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Abstract

Multi–photon excitation fluorescence microscopy (MPM) can image certain molecular processes 

in vivo. In the eye, fluorescent retinyl esters in sub–cellular structures called retinosomes mediate 

regeneration of the visual chromophore, 11–cis–retinal, by the visual cycle. But harmful 

fluorescent condensation products were also identified previously. We report that in wild type 

mice, excitation with λ ~730 nm identified retinosomes in the retinal pigment epithelium, whereas 

excitation with λ ~910 nm revealed at least one additional retinal fluorophore. The latter 

fluorescence was absent in eyes of genetically modified mice lacking a functional visual cycle, but 

accentuated in eyes of older WT mice and mice with defective clearance of all–trans–retinal, an 

intermediate in the visual cycle. MPM, a noninvasive imaging modality that facilitates concurrent 

monitoring of retinosomes along with potentially harmful products in aging eyes, has the potential 

to detect early molecular changes due to age–related macular degeneration and other defects in 

retinoid metabolism.
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High resolution noninvasive imaging has become an essential method for understanding 

complex biological systems in experimental cell lines and is used with increasing frequency 

in tissues and live animals 1–5. These methods are also being slowly adapted for diagnostic 

testing and clinical applications where they show great promise 2,6,7. Two–photon 

microscopy (TPM) offers real time, high–resolution images of endogenous fluorescent 

molecules in living tissues with little or no tissue damage 8–11. Use of long–wavelength and 

non–linear excitation bypasses absorption by UV and visible light chromophores and allows 

imaging at low laser power with sub–cellular resolution at tissue depths not attainable with 

other noninvasive optical modalities. Vertebrate eyes have evolved to prevent short UV 

wavelength light from reaching the retina. Instead, infrared illumination used in multi–

photon microscopy is ideal for visualizing fluorescent biomarkers that exist endogenously in 

retinal pigment epithelial (RPE) cells of the eye.

There are two types of fluorescent retinoids indicative of certain functional and disease 

states of human eyes. The intrinsic chromophore, fatty–acid esterified retinol, displays weak 

fluorescence and has a propensity to cluster with phospholipids and helper proteins into 

structures called retinosomes located close to the RPE plasma membrane 12–14. Fatty acid–

esterified retinol is generated by sequential reactions of the visual cycle (Supplementary Fig. 

1). First, photoisomerization of 11–cis–retinylidene, the light sensitive chromophore of 

visual pigments in rods and cones, generates all–trans–retinylidene, which then is 

hydrolyzed and reduced to retinol. Next, retinol is transported from photoreceptors to the 

RPE and esterified in a LRAT–dependent reaction; additionally, these esters are formed 

from retinol imported from the circulation 15. As demonstrated by noninvasive in vivo TPM 

imaging through the sclera, and by chemical analyses of eyes of wild–type (WT) and 

genetically modified mice, retinosomes accumulate fatty acid–esterified retinol essential for 

11–cis–retinal production. Thus, retinosomes serve as the reservoir of all–trans–retinyl 

esters for dynamic transfer and conversion of retinoids in the eye.

Condensation products of all–trans–retinal are also fluorescent and their accumulation 

within the RPE is indicative of aging retina or retinal pathology. These stable condensation 

products, including A2E, A2DHP–PE and all–trans–retinal dimers 16 that result from 

inadequate clearance and conversion of all–trans–retinal back to 11–cis–retinol through the 

visual cycle 17,18, comprise the lipofuscin of RPE. All–trans–retinal itself is a reactive 

cytotoxic aldehyde that can damage the retina 17,18, but the relative toxicities of its 

condensation products have not been fully clarified. Several explanations for such toxicity 

have been proposed including complement activation 19,20, destruction of membrane 

structures 16, and photo–oxidative damage by acting as a chromophore for blue light 21. 

Retinyl esters and all–trans–retinal condensation products must be spectrally resolved to 

monitor their status independently.
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Herein we describe studies that extend the use of noninvasive multi–photon fluorescence 

microscopy to the study of native tissues within the eye. Spectral analyses of fluorophores 

activated at two different wavelengths and chemical analyses of the eyes in mice with 

different genetic backgrounds revealed distinguishing features between retinosomes and 

condensation products of all–trans–retinal associated with retinal pathology. Imaging 

methods described herein could be highly useful to assess the outcome of pharmacological 

interventions.

RESULTS

Fluorescent images of the RPE excited by an infrared femtosecond laser

Consistent with published results 12–14, we identified retinosomes in the RPE of mice by 

using a 730 nm femptosecond (fs) laser (Fig. 1a). The emission spectrum analyzed from 

fluorescence obtained from the area outlined by the yellow rectangle in Fig. 1a displayed 

two maxima at 480 nm and 521 nm (Fig. 1b). This spectrum was super–imposable with that 

of authentic all–trans–retinol solution in ethanol obtained under identical experimental 

conditions (Supplementary Fig. 2a). The two–photon spectra differed from those derived 

from UV excitation of retinol that produced a much stronger emission at 480 nm, as 

compared to the 521 nm peak which only appeared as a shoulder. This difference likely 

resulted from a complex electron excitation/relaxation structure for this conjugated polyene, 

wherein the lower energy component is enhanced by two–photon excitation. Retinol also 

emits at longer excitation wavelengths (Supplementary Fig. 2a), so we analyzed the RPE 

with an excitation wavelength of 910 nm (Fig. 1c). While a strong fluorescence was 

observed, it differed from that of retinosomes by having a maximal emission at ~570 nm 

(Fig. 1b), suggesting the presence of fluorophores other than retinol within the RPE. We also 

observed a very strong second harmonic (SH) signal derived from the sclera (Fig. 1c, blue 

box, and Fig. 1b, SH) that likely originates from collagen enriched structures 9. Fluorescence 

emission spectra were the same whether images were obtained directly from flat–mounted 

RPE, or through the sclera of the intact eye (Fig. 1b; image in Fig. 1d).

Images taken as a function of excitation wavelengths with constant laser power and detector 

setting revealed that the high fluorescence emission observed at 720 nm excitation decreased 

until 850 nm and then increased again at 910 nm (Fig. 2a). However, the well–defined 

fluorescent pattern of retinosomes obtained with 730 nm excitation (Fig. 2b) was replaced 

with more uniformly distributed cellular structures at the longer 910 nm excitation 

wavelength (Fig. 2c). Moreover, the spectrum systematically shifted from a shorter– to a 

longer–wavelength emission as the excitation wavelength increased from 720 nm to 910 nm 

(Supplementary Fig. 2b).

Visualization of retinosomes by three–photon excitation spectroscopy

If the unidentified fluorophores emitting in response to 910 nm excitation were condensation 

products of all–trans–retinal produced from bleached visual pigments 16, they should be 

absent in Rpe65 knockout mice that have a defective visual cycle 22. Fluorescence as a 

function of increasing excitation light wavelength in these mice exhibited a monotonic 

decay with no increase in signal observed at 910 nm (Fig. 3a, Supplementary Fig. 3). 
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Excitation at either 730 nm or 910 nm elicited the same emission spectrum, suggesting that 

retinyl esters are visualized with both 730 nm and 910 nm excitation. Moreover, the 

emission spectrum was consistent with those derived from WT mice with 730 nm excitation 

(Fig. 3b). Identification of retinosomes in Rpe65−/− mice was further confirmed by gavaging 

these animals with artificial chromophore 23,24. Expansion of retinosomes and increased 

retinyl ester content after these mice were treated with 9–cis–retinyl acetate was apparent 

(Supplementary Fig. 4).

All–trans–retinyl esters or retinol exhibit a maximal emission at ~480 nm with a shoulder at 

longer wavelengths when examined in a mixture of organic solvents (Supplementary Fig. 

5a) 25. Fluorescence of retinosomes in retinas of Rpe65−/− mice subjected to two–photon 

excitation with 910 nm should be negligible, given that the optical density of retinol (or 

retinyl esters) at half this wavelength, i.e. 455 nm, is only 0.3% of that at 365 nm (half of 

730 nm) with single–photon excitation in hexane (Supplementary Fig. 5b). Moreover, the 

optical density at 303 nm for retinol should be 64% of its maximal absorption at 326 nm, 

thus, it is more likely that the 910 nm–induced signal is the result of three–photon excitation. 

Accordingly, we found that retinyl esters are indeed excited by simultaneous absorption of 

three 910 nm photons. The probability of excitation by three–photon excitation is 

proportional to light intensity cubed (light intensity3), whereas the probability by two–

photon excitation is proportional to the light intensity squared (light intensity2). At an 

excitation wavelength of 910 nm, fluorescence emission was proportional to the 2.83rd 

power of the excitation intensity (Fig. 3c), indicating a significant contribution of the three–

photon effect. The third power dependence, rather than the second power dependence, 

showed good agreement with the data. At a control excitation wavelength of 730 nm, 

fluorescence was found to be proportional to the 2.12th power (Fig. 3d), consistent with a 

two–photon effect.

Abca4−/−Rdh8−/− mice accumulate high levels of A2E

Abca4−/−Rdh8−/− mice exhibit both deficient transport of all–trans–retinal from the internal 

discs and a reduced capacity for all–trans–retinal reduction and clearance 18,26,27. 

Consequently, they accumulate large amounts of A2E and other all–trans–retinal 

condensation products. Images obtained with wavelengths of excitation light that increased 

from 720 nm to 910 nm were consistently brighter than those from WT mice (Fig. 4a), with 

exceptionally high fluorescence seen at 910 nm. Spectra with 730 nm excitation displayed 

the characteristic retinol/retinyl ester emission peak together with a peak at about 560 nm 

attributable to retinal condensation products (Fig. 4b). As expected, the contribution of 

retinosomes to this emission spectrum was reduced. Importantly, the bright fluorescence, 

though punctate, was spread throughout cells (Fig. 4c,d) at all wavelengths tested (Fig. 4c). 

Synthetic A2E standard had a similar emission spectrum with maximum shifted to the 

longer wavelength when examined by two–photon excitation (Supplementary Fig. 2a), an 

observation similar to previous findings 28. These results and those obtained with WT, 

Lrat−/− and Rpe65−/− mice (Supplementary Fig. 6) strongly correlate with levels of all–

trans–retinyl esters and A2E found in the retinas of these mice (Fig. 5). Because A2E 

accumulates with age, images obtained with excitation wavelengths of 730 nm and 910 nm 

could be extremely helpful in discriminating between essential retinoids of the visual cycle, 
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such as retinols and retinyl esters present in retinosomes, and potentially harmful retinoids 

such as excessive amounts of all–trans–retinal and its condensation products.

Two–photon imaging to detect retinal aging

To test the ability of TPM to detect retinal aging, fluorescence images were obtained from 

WT mice at different ages and excitation wavelengths (Fig. 5a). Fluorescence emission 

decreased drastically with increasing excitation wavelengths in 7–week–old mice, but in 23–

week–old mice fluorescence emission at longer wavelengths was elevated. Therefore, we 

systematically evaluated ratios of fluorescence obtained with 910 nm excitation to the 

fluorescence with 730 nm excitation and plotted these ratios as a function of age (Fig. 5b). 

As expected, WT mice exhibited an increase in these ratios as a function of age, presumably 

because A2E and other all–trans–retinal condensation products accumulated. Moreover, 14–

week–old control Abca4−/− Rdh8−/− mice with significantly elevated A2E evidenced a very 

high 910 nm/730 nm fluorescence ratio whereas 17–week–old Rpe65−/− mice that do not 

produce A2E had a very low ratio 22, even below that exhibited by young WT mice. We 

then tested the level of retinyl esters as a function of age and found that this retinoid 

accumulates with age as previously observed (Fig. 5c) 24. Importantly, A2E increased with 

age as well (Fig. 5d). In the presence of both A2E and all–trans–retinyl esters in WT and 

Abca4−/−Rdh8−/− mice, we observed much more fluorescence from A2E, because 

excitation of A2E appears to be more efficient at the longer wavelengths than the three–

photon excitation of retinyl esters. This was manifested by increased levels of fluorescence 

at longer wavelengths. At longer excitation wavelengths the two–photon emission spectrum 

of lipofuscin in human RPE overlaps the spectrum of WT mouse RPE (Supplementary Fig. 

7).

DISCUSSION

The aims of this study were to: i) optimize multi–photon imaging of retinosomes; ii) use 

multi–photon spectroscopy to distinguish among retinal fluorophores; and iii) examine the 

use of noninvasive multi–photon spectroscopy to monitor changes in the retina caused by 

inherited visual disorders and aging.

Our study reveals that auto–fluorescent images of the retina, specifically the RPE, can be 

obtained at two excitation wavelengths, namely one at ~730 nm and the other at ~910 nm. 

Excitation with ~ 730 nm photons clearly images retinosomes in the two–photon mode, 

whereas ~910 nm photons primarily excite fluorophores related to the condensation of all–

trans–retinal, e.g. A2E, A2DHP–PE and retinal dimers 16. Only under special circumstances 

can retinosomes be imaged with ~910 nm photons, as in Rpe65−/− mice where they are 

enlarged. In such cases, nearly simultaneous absorption of two– and even three photons can 

take place. These findings are consistent with maximal absorption of all–trans–retinyl esters 

or all–trans–retinol at 326 nm (Supplementary Fig. 5), and A2E at ~440 nm 16. There are 

several differences between retinosomes and retinoid–condensation products: i) retinosomes 

are located close to the plasma membrane and surrounded by adipose differentiation–related 

protein 12, whereas condensation products are spread throughout the cell; ii) each displays a 

fluorescence emission spectrum unique to its chemical and cellular structures; and iii) all–
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trans–retinal condensation products not only accumulate with age but they also are either 

highly elevated or absent in mice with certain deletions of genes encoding enzymes of the 

visual cycle. Condensation products are proposed to be generated in photoreceptors and 

accumulated in lysosomes of the RPE, and the distribution of condensation products 

observed here (Figs. 2, 4) fits this description 13.

In the RPE, levels of all–trans–retinal condensation products increase with age 16 because 

each day about 10% of our rod outer segments, where these products are formed, are shed 

and phagocytosed by RPE cells 29. These conjugates accumulate within the RPE because 

their breakdown is either slow or non–existent in mammals. Even though fluorescent 

retinosomes were clearly observed in mice when fluorescence was measured upon excitation 

at 730 nm and 910 nm, emission from condensation products dominated upon 910 nm 

excitation. Thus, it appears that the emission fluorescence ratio after excitation at these two 

wavelengths, i.e. the 910 nm/730 nm ratio, might be used to monitor the health of the retina 

and evaluate the efficacy of therapeutic agents, at least in mice.

The total background autofluorescence of the fundus examined by scanning laser 

ophthalmoscopy (SLO) at the same laser power (sensitivity at 100) also reflected the 

amounts of A2E in mice (Supplementary Fig. 8, Fig. 5d). However, because adjustments in 

laser power are required for each individual to compensate for different eye conditions such 

as cataracts, direct comparison of SLO values between individuals and time points poses 

potential problems. Moreover, the infrared laser of current SLO cannot cause two–photon 

excitation. Therefore, the 910 nm/730 nm excitation ratio of TPM offers a greater advantage 

in assessing the health of the retina.

TPM provides several advantages over single photon microscopy in monitoring the human 

eye. The human lens and macular pigments are highly opaque to UV and blue light, 

respectively. Therefore, it is especially difficult to deliver excitation light safely and 

efficiently to UV–blue absorbing fluorophores existing in the macula. Instead of using short 

wavelength excitation, TPM takes advantage of infrared illumination to excite UV–blue 

absorbing fluorophores such as retinyl esters and A2E, whose dynamics and quantities 

change in the macula of pre–AMD patients. In AMD, increasing RPE fluorescence is one of 

the earliest changes observed 30. A recent large–scale prospective study of patients with 

geographic atrophy (GA) showed that fundus autofluorescence at the margins of GA was the 

best predictor of GA progression. The unique ability of our TPM to simultaneously image 

intermediates and byproducts of the visual cycle in the intact eye, enables monitoring 

formation of all–trans–retinal condensation products in vivo by comparing the ratio of 

fluorescence excited with 730 nm to 910 nm. Moreover, as observed by us and others, all–

trans–retinal levels required to produce toxicity in vitro (5 μM) are also found in vivo, 

especially after bright light exposure. A lifetime of light exposure has been proposed as one 

of several risk factors for advanced AMD 18,31.

Other advantages of TPM include less light scattering with resultant deeper penetration, 

intrinsic three–dimensionality and a decreased risk of photobleaching and phototoxicity. 

TPM is also a growing technology with potential applications to both basic science and 

clinical research 32. However most current TMP applications employ exogenous fluorescent 
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markers rather than endogenous fluorophores and most other procedures involving larger 

organisms are invasive.

By taking advantage of an animal model for Leber congenital amaurosis (the Rpe65−/− 

mouse) we quantitatively determined that three–photon microscopy can generate a 

fluorescent image characteristic of this disease. Three–photon microscopy requires three 

photons to be absorbed per fluorescent event and the excitation is proportional to the 

instantaneous intensity of incident laser light (I) to the third power. If imaging conditions are 

identical, the ratio of three–photon excited fluorescence to two–photon excited fluorescence 

is proportional to δ3·I/δ2, where δ2 is the two–photon excitation cross section and δ3 is the 

three–photon excitation cross section 11. We are not aware of any data directly dealing with 

two or three–photon excitation cross sections as a function of wavelength for all–trans–

retinyl esters, so we used existing data for retinol instead 33. Based on several assumptions, 

we calculated whether three–photon excitation of retinyl esters might occur at 910 nm. We 

assumed that i) the two– and three–photon fluorescence quantum yields (η) are the same; 

and ii) the three–photon excitation cross section spectrum is offset from the two–photon 

excitation cross section spectrum by a factor of 10−33 11, and that it parallels the two–photon 

excitation spectrum if the wavelengths are set to 3/2 times the corresponding two–photon 

process wavelengths. Then, using data for the wavelength-dependent two-photon 

fluorescence action cross section of retinol (η·δ2), we estimate that at 910 nm 

η·δ2≈8.8·10−56 cm4s per photon, and, taking into account that maximum absorption of 

retinol is at 326 nm (Supplementary Fig. 5), we estimate that three-photon cross section 

extrapolates to η·δ3 1.8·10−86 cm6s2 per photon2. Using these numbers and the intensity at 

910 nm,

Equation 1

where c is the speed of light, h is Planck’s constant, NA is the numerical aperture, po is the 

average incident power, τp is the pulse duration, fp is the pulse repetition frequency, and λ is 

the pulse center wavelength 34,we calculate that at 910 nm the ratio δ3·I/δ2≈0.3. Following 

the same methodology but now at 730 nm, we calculated I730≈1.9·1030 photons per cm2s, 

η·δ2≈3·10−52 cm4s per photon, η·δ3 9.2·10−89 cm6s2 per photon2 and δ3·I/δ2≈6·10−7. These 

estimates suggest that three photon excitation of retinyl ester is feasible at 910 nm but not at 

730 nm, supporting our experimental demonstration. Thus the three–photon effect has been 

demonstrated, perhaps for the first time, in a biological system, namely the intact, unfixed 

fresh eye.

In summary, TPM of endogenous fluorophores including retinyl esters, all–trans–retinol, 

and A2E provides a powerful way to monitor the visual cycle 15 directly and contribute to 

understanding the pathology of human retinal diseases. If we could visualize and understand 

early aberrations of these pathways in live human eyes, we would be better able to devise 

and monitor effective therapies for blinding retinal diseases.
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METHODS

Mice

Lrat−/− and Rpe65−/− mice with a C57BL/6J background were crossed with C57 albino 

wild–type (WT) C57BL/6J–TyrC–2J mice to produce albino Lrat−/− and Rpe65−/− animals. 

Albino Abca4−/−Rdh8−/− double knockout mice were generated by crossing 

Abca4−/−Rdh8−/− mice with a mixed 129Sv and C57BL/6J background with 129/SvJ albino 

WT mice 17,35. PCR genotyping of these mice was performed as previously described 17,35–
37. Animals were housed and crossbred in the Case Western Reserve University (CWRU) 

Animal Resource Center Facility where they were maintained under either a 12 hr light (10 

lux)/dark illumination cycle or in complete darkness. Manipulations in the dark were 

performed under dim red light transmitted through a filter (transmittance 560 nm; No. 1 

Safelight; Eastman Kodak, Rochester, NY). Mice were provided free access to a standard 

chow diet and water. Prior to experimental analyses they were anesthetized by 

intraperitoneal injection with 10 μl/g body weight of 6 mg/ml ketamine and 0.44 mg/ml 

xylazine, and then euthanized by cervical dislocation. All animal procedures were approved 

by the CWRU Animal Care and Use Committee and complied with the American Veterinary 

Medical Association Guidelines on Euthanasia. Mice were gavaged with 9–cis–retinyl 

acetate according to a previously published protocol 38.

Retinoid and A2E Analyses

All experimental procedures related to extraction, derivatization, and separation of retinoids 

from dissected mouse eyes were carried out as previously described 17,35. A2E was 

synthesized from all–trans–retinal and ethanolamine, and purified by HPLC 35. 

Quantification of A2E after HPLC was accomplished by comparison with known 

concentrations of pure synthetic A2E standards 35.

Multi–photon excitation microscopy

TPM imaging was done with a Leica TCS SP2. A Ti:Sapphire laser (Coherent Chameleon 

XR) delivered <140 femtosecond (fs) laser pulses at 90 MHz. The excitation light was 

focused on samples by a Planapochromat 1.25 numerical aperture (NA), 0.1 mm working 

distance objective lens and fluorescence was collected through the same lens. Fluorescence 

intensities and cross-section images were obtained by offline analyses that employed Leica 

LCS Lite software, version 4.0 39.

For imaging, a Hamamatsu R6357 photomultiplier tube was used as a non–descanned 

detector after filtering light through a band–pass Chroma filter, HQ 465/160. Before trans–

scleral imaging and immediately after enucleation, a mouse eye was placed at the center of a 

glass bottomed 35–mm dish (MatTek Corporation, MA, USA), with the sclera contacting a 

coverslip and hydrated with solution of 9.5 mM sodium phosphate, pH 7.4, containing 137 

mM NaCl and 2.7 mM KCl. The typical time between enucleation and data acquisition was 

less than 30 min. For flat–mount imaging, the cornea and lens were first dissected out of 

enucleated eyes with spring loaded scissors and the vitreous and retina were removed with 

tweezers. After four radial incisions, the RPE with choroid and sclera attached, was laid in 
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the center of a glass bottomed Matek dish and directly imaged with its apical side facing the 

glass.

Emission spectra were obtained with a Leica TCS SP2 spectrally sensitive detector in the 

descanned configuration. Regions of interest were outlined with Leica LCS Lite software 

version 4.0. Spectra were normalized to the maximum value for each sample. The z–position 

on the microscope was kept constant when imaging with variable wavelength excitation, 

taking into account that retinosome size is greater than 4 μm in the z direction as deduced 

from Fig. 1.

Characterization of fluorescence as a function of laser power

Imaging was done with 730 nm and 910 nm excitation wavelengths with 512×512 pixels/

frame and 400 Hz line speed. Pixel size was 0.367 μm. Laser power was adjusted with a 

Leica TCS SP2 electro–optic modulator (EOM). At least 1 hr was allowed for the laser to 

stabilize and EOM to equilibrate with heat introduced by the infrared laser. Power was 

measured immediately before and after imaging in the sample plane with a calibrated 

Coherent FieldMax –TO laser power meter and a PM10 sensor. Laser power was measured 

by using the point bleach option with disabled scanning and blanking. To ensure that the 

laser beam was fully captured by the sensor, measurements employed a FL PLAN 0.25 NA 

objective with a 17.6 mm working distance. To determine if a two– or three–photon process 

was dominant we first assumed that (i) the two–photon excited fluorescence (Nex2) is 

proportional to the incident laser power (p0) squared and the two–photon fluorescence 

excitation cross section (δ2) 10, Nex2 ≈ δ2 · po
2; (ii) and the three–photon excited 

fluorescence is proportional to the p0 cubed and the three–photon fluorescence excitation 

cross section (δ3) 40, Nex3 ≈ δ3 · po
3. Then the order of the process was determined from the 

slope of the line on the log–log plot.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A 2 E 2–[2,6–dimethyl–8–(2,6,6–trimethyl–1–cyclohexen–1–yl)–1E,3E,5E,

7E–octatetraenyl]–1–(2–hydroxyethyl)–4–[4–methyl–6–(2,6,6–

trimethyl–1–cyclohexen–1–yl)–1E,3E,5E–hexatrienyl]–pyridinium

ABCA4/ABCR photoreceptor specific ATP–binding cassette transporter

AMD age–related macular degeneration
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fs femtosecond

GA geographic atrophy

LRAT lecithin:retinol acyl transferase

MPM Multi–photon excitation fluorescence microscopy

RPE65 retinoid isomerase

TFA trifluoroacetic acid

TPM two–photon microscopy

SLO scanning laser ophthalmoscope

vitamin A retinol

WT wild type
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Figure 1. Multi–photon excitation of a 6–month–old wild type (WT) mouse eye at 730 and 910 
nm produced emission spectra indicating more than one fluorophore
(a) A series of TPM images of an intact mouse eye were obtained along the axis 

perpendicular to the RPE layer with an excitation wavelength of 730 nm. The main box 

reveals the enface image of RPE cells; the two cross–section images, one shown at the 

bottom and the other at the right edge, were assembled from a series of z-slice images. The 

yellow outlined rectangle represents the region from which fluorescence was collected for 

spectral analysis with the excitation light focused on the RPE. Scale bar, 75 μm. (b) 

Fluorescence emission spectra from the RPE of an intact mouse eye through the sclera (ts) 

and from flat–mounted (fm) mouse RPE are super–imposable. The second harmonic signal 

(SH) exhibits a sharp maximum at half of the 910 nm excitation wavelength. (c) A series of 

TPM images of an intact mouse eye obtained with an excitation wavelength of 910 nm. In 

the region of the blue outlined rectangle, a strong second harmonic signal from the sclera 

was dominant, as the curvature of the eye brought the sclera more into focus. Scale bar, 75 

μm. The yellow outlined rectangle represents the region from which fluorescence was 

collected for spectral analysis shown in b. (d) TPM image of flat–mounted ex vivo RPE. Part 

of the RPE is folded over, exposing a sagittal view of retinosomes, indicated with the yellow 

arrow. Scale bar, 20 μm.
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Figure 2. Multi–photon excitation of the RPE in an intact 6–month–old WT mouse eye at 
different wavelengths of excitation light
(a) Graph showing fluorescence as a function of excitation light wavelength. Fluorescence 

intensities were obtained as mean pixel values from the area covered by at least 20 RPE 

cells in focus and were normalized to the maximum value at 720 nm. Blue arrows (from left 

to right) indicate fluorescence in response to 730, 850 and 910 nm excitation. (b) Zoomed–

in two–photon image of RPE cells obtained with 730 nm excitation. Blue arrows denote 

retinosomes (white) clustering along plasma membranes; edges of one RPE cell are 

highlighted in yellow. Dark, mostly double nuclei are indicated by pink arrows. (c) Images 

of RPE cells at different excitation wavelengths indicated in each panel. All images were 

obtained with 10 mW of laser power. Photomultiplier tube (PMT) gain and offset were kept 

constant for images in the top row. Then the gain was readjusted and kept constant for the 

images in the bottom row. Scale bar, 38 μm.

Palczewska et al. Page 14

Nat Med. Author manuscript; available in PMC 2011 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Visualization of retinosomes by three–photon excitation spectroscopy in the intact 7–
week–old Rpe65−/− mouse eye
(a) Graph showing fluorescence intensity as a function of excitation light wavelength; 

fluorescence intensity was calculated as a mean pixel value from the area covered by at least 

20 RPE cells in focus during imaging and normalized to the maximum value at 720 nm 

excitation. (b) Emission spectra from the RPE of WT and Rpe65−/− mouse eyes excited 

with laser light at 730 nm and 910 nm. (c) Logarithmic plot of fluorescence intensity as a 

function of excitation power shows evidence of three–photon excitation at an excitation 

wavelength of 910 nm. The mean pixel value was proportional to the 2.83rd power. (d) At an 

excitation wavelength of 730 nm, the mean pixel value was proportional to the 2.12th power 

of the laser power. In (c) and (d) data points are shown as black circles. Modeling of the 

pure second power dependence is shown by the blue dotted line and modeling of the third 

power dependence is indicated by the green dashed line. Insets depict areas containing 

retinosomes from which fluorescence was quantified.
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Figure 4. Two–photon excitation of 6–week–old Abca4−/−Rdh8−/− (dko) intact mouse eye
(a) Fluorescence intensity as a function of excitation wavelength, normalized to maximum 

emission at 720 nm excitation. (b) Emission spectra from RPE of WT and dko mice excited 

with laser light at 730 nm and 910 nm. Blue arrow points to 580 nm. (C) Images of dko 

mouse RPE at different excitation wavelengths. All images were obtained with 10 mW of 

laser power; PMT gain and offset were kept constant. Scale bar 50 μm. (d) Zoomed–in TPM 

image of unstained dko mouse RPE. Fluorescent granules are distributed uniformly 

throughout cells with clearly visible boundaries. Green color was arbitrarily chosen to make 

the image details more visible. Scale bar 25 μm.
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Figure 5. Age–dependent changes in fluorophore accumulation in mouse eyes
(a) Two–photon excitation fluorescence intensity of WT mouse retina drops with increasing 

wavelengths of light excitation; the decline of fluorescence emission is more rapid in 

younger than in older mice. Fluorescence emission values were normalized to that observed 

with 720 nm excitation. (b) Ratios of fluorescence excited with 910 nm light relative to 

fluorescence excited with 730 nm light increased with age in WT mice. Abca4−/−Rdh8−/− 

(dko) mice displayed higher fluorescence ratio than WT mice. (c) Increasing levels of all–

trans–retinyl esters determined by normal phase HPLC were found in the eyes of WT mice 

at the ages of six weeks, three months and six to seven months. Rpe65−/− mouse eyes 

exhibited more than a 15–fold increase in all–trans–retinyl ester accumulation as compared 

to age–matched WT mouse eyes. No all–trans–retinyl esters were detected in Lrat−/− mouse 

eyes (n=5 for each group). (d) A2E was extracted from mouse eyes and quantified by 

reverse phase HPLC. Control WT mice were evaluated at six weeks, three months and six to 

seven months of age and exhibited increased A2E amounts in an age–dependent manner. 

A2E levels in 3–month–old Abca4−/−Rdh8−/− mouse eyes were markedly higher than in 

age–matched and older WT controls. No A2E was detected in the eyes of 3–month–old 
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Rpe65−/− and Lrat−/− mice (n=5 for each group). In (c) and (d) data columns are shown 

with one standard deviation bars.
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