only a need for greater integration between
models and experimentation but a requirement [27,28,78,79]. This dialogue must go both
ways--experiments should drive models and models should drive experiments. Models can
utilize experimental data and produce novel hypotheses but without the experimental testing
to validate or negate such hypotheses, it becomes a very limited academic exercise.
Although to be fair, it can be very difficult to find appropriate collaborators motivated to
provide such experimental support.

Models need to drive experimentation and to some extent this requires an understanding of
the experimental systems that are currently being used by the cancer research community.
The schematic presented in Fig.3 highlights the multiple scales that are experimentally
studied in cancer research by means of the experimental systems that are utilized. If we truly
want to build integrated models then we need to think of what sorts of experiments will be
needed to drive our models and validate them. From our personal experience this leads to a
significant shift in thinking in relation to which components are incorporated into a model
and which are not. It also dictates what type of model should be utilized and this review
wouldn’t be about hybrid models if we didn’t believe that hybrid approaches are perfectly
suited to facilitate such integration. Due to their cell centric nature hybrid models naturally
connect with cell biology and readily incorporate microenviromental components. The
interface between tumor cells and their microenvironment being one of the critical drivers of
cancer progression, the other being the intracellular changes that result from mutations,
altered intra- and intercellular signaling or protein trafficking – which can also be captured
using hybrid models [10,12,40,51,66].

It is worth restating that cancer is a mutliscale process whereby mutations at the molecular
scale effect protein formation which effects signaling pathways which modulate cell
behavior that transforms the tissue leading to damaged organs and potentially death. This
complex multiscale process can be broken down into smaller units that are more amenable
to both experimental and theoretical approaches. This again brings into focus the bridging
nature of mathematical models that are critical for understanding how the different
biological scales of cancer impact upon one another. The models we have focused on this
review bridge several scales both above and below the fundamental unit of the cell (Fig. 3),
however, they cannot bridge all – this most certainly will require different modeling
approaches such as continuous (e.g. [80]) or statistical models (e.g. [81]). In addition, there
is an unspoken void between in vitro and in vivo models and between in vivo and the clinic.
In silico models have the power to link these approaches and in doing so can give some
insight into the processes that translate well between them and those that don’t. This is a
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severely understudied area for modeling in cancer research and should be a ripe focus for
future work.
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Figure 1. Reciprocal relation between the numbers of cells handled by the models and the level
of included cellular details
In each class (on-lattice and off-lattice) the models complexity rises from cells represented
by single points to fully deformable bodies
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Figure 2. Snapshots from simulations of various hybrid models of tumor growth
a) 3D tumor spheroid, simulated by a hybrid cellular automaton; reprinted from [8] with
permission from Birkhauser-Verlag. b) Tumor invasion in prostate ducts simulated by a
hybrid cellular automaton; Reprint permission requested from [16]. c) 3D tumor spheroid
simulated by an agent-based on-lattice model; reprinted from [10] with permission from
Springer. d) 3D tumor self-metastatic spheroids simulated by a hybrid cellular automaton;
reprinted from [5] with permission from Nature Publishing Group. e) 3D model of ductal
carcinoma in situ simulated by a square-grid cellular automaton; reprinted from [18] with
permission from Elsevier. f) 2D tumor spheroids simulated by a hexagonal cellular
automaton; reprinted from [34] with permission from BioMed Central, the Open Access
Publisher. g) 3D vascularized tumor spheroid simulated by Potts model; reprinted from [46]
with permission from Public Library of Science, open access article. h) 2D tumor spheroid
in a heterogeneous environment composed on ECM fibers simulated by Potts model;
reprinted from [42] with permission from Elsevier. i) 2D model of colorectal tumor
simulated using the particle model with Voronoi triangulation; reprinted from [61] with
permission from John Wiley and Sons. j) 2D tumor spheroid modeled using the cell-
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centered off-lattice model; reprinted from [50] with permission from Springer. k) 2D hybrid
model of tumor growth simulated by particle center-based ellipsoid model; reprinted from
[56] with permission from World Scientific. l) 2D multiclonal tumor growth simulated by a
model of deformable fluid-based cells; reprinted from [69] with permission from
Birkhauser-Verlag.
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Figure 3. A schematic of modeling scales and techniques
Multiple biological scales can be bridged by various types of mathematical models.
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