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Abstract
The development of folding descriptors as an effective approach for describing geometrical
complexity and variation of the human cerebral cortex has been of great interests. This paper
presents a parametric representation of cortical surface patches using polynomials, that is, the
primitive cortical patch is compactly and effectively described by four parametric coefficients. By
this parametric representation, the patterns of cortical patches can be classified by either model-
driven approach or data-driven clustering approach. In the model-driven approach, any patch of
the cortical surface is classified into one of eight primitive shape patterns including peak, pit,
ridge, valley, saddle ridge, saddle valley, flat and inflection, corresponding to eight sub-spaces of
the four parameters. The major advantage of this polynomial representation of cortical folding
pattern is its compactness and effectiveness, while being rich in shape information. We have
applied this parametric representation for segmentation of cortical surface and promising results
are obtained.

1 Introduction
Quantitative description of the geometrical complexity and variability of the human cerebral
cortex has been of great interests. The development of shape descriptors that model the
cortical folding pattern is essential to understand brain structure and function. Recent study
has shown that cortical folding pattern could be used to predict brain function [1]. Besides,
quantitative cortical folding descriptor may help reveal the underlying mechanism of cortical
gyrification [2,3] and provide clues for the understanding of abnormal cortical folding in
brain disorders [4,5].

In order to quantitatively and effectively measure cortical folding, a couple of attempts have
been made in literature. In [6], the cortical surface area was compared to its external surface
areas to determine the degree of folding. In [7], the gyrification index (GI) was proposed to
compute the ratio between the pial contour and the outer contour in successive coronal
sections, which has been widely used in many studies [8,9]. Recently, the GI measurement
was extended to 3D [10]. Curvature, which is a 3D parametric measurement, was also
widely used as a metric to study cortical folding pattern [11]. These descriptors have their
own advantages, but also have their limitations. Novel folding pattern descriptors that
incorporate 3D geometric shape pattern information are still to be developed.

In this paper, a compact parametric model with four polynomial coefficients is developed to
describe cortical surface patch shape pattern. By this parametric representation, the patterns
of cortical patches can be classified by either model-driven or data-driven clustering
approaches. In particular, by taking the advantage of symmetry of cortical patch, the model-
driven approach is able to classify the patches into one of the eight primitive shape patterns:
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peak, pit, ridge, valley, saddle ridge, saddle valley, flat and inflection, which altogether
cover the 4-dimensional parametric space. In order to show the effectiveness of this method,
we have applied this parametric representation for segmentation of cortical surfaces of 80
subjects, and promising results are obtained.

2 Methods
2.1 Parametric Polynomial Model

Our work is inspired by the 2D power function based representation of tectonic folding
presented in [12]. Our parametric polynomial surface model is represented as:

(1)

where x, y and z are vertex coordinates, ai and bj are coefficients. In order to decide the
maximal values of m and n, we fitted the 2D power function to 1000 randomly selected
patches along two directions corresponding to two principal curvatures of the central vertex
of each patch. The sizes of surface patch are ranging from 1-ring to 7-ring neighborhood.
The statistical results of the exponent n are shown in Fig. 1. It is evident that the exponent n
is rarely over 3. We have similar results for the exponent m.

Therefore, we present the cortical surface patches by polynomials in the following format:

(2)

where a and b describe the mirror symmetric components of the patch, while c and d
represent the rotational symmetric components.

2.2 Model Fitting
We use the Frenet frame as the coordinate system to estimate parameters in Eq. (2). The
origin of Frenet frame coincides with the central vertex of the patch, and the central vertex’s
normal is regarded as the Z-axis of the frame that always points towards outside of the brain.
The X-axis and Y-axis are set free in the beginning, and will be determined later by the
estimated parameters. So the Frenet frame is called semi-free Frenet frame here (Fig. 2). Eq.
(2) is rewritten as f(θ ⃗, x⃗) = 0, and we have:

(3)

where θ⃗ = (a, b, c, d)T, and x⃗ = (X, Y, Z)T. It is worth noting that (X, Y, Z)T is the coordinates
in the semi-free Frenet frame. Therefore, all the coordinates of surrounding patch vertices
should be rotated as follow:

(4)
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where [x0, y0, z0]T the coordinate of the central vertex; α and β are two angles between the
axes of different coordinates frames; θ is a new parameter introduced to rotate the semi-free
Frenet frame on X-Y plane. Then, the Eq. (3) is rewritten as:

(5)

where parameter u⃗ = (a, b, c, d, θ)T, and x⃗ = (xi, yi, zi)T.

To estimate the parameters in Eq. (5), the non-linear least square fitting (NLLSF) method is
adopted to fit the patch. There is no closed-form solution to a non-linear least squares
problem. However, the nonlinear problem can be iteratively linearized and becomes a linear
least squares problem in each iteration. In order to apply the NLLSF method to our model,
Eq. (5) is rewritten in the following way:

(6)

Supposing there are n vertices on the patch, the model fitting algorithm is as follows:

Step.1. Initialize parameter u⃗0, maximum iteration times N and ε, k = 0;

Step.2. Compute the shift vector Δu⃗k by equations written in matrix notation as

(7)

where Δz ⃗ = (z1 − f̃(u⃗k, x⃗1),⋯zn − f̃(u⃗k, x⃗n))T, and J is the Jacobian matrix.

Step.3. If ‖Δu⃗k‖ ≤ ε, or k > N, stop iteration and output u⃗k; else go to Step.4;

Step.4. u⃗k+1 = u⃗k + Δu⃗k, k = k + 1, go to Step.2.

A critical issue in the polynomial model fitting is the patch size. Generally, the larger the
patch is, the more shape information it will enclose. However, if the patch is too large, its
folding shape will be too asymmetric to be described by polynomials. Both qualitative and
quantitative experiments show that 3-ring neighborhood is good to maintain the symmetry
property of surface patches.

2.3 Model Pattern Classification
As mentioned above, the estimated parameter sets (a, b, c, d)T will be used to determine the
X- and Y- axis as follows. Intuitively, the largest value in a, b, c and d will dominate the
shape of a surface patch, as shown in Fig. 3. For example, in the valley shape, the parameter
a will be the largest and dominate the patch shape. So for the sake of convenience, we use
the X-axis to represent the dominating direction, i.e., the largest absolute value is either a or
c, and Y-axis is orthogonal to X-axis. If b or d is of the largest absolute value, we switch a
and c with b and d.

2.3.1 Model-driven Method—The surface patch patterns represented by above
polynomial model are classified into eight primitive fold patterns including peak, pit, ridge,
valley, saddle ridge, saddle valley, flat, and inflection as shown in Fig. 3. This classification
approach is similar to that in [14]. The decision tree for this model-based classification
method is shown in Fig. 4, where the absolute component ratio is defined as:
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(8)

This classification method (Fig. 4a) covers the entire four dimensional space of parameter a,
b, c and d. The parameter c or d will determines the inflection pattern if any of them is larger
than 0.25. Otherwise, the parameter a and b will decide the other shape patterns as shown in
Fig. 4b. Currently, all of these thresholds are determined by expert visual inspections.

2.3.2 Data-driven Method—We applied the K-means clustering method to classify the
surface patches represented by the four coefficients into different patterns. The distance
measurement between patches is simply the summed squared Euclidean distance of the four
model parameters.

3 Results
The proposed method is applied on 80 randomly selected normal brains in the OASIS MR
image database. All the topologically correct and geometrically accurate cortical surfaces
are generated via the method in [15].

3.1 Results of Model-driven Method
The model-driven folding pattern classification method introduced in Section 2.3.1 was
applied to 80 cortical surfaces. As an example, Fig. 5 shows the primitive patch shape
classification result on a cortical surface. Currently, the thresholds k, l, n, m in Fig. 4a used
in this classification are manually determined. Fig. 5 clearly illustrates the distributions of
the eight primitive folding patterns over the cortex. Ridges and valleys are commonly
distributed on the crests of gyri and at the bottoms of sulci. Pits mostly sit in bowl-shaped
sulcal regions. Peaks are more likely to be the joints of connected gyri. Inflections tend to be
slender lines separating straight and long slopes where gyral regions meet the sulcal regions.
The flats are located on smooth walls beneath the crests of gyri or the plain-shaped gyri
crests. Saddle ridges and saddle valleys are distributed relatively evenly. The result in Fig. 5
shows that the proposed cortical patch representation and classification method can properly
discriminate the shape differences across the whole cortical surface. Our preliminary results
show that the percentage of flats is significantly higher in normal brains than Autism
patients.

In order to evaluate the accuracy of the folding pattern classification methods, 600 patches
randomly selected from 80 cortical surfaces are manually classified into the 8 patterns in
Fig. 5 respectively. The automatic classification results are compared with the manual
labeling results, and Table 1 summarizes the sensitivity and specificity of the automatic
classification method. It is apparent that the automatic folding pattern classification method
is quite accurate, given the high sensitivity and specificity over 0.9.

3.2 Results of Data-driven Method
Fig. 6 shows the data-driven classification results with the number of clusters ranging from 2
to 8. With the increase of cluster numbers, more detailed shape patterns are generated.
Especially, the 2-classes clustering results, parcelling cortex into gyral and sulcal regions, is
similar to the curvature based parcellation of cortex [13] as shown in the right bottom of Fig.
6. Also, to evaluate the accuracy of the methods, the same 600 surface patches are manually
classified into 5 clusters respectively. The data-driven automatic clustering results are
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compared with the manual labeling, and the results are provided in Table 2. Evidently, the
sensitivity and specificity of the data-driven clustering method are quite high.

To investigate the parameter distribution in the data-driven clustering, we take an arbitrary
case with 47600 vertices as an example. Distributions of a and b, the two dominant
parameter (see Table 3), in each clustering result using different cluster numbers from 2 to 8
are shown in Fig. 7.

4 Discussion and Conclusion
Compared to previous cortical folding descriptors such as curvature and gyrification index,
the proposed polynomial parametric representation is able to differentiate cortical surface
patches into primitive shape patterns. The major advantage of the polynomial representation
of cortical folding pattern is its compactness and effectiveness, while being rich in shape
information. However, the polynomial representation in Eq. (2) is not perfect. It requires that
the shape of the patch in consideration to be symmetric. As the size of surface patch grows,
e.g., larger than 4-ring or 5-ring neighborhood, the symmetry requirement might be violated.
Also, the shape complexity of the cortical patch might be beyond the description ability of
the polynomial model in Eq. (2). In the future, more factors such as twisting effect should be
added into the shape model in Eq. (2) for better description capability of cortical shape
patterns. The work presented in this paper demonstrates that parametric shape descriptor is a
powerful tool to model cortical folding patterns. Potential applications include automatic
parcellation of cortical surface as shown in Fig. 5 and Fig. 6, automatic recognition of
cortical structures using folding patterns as features, as well as studies of abnormal folding
patterns in brain diseases.
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Fig. 1.
The statistical distribution of exponent n in power function fitting.
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Fig. 2.
The semi-free Frenet frame.
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Fig. 3.
Eight primitive folding patterns of surface patches.
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Fig. 4.
(a) The clustering decision tree. (b) The parametric subspaces of a and b for different
patterns.
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Fig. 5.
The model-driven classification result on a cortical surface. Eight primitive folding patterns
are represented by different colors. The blue dots on the right patches represent the central
vertices of the corresponding patches.
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Fig. 6.
K-means clustering results with the number of clusters ranging from 2 and 8.
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Fig. 7.
Distribution of parameter a and b for each cluster across different cluster numbers. The
boxes are color coded according to the corresponding clusters in Fig. 6.
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Table 3

The numbers of dominant parameters.

Dominant parameter a b c d

Number of vertices 47258 11244 1802 472
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