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Abstract
Responses of forty-two people with aphasia to eleven sentence types in enactment and sentence-
picture matching tasks were characterized using Rasch models that varied in the inclusion of the
factors of task, sentence type, and patient group. The best fitting models required the factors of
task and patient group but not sentence type. The results provide evidence that aphasic syntactic
comprehension is best accounted for by models that include different estimates of patient ability in
different tasks and different difficulty of all sentences in different groups of patients, but that do
not include different estimates of patient ability for different types of sentences.

This paper describes the use of Rasch models to analyze the performance of people with
aphasia on tests of syntactically based comprehension. Rasch models have rarely been
applied to the analysis of aphasic performance (one example is Donovan et al, 2007). There
are, however, several ways they might be useful in understanding the nature of aphasic
impairments.

Rasch models express the probability of a person correctly answering a test item as a linear
function of the ability of the person and the difficulty of the item. In the simplest model, all
individuals vary along a single ability dimension and all test items vary along a single
difficulty dimension. In more complex models, the performance of an individual on an item
differs for different individuals or groups of individuals and for different items or groups of
items. Different models are assessed based on their goodness of fit to a dataset. Applying
these methods to the performance of people with aphasia can help determine whether the
best model groups all people with aphasia together with respect to how difficult they find
items or divides them in some way. These methods can also help determine whether all test
items fall along a single difficulty dimension or if they are best considered as being of
different types with respect to how difficult they are. Thus, for instance, it would be possible
to utilize Rasch models to ask whether dyslexia is best modeled as the result of individual
differences in a single reading ability that applies to all words, or whether different words
(say, regular and irregular words) have different levels of difficulty, possibly in different
groups of people with dyslexia.

We applied Rasch models to the performances of 42 aphasic people with single left
hemisphere strokes on two tests that have been used to assess syntactically based
comprehension – sentence picture matching (SPM) and object manipulation (OM). The
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performance of these patients has been previously reported in two publications: Caplan et al
(2006, 2007). In those papers, we examined the performance of these patients both as
individuals and as a group. At the individual level, no person with aphasia showed a
selective deficit on sentences that required processing a particular syntactic structure on both
tasks. At the group level, individuals in less well performing groups had disproportionately
lower accuracy on sentences on which the group as a whole performed less well. Finally,
rotated and unrotated Factor Analyses (FA) at the group level did not differentiate sentences
with different syntactic structures. Together, these findings led to the view that syntactically
based comprehension deficits in aphasia reduce the ability to apply parsing and interpretive
processes to all sentences in a given task, with individual performance determined primarily
by the level of a person’s ability on a task and by the difficulty of a sentence type in that
task.

This conclusion is inconsistent with much thinking about the nature of aphasic deficits of
syntactically based comprehension. The most widely held view of these deficits sees them as
specific structural deficits (loss of a particular syntactic structure; e.g., the claim that Broca’s
aphasics do not represent traces (Grodzinsky, 2000)), or specific processing deficits
(inability to apply a type of parsing and interpretive operation; e.g., the claim that Broca’s
aphasics have abnormal abilities to activate more complex lexical argument structures
(Thompson & Lee, 2009)). These theories claim that individuals with such deficits will have
abnormal performance on sentences that contain the structure or require the operation in any
comprehension task. They therefore predict that sentences will fall into different groups with
respect with their difficulty, at least for certain aphasia types, and that these groups of
sentences will be the same in all tasks.

Rasch models afford a new way to evaluate these different views of aphasic deficits in this
domain. If the “specific deficit” approach is correct, models that do not introduce a task
factor should be favored over those that do, and models that introduce patient and sentence
type groupings should be favored over those that do not. If the view that aphasic deficits
consist of reduced ability to apply parsing and interpretive processes to all sentences in a
given task is correct, the opposite should be found: models that introduce a task factor
should be favored over those that do not, and models that do not introduce patient and
sentence type groupings should be favored over those that do. The analyses that follow
examine Rasch models of aphasic syntactic comprehension performance with these
questions in mind.

Methods
Forty-two aphasic people with aphasia (mean age 60.3 years (range: 24.7 – 84.5); mean
education, 14.7 years (range: 9 – 22); M:F = 26:16) were tested. Patients were required to be
aphasic, right handed, have a single left hemisphere stroke, be able to perform the tests, and
be judged to have adequate single word comprehension to not fail because of lexical
semantic disturbances (patients were screened for disturbances of phoneme discrimination,
auditory lexical decision and spoken word-picture matching, and ability to match words to
pictures and objects in the syntactic comprehension tasks).

The ability to construct and understand three syntactic structures—passives, relative clauses,
and sentences with reflexive pronouns—was tested by having patients respond to pairs of
sentences in which the baseline sentence did not contain the construction/element in
question or could be interpreted on the basis of a heuristic and the experimental sentence
contained the structure/element and required the assignment of a complex syntactic structure
to be understood. Each structure was tested with two experimental/baseline contrasts
(“constructions”), with 10 examples of each sentence type (Table 1). Words in the sentences
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were high frequency1 and were identical in experimental and baseline versions of the
sentences, thus controlling for frequency. Experimental and baseline versions of the
sentences were synonymous (except for SO/SS, where this is impossible, and where they
were thematically very similar), thus controlling for plausibility.

These structures were selected because they contain different syntactic structures that have
been claimed to be selectively affected in comprehension in aphasia. In Chomsky’s theory,
passives and relative clauses contain phonologically “empty” referentially dependent noun
phrases (NPs). Passive sentences contain one type of empty NP (an “NP-trace”) and relative
clauses contain a different type (a “wh-trace”). Some results indicate that some patients
process these types of structures differently (e.g., Thompson and Shapiro (2007) reported
that patients do not generalize successful training on one of these structures to the other).
Reflexive pronouns are similar to “traces” in being obligatorily related to antecedents in a
syntactic domain (contrasting with pronouns in this respect) but are overt, rather than
phonologically empty, referentially dependent NPs. Several researchers have argued that
deficits in some aphasic patients affect empty and spare overt referentially dependent NPs,
such as reflexives, but affect empty ones, such as NP-traces(see Grodzinksy, 2000, for a
summary). The selection of these structures thus provides an opportunity for structure-
specific deficits in syntactically based comprehension that have been postulated to exist to
be found.

Subjects were tested in enactment (object manipulation (OM)), picture matching (SPM) and
grammaticality judgment (GJ) tasks, the latter two with both whole sentence and self-paced
listening presentation conditions, using digitized computer-delivered auditory stimuli. In the
enactment task, participants indicated thematic roles and co-indexation by manipulating
paper dolls. People with aphasia were told that the purpose of the experiment was to test
their abilities to understand “who did what to whom” in the sentences. They were instructed
to indicate “who did what to whom” by acting out the sentence using the items provided.
The experimenter emphasized that they did not need to show details of the action of the
verb, but had to clearly demonstrate which item was accomplishing the action and which
item was receiving it. In the sentence picture matching test, each sentence was played
auditorily with the two drawings in full view of the participant, and the participant was
required to choose the drawing that matched the sentence by pressing one of two buttons on
a timer interfaced with the computer using fingers on the non-paretic hand. Accuracy and
end-of-sentence reaction time (RT) (in SPM and GJ) were measured. We here report on the
accuracy data from the OM and SPM tasks, which require comprehension, with whole
sentence presentation, which is the most natural form of language presentation in a hearing
subject.

Contingency tables for the Rasch models were created as follows. For each participant i (i ∈
1, …, I), I = 42, and each sentence type j ( j ∈ 1, …, J ), J = 22, the number of examples
administered (nij) and the number of correct responses (yij) was recorded, resulting in an I ×
J contingency table (Y) with a maximum number of nij examples in each cell. The rows
contained the participants and the columns contained different items (sentences in tasks) for
which the response is either correct or not. In most cases nij = 10, but there are a significant
number of cells for which nij = 9 (62 cells), and one cell in which nij = 8.

We explored a series of Rasch models of these data. Rasch models describe the log-odds of
the probability of a person providing the correct response to a sentence as a linear function
of the ability of the person (αi) and the difficulty of the sentence (βj), or in mathematical

1For nouns, the mean CELEX cumulative frequency was 57 ± 64.5; range = 0–246 (lowered by aunt (3), nephew (2), and niece (0));
for verbs, the mean frequency was 36 ± 45; range = 1 – 143 (lowered by pinch (2), hug (5) and tickle (1)).
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terms, . In the simple Rasch model, the estimate of each individual’s
ability was based on the sum of correct responses for that individual in all of the sentences
from both tasks (the row sum).

Models that introduce task or sentence type factors will be referred to as “extended models.”
In the extended model with a task factor, each individual’s ability was estimated separately
for each task (the row sum for SPM and the row sum for OM). In the extended model with
sentence type factors, the ability of each individual was estimated separately for groups of
similar sentences. We grouped sentences according to syntactic structure—passives, relative
clauses, and sentences with reflexive pronouns—including their baseline sentences.2 In the
extended model with both a task and sentence type factor, each participant’s ability was
estimated separately for groups of similar sentences in each task.

As noted, in the simple Rasch model, the probability of a correct response is modeled as a
logistic function of the difference between the ability of a person and the difficulty of a
sentence. The usual assumption is that yij is a dichotomous random variable. However, in
our data yij has a binomial (nij, pij) distribution (due to the forced choice procedure). As a
result, the likelihood function has the form:

where

Defining the row sums as ri for i ∈ 1, …, I and the column sums as cj for j ∈ 1, …, J,

The probability of the whole data matrix depends on the data only through the marginals
(row and column sums) of the table and the parameters, not on the particular entries within
the data matrix. Thus, the complete sufficient statistics for α̃ and β̃ are (ri, cj) for i ∈ 1, …, I
and j ∈ 1, …, J. This approach was extended to models incorporating task or sentence type
groupings (note that from the computational point of view these are simply different ways of

2Because baseline sentences can be interpreted using linear heuristics, we also considered a grouping in which all baseline sentences
formed one group and the experimental sentences were grouped by type. In the third sentence type grouping, we eliminated the
truncated passive sentences because performance on these sentences strongly suggested that factors other than syntactic complexity
(e.g., the presence of only one NP) greatly affected results, and formed two groups of sentences based upon the presence of a
phonologically empty or phonologically overt referentially dependent noun phrase (“trace” (PF, CO, SO) and reflexives (RP, RG)). In
the fourth sentence type grouping, all the experimental sentences were grouped together into one group. We also created groups of
experimental sentences according to the syntactic features found in the experimental sentences ((PT, PF),(CO, SO) and (RP, RG)) and
the corresponding sets of baseline sentences ((A), (CS, SS), (RPB, PGB)). The results did not differ from those reported here.
Interested readers can obtain the details of these analyses from the corresponding author.
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grouping the 22 columns). Thus, for example, for the extension of the simple Rasch model
to include task effects, the likelihood for Y is

where ri (OM) and ri (SPM) are the row sums for OM and SPM respectively and cj is the
column sums. This likelihood function reveals that the sufficient statistics for this model are
the row sums for the SPM task, the row sums for the OM task, and the column sums.3

A second issue is the application of Rasch model to multiple choice questions, since random
guessing may not allow the probability of responding correctly to approach zero for very
difficult items or for individuals with very low ability levels. This issue is not a major
problem for our data, for the following reasons.

First, previous analyses of on-line performance in these aphasic individuals suggested that,
contrary to the most commonly made assumption about aphasic performance (Grodzinsky,
2000), guessing was not a major factor in determining their responses. Analyses of self
paced listening times in these people with aphasia for the words in the sentences showed
normal effects of syntactic structure in sentences to which they responded correctly, and
effects of syntax that differed from normal in sentences to which they responded incorrectly.
In addition, the poorer performing individuals performed at below chance levels on more
difficult sentences. These features of the data suggest that most responses are not guesses

3For the model with sentence groupings,

For the model with task and sentence groupings,

where

and k is an index over the elements in G.
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but rather true errors. Dickey et al. (2007) came to a similar conclusion on the basis of
analysis of aphasic individuals’ eye movements.

Second, the application of the Rasch model to binomially distributed data as opposed to
dichotomous responses reduces the effects of guessing. When the Rasch model is applied to
dichotomous responses, it is crucial to determine whether a correct response on the part of
an individual on a specific item is due to guessing. This is important because correctly
answering a difficult question may have large impact on the estimate of an individual’s
ability. When the data consist of the number of correct answers to items with similar
structures, the effect of guessing diminishes, since the probability of responding correctly to
a type of item (pij) by guessing decreases as the number of questions (nij) increases. Also,
guessing is more likely to occur on difficult items. These two considerations result in a
lower probability of correct responses for individuals with lower ability even if they are
guessing randomly.

A second issue that applies to our data is the possibility that performance on particular
sentences is influenced by factors such as plausibility or lexical frequency. This seems
unlikely. The lexical items used in these tasks were high frequency nouns and verbs, and the
frequency of lexical items did not differ among sentences of a given type or across sentences
of different types. The tasks themselves – enactment and sentence picture matching –
introduce a context that de-emphasizes real world plausibility (for instance, as with most
such tests in use with aphasics, pictures of participants in actions were drawings, not
photographs). Nonetheless, since the task was not entirely fictitious (as, for example, a test
in which animals interact would be), real-world plausibility of the meanings of the sentences
might have affected responses. To guard against that, all sentences were constructed so that
both the correct and reversed thematic role assignments in each sentence were plausible.
Previous work (Caplan et al, 1985) has shown that real world plausibility of actions in an
enactment task did not affect responses (nor did location of items in arrays of manipulanda).

A final issue, related to the above, is whether presentation of multiple examples of each
sentence type could have affected responses; that is, might responses reflect strategic
operations conditioned by the presentation of several stimuli of a given type? There are three
responses to this question. First, in general, strategic effects are not found in studies in
which no more than 25% of the stimuli are of a given type. Second, strategically induced
repeated similar responses to sentences of a given type would lead to large numbers of errors
or large numbers of correct responses to particular sentence types in many patients. The
data, however, show that large numbers of errors occurred on many sentence types in the
poorest performing patients and large numbers of correct responses occurred on many
sentence types in the best performing patients, a pattern that is more likely to reflect actual
ability than the application of strategies. Third, r values for split-half reliability of accuracy
on sentences of the same type were very close to, or lower than, those for the r values for
correlations of accuracy on different sentence types within each task (for SPM mean split-
half r = .53, mean cross-sentence r = .65; for OM, mean split-half r = .73, mean cross-
sentence r = .69). This provides evidence that strategic factors did not lead to repeated
similar responses to sentences of a given type.

For these reasons, the main issues associated with examining the Rasch model as a possible
fit for the data were addressed, and we proceeded with such analyses. We then had to deal
with several technical challenges.

One way to examine the validity of the Rasch model is by calculating the probability of
certain test statistics under the assumption that the Rasch model is true. Using the idea of
similar tests, one can obtain the exact distribution of a test statistic by conditioning on the
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sufficient statistics of the Rasch model. However, obtaining the exact conditional
distribution under the Rasch model and some of the extensions is a difficult task. It can be
accomplished by (1) enumerating all the tables with the same row and column sums for
which each cell is smaller than or equal to nij, (2) computing the test statistic for each of the
enumerated tables, and (3) determining how often the value computed is equal to or exceeds
the observed value of the test statistic using the Neyman-Pearson Lemma (Lehmann, 1998).
If the Rasch model is inappropriate, we would expect that the frequency of obtaining the
observed test statistic or exceeding it will be smaller than or equal to a predefined rejection
level (by convention, p < .05) (Ponocny, 2000). The enumeration of tables with fixed row
sums and columns and cell values between 0 to nij is an intensive computational task. When
nij = 1, each table with the same row and column sums is equally likely; however when nij >
1 the distribution is no longer uniform over the space of tables. We used the MCMC
approach proposed by Diaconis & Strumfels (1998) to sample from the space of available
tables with fixed marginals. In this method, one iterates the following simple step: choosing
two rows and two columns at random and changing the intersection cells according to one of
the randomly selected patterns:

In cases where negative or more than nij correct answers had occurred in a cell, the random
walk stayed at the current table.

We examined the performance of groups of people with aphasia using a mixture model that
combines the theoretical strength of the Rasch model with the power of latent class analysis.
The mixture model has the following form:

where K is the number of groups, ηk is the probability of an individual belonging to group k,
βk = (β1k, …, βJk) defines the sentence difficulty for group k, αk is the common ability of the
group, and σε2 represent the deviation in an individual’s ability from the average ability of
the entire group. One type of model that allows for deviation from the common ability for
individuals, while still allowing for sentence types to have different difficulty levels, defines

 as the following Generalized Linear Mixed Model (GLMM):

This model allows each participant to have an ability parameter that differs from that of the
whole group (αi → αk). The latent variable εi signifies the difference of each individual from
the group’s mean αk. We assumed that εi ~ N(0, σε2), were σε2 is unknown. Since we were
interested in the distribution of different test statistics described below as well as the ability
to easily extend the model to incorporate additional latent structure, we decided to use a full
Bayesian statistical analysis.

The distribution obtained from our Bayesian modeling does not have a closed analytical
form, thus we chose to use Markov Chain Monte Carlo (MCMC) algorithms to perform the
calculations. We used the Gibbs (Geman 1984) and Metropolis-Hasting procedures to
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sample from the posterior distribution of the parameters and the latent structures. To conduct
the MCMC sampling we introduced a latent indicator variable for each person indicating his
group membership. Assuming that the number of clusters is known in advance and set to K,
we let γi ∈ {1, …, K} define the group membership of participant i, resulting in the
following model:

To complete the Bayesian modeling, we assumed the following prior distributions for the
different model parameters:

To examine whether these prior distributions had any effect on the posterior analysis we
fixed σα2 and σβ2 at different values in the range 6 – 10 in a 0.5 interval. This had little effect
on the outcome, and both σα2 and σβ2 were set at five. For the prior distribution of σε2 we set
a in the Γ distribution to either 0.01 or 0.001. We also examined two other diffused priors
(U[0, 100] and half-Cauchy) as suggested by Gelman (2006) and found that the different
prior distributions had little effect on the outcome.

We monitored the convergence of the MCMC algorithm by both the Gelman & Rubin
potential scale reduction (R̂) statistics (Gelman and Rubin, 1992) and visualization of the
samples as a time series. R̂ measures how much improvement in the estimates would be
possible by increasing the number of MCMC iterations. All estimated scalar parameters had
R̂ values of less than 1, and the time series plots indicated convergence to a stable
distribution.

In order to find the optimal number of participant clusters (K), we explored K in the range of
2 – 7. Classifying the individuals using maximal posterior probability, we found that for K >
4 all participants were classified into 4 clusters and therefore examined models where K ≤ 4.

In order to examine both group and task effects, we applied the mixture GLMM (MGLMM)
to each task independently as well as to both tasks jointly. Convergence was monitored in a
fashion similar to the previous mixture model. The optimal number of clusters was decided
based on the Bayesian Information Criteria (BIC) and by observing whether the posterior
probability of any group was ≈ 0.

Each model’s adequacy was assessed in two ways. First, we calculated the goodness of fit of
the model’s performance to the observed data using the AIC (Akaike, 1974) and the BIC
(Bayesian information criterion). Second, we calculated the probability of certain features of
performance (“test statistics”) occurring in the Monte Carlo simulations. For the Rasch
model and some of the extensions, this probability can be estimated using the Diaconis &
Strumfels (1998) method described earlier. This method cannot be applied to the MGLMM
model, so we used the Bayesian idea of posterior predictive checks to obtain this
distribution. The distribution of the test statistics is obtained by creating a set of predictive
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simulations by sampling new data, yij, independently from the binomial distributions given
pij. The pijs were calculated from independent samples of the variables appropriate for each
model. These samples were obtained from the posterior distribution corresponding to each
of the two models. Since we were also interested in comparing the adequacy of the different
models we also applied the posterior predictive procedure to the simple and extended Rasch
models (described above). This calculation provided a common measure with which to
compare the probability of observing each of the test statistics under the MGLMM and the
simple and extended Rasch models.

The first test statistic was the frequency and magnitude of instances in which there were
more errors on baseline than on experimental sentences (“reversals”). This test statistic was
considered a salient feature of the performance data for the following reason: If the
assumptions about the operations needed to structure and interpret the experimental and
baseline sentences are correct, reversals must reflect noise in the comprehension process.
We measured both the frequency (F) and magnitude (M) of reversals for each sentence type:

where δ represents the indicator variable. We also measured the frequency (FD) and
magnitude (MD) of reversals for each sentence type in each task.

where D {SPM, M}.

The second test statistic was the correlation of performance of each sentence type across the
SPM ( jSPM = j ∈ SPM ) and OM ( jOM = j ∈ OM ) tasks:

where

This second test statistic is psychologically salient because it is related to the claim that
patients have deficits that affect parsing or interpretive operations independently of task.
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Results
Table 2 reports the AIC and BIC for the simple Rasch model, the extended Rasch models
with factors of task, sentence type, and both, and MGLMM models. The extended model
with task and sentence type factors has the best AIC but the worst BIC. The model with
three groups in OM and two in SPM tasks (MGLMM[OM K = 3, SPM K = 2]) has the best BIC
and the fourth best AIC.

Tables 3 and 4 report the analyses of the number and magnitude of the reversals of
performance in these models (test statistic 1). Tables 5 and 6 show the results of the analysis
of the correlation of the number of correct responses for the same sentence types across
tasks (test statistic 2).

For the observed number and magnitude of better performances on baseline than
experimental sentences, the simple model without any factors did not fit the observed data
well, generating more reversals than occurred in the patients’ performances. The addition of
sentence type and task factors improved model performance marginally. When comparing
the posterior predictive probabilities of observing the number and magnitude of “reversals,”
the MGLMM[OM K = 3, SPM K = 2] model had the best performance. For the correlation of
performances on the same sentences across tasks, all models at least partially simulate the
observed data. When the posterior predictive p-values for these correlations were
considered, models that introduced sentence type were inferior to those that did not, and
models that introduced a task factor better simulated the observed correlations. The
MGLMM[OM K = 3, SPM K = 2] model best captured the between-task correlation statistic.

Discussion
We consider these analyses for their implications for the nature of aphasic deficits in
syntactically based sentence comprehension and for the grouping of aphasic individuals with
respect to these abilities. Before turning to this question, we consider the issue of which
model is best overall. As Table 2 shows, the model with the lowest AIC included task and
sentence type factors, but this model produced the highest BIC. The model with the lowest
BIC was the MGLMM[OM K = 3, SPM K = 2] model. This model had a relatively low AIC and
best matched the observed test statistics. Based on these observations, we believe the weight
of evidence supports the MGLMM[OM K = 3, SPM K = 2] model.

We emphasize that studying more people with aphasia is important to explore these models
more fully. In the analyses reported here, two levels of latent structure were included which
could be influenced by the sample size. The first latent structure was applied to the patients
grouping. It is possible that there are more than 3 groups in the OM task and more than 2
groups in the SPM, but since there are only 42 participants with aphasia in the study only
these number of groups were detected. The second latent structure is the variation of a
person’s ability from the total group’s ability. In cases where the number of people in a
group is small the estimation of this variation may not be reliable. This could be especially
critical in the Group 2 and Group 3 in the OM task where the numbers of people in each
group were 4 and 7 correspondingly. For these reasons, including more patients is highly
desirable.

Based on the data available, the results show that grouping the sentence types by task leads
to better fitting models, while dividing the sentence types into groups along linguistic lines
either leads to no improvement or to worse fitting models. This result is consistent with the
view of aphasic deficits outlined in Caplan et al (2006, 2007), according to which deficits
consist of reductions in a person with aphasia’s ability to apply parsing and interpretive
operations to sentences in order to perform particular comprehension tasks. As discussed in
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the Introduction, if people with aphasia had specific deficits affecting particular syntactic
elements (e.g., “traces”) or particular types of operations (e.g., “co-indexation of traces”),
Rasch models that attributed different abilities for particular sets of sentences in both tasks
would be expected to provide the best fits to the data. Instead, dividing performance on the
basis of task resulted in the best model.

Models that describe patients’ performances as resulting from specific deficits usually
confine their claims to subsets of patients. For example, the claim that patients have lost the
ability to “co-index traces” has been made for Broca’s aphasics (Grodzinsky, 2000). We
explored the possibility that the best models might include clustering of patients, and found
that a model that divided patients into three clusters in OM and two in SPM provided a good
fit to the data (by most measures, the best fit). The fact that these patient groupings differed
for OM and SPM is not predicted by “specific deficit” models, which lead to the expectation
that there will be groups of patients whose abilities differ for particular sentence types on
both tasks.

Despite the above results, we looked for other evidence from the analyses performed here
that there are patients who performed similarly on OM and SPM. We identified patients who
did not change between the better and worse performing groups on both tasks, and those
who changed from one group to another. Twenty-two patients were in the better performing
group (Group 1) in both tasks; three were in the worst performing group (Group 2) in both
tasks; and seventeen changed from one group to another across tasks. We examined the
correlation of performance of patients on each sentence type across the two tasks, separately
for patients who did and who did not change from one group to another, to determine
whether patients who remained in groups that performed at the same relative level showed
more consistency of performance across tasks than those who changed from one group to
another across tasks, and whether they showed high correlations of performance on
particular sentence types across tasks. As expected because of the small n, for patients who
fell in the low performing groups in both tasks, most correlations were not significant (only
performance on SO sentences was significantly correlated across tasks). The results for the
other two groups are shown in Table 7. There is no indication that patients who remained in
the same relative group showed more consistency of performance across tasks than those
who did not, or showed particularly high r values for certain sentences. Therefore, this
analysis of the data does not provide support for structure- or construction-specific task-
independent deficits.

A final point is that it is possible that deficits affecting parsing and interpretation of specific
structures would interact with task demands, leading to different patterns of performance on
specific sets of sentences in two tasks. It is possible that such interactions might differ for
different groups of patients because of particular problems they have in accomplishing
particular tasks. To see whether the groups in the MGLMM[OM K = 3, SPM K = 2] model
showed task-specific structure- or construction-specific deficits, we examined their
performance on each sentence type (Table 8). In both tasks, the groups differed primarily in
their overall level of performance, with some differences in how the groups performed on
specific sentences types. For instance, patients in Group 2 in OM did well on truncated
passives and had no correct responses to subject-extracted relative clauses; patients in Group
3 in OM did poorly on truncated passives and on both subject-and object-extracted relative
clauses. There does not appear to any particular linguistic structure or psycholinguistic
operation that makes for poor performance of the patients in these groups in either task.

Though not directly relevant to the issues above, we examined patients in the groups for
clinical syndrome and common features of lesions. Patients were classified into clinical
syndromes based on the BDAE and diagnosed as agrammatic based on criteria in the Oral
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Production Test (Goodglass, Christiansen, & Gallagher, 1993). The groups did not contain
patients with classical aphasic syndromes. Of the six Broca’s aphasics in the sample, 4 were
clustered into Group 1 and 2 were clustered into Group 2 in OM, and 1 was clustered into
Group 1 and 5 into Group 2 in SPM. Where available, MR and FDG PET scans were
examined (see Caplan et al, 2007b for methods); the clusters did not contain patients whose
lesions shared site, size, or metabolic activity level.

In summary, the finding that sentence comprehension abilities are best estimated for
different groups of patients in different tasks suggests that the abilities of patients are best
understood as enabling them to understand sentences and demonstrate their understanding in
a particular task. This is consistent with the view that sentence comprehension is “situated”
(Tanenhaus et al, 1995; Kamide et al, 2003) -- that is, that it proceeds incrementally
alongside of accomplishing the task to which it is applied – and that deficits affect the
integrated function of incrementally determining sentence meaning and accomplishing task
demands. Two aspects of the results also support the “resource reduction” model of aphasic
deficits in syntactically based comprehension (Caplan, 2009a,b; Caplan et al, 2006, 2007).
First, the finding that introducing a sentence type factor did not improve, or worsened, the
Rasch model supports the view that people with aphasia’s performance results from a
reduction in the ability to apply syntactic and interpretive operations to all sentences, with
different sentence types making different overall demands on these resources. Second, the
aphasic groups identified in the best-fitting model differed primarily in terms of their overall
level of performance. The results do not rule out the possibility that patients with task-
independent specific deficits exist, but they confirm previous analyses showing that such
patients must be very rare. To date, there are no reported cases of a person with aphasia who
has shown a selective deficit in one aspect of syntactically based comprehension on more
than one task that requires comprehension.

Finally, these results suggest that an important research topic is the way in which syntactic
structure and task demands interact to determine abnormal performances in people with
aphasia. Recent work has begun to explore the relation between parsing and interpretation
and task performance, and has shown that features of visual arrays incrementally affect
parsing and interpretive operations (e.g., Tanenhaus et al, 1995) and that features of
sentences incrementally influence aspects of task performance (Kamide et al, 2003). The
analyses reported here and related results point to the potential importance of these
interactions for understanding the nature of the disruption of syntactically based sentence
comprehension found in aphasic patients.
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Table 1

Sentence types used in the Sentence-Picture Matching and Object Manipulation tasks (in SPM, sentences had
sentence-final adverbs because of the additional SPM self-paced study).

Passives (NP trace)

Full Passive

 Experimental Sentence (FP): The woman was chased by the man

 Baseline Sentence (A): The man chased the woman

Truncated Passive

 Experimental Sentence (TP): The woman was chased

 Baseline Sentence (A): The man chased the woman

Relative clauses (wh trace)

Cleft Object

 Experimental Sentence (CO): It was the woman who the man chased

 Baseline Sentence (CS): It was the man who chased the woman

Subject Object Relative

 Experimental Sentence SO): The man who the woman chased followed the girl

 Baseline Sentence (SS): The man who chased the woman followed the girl

Reflexives

Reflexive with Genitive

 Experimental Sentence (RG): The brother of the king shaved himself

 Baseline Sentence (RG-B): The brother of the king shaved the man

Reflexive Possessive (RP)

 Experimental Sentence (RP): The king’s brother shaved himself

 Baseline Sentence (RP-B): The king’s brother shaved the man
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Table 7

Correlation (Pearson’s r) of performance of performance across tasks in patients who stayed within the higher
performing group in both tasks and those who changed from groups across tasks.

Group

High (n = 22) Change (n = 17)

Active 0.11 .58**

Full Passive .51** .58**

Truncated Passive −0.2 −0.2

Cleft Subject .47* .61**

Cleft Object 0.3 0.37

Subject Subject 0.01 .52*

Subject Object −0.09 0.33

Reflexive Genitive .56** .58**

Reflexive Genitive Baseline −0.11 0.44

Reflexive Possessive .52** −0.07

Reflexive Possessive Baseline 0.27 0.22

*
p < .05;

**
p < .05;
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