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Abstract

Reverse transcription and real-time PCR (RT-qPCR) has been widely used for rapid quantification of relative gene expression.
To offset technical confounding variations, stably-expressed internal reference genes are measured simultaneously along
with target genes for data normalization. Statistic methods have been developed for reference validation; however
normalization of RT-qPCR data still remains arbitrary due to pre-experimental determination of particular reference genes.
To establish a method for determination of the most stable normalizing factor (NF) across samples for robust data
normalization, we measured the expression of 20 candidate reference genes and 7 target genes in 15 Drosophila head cDNA
samples using RT-qPCR. The 20 reference genes exhibit sample-specific variation in their expression stability. Unexpectedly
the NF variation across samples does not exhibit a continuous decrease with pairwise inclusion of more reference genes,
suggesting that either too few or too many reference genes may detriment the robustness of data normalization. The
optimal number of reference genes predicted by the minimal and most stable NF variation differs greatly from 1 to more
than 10 based on particular sample sets. We also found that GstD1, InR and Hsp70 expression exhibits an age-dependent
increase in fly heads; however their relative expression levels are significantly affected by NF using different numbers of
reference genes. Due to highly dependent on actual data, RT-qPCR reference genes thus have to be validated and selected
at post-experimental data analysis stage rather than by pre-experimental determination.
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Introduction

Real-time polymerase chain reaction (PCR) combined with

reverse transcription (RT-qPCR) has been widely used for

quantification of gene expression that may associate with specific

biomedical conditions. However, RT-qPCR measures the mRNA

transcript levels differentially contributed by specific biological

conditions as well as confounding factors that are non-specific to

the biological conditions and non-reproducible in different

experiments. Even with careful control of technical variables

[1,2,3], confounding factors may still result from sample-to-sample

and run-to-run variations particularly in RNA extraction and

reverse transcription efficiency, random pipetting errors, etc. Data

normalization using internal reference genes is thus a crucial step

necessary to minimize the influence of confounding factors and

improve the fidelity of the quantification process with respect to

the specific biological conditions. The internal reference genes pass

through all steps of the analyses simultaneously along with target

genes and should thus minimize the confounding variations among

parallel samples. What and how many reference genes used for

calculation of normalization factors (NF) in parallel samples is thus

a crucial determinant of the accuracy of expression quantification.

Internal reference genes are usually chosen from ‘‘housekeep-

ing’’ genes with abundant and stable expression under various

experimental conditions [4]. In current applications, however,

RT-qPCR quantification remains problematic [4,5,6] due to

arbitrary determination of the number and selection of particular

reference genes for data normalization. Most frequently only a

single reference gene is used for data normalization. Even though

robust statistic methods have been developed for evaluation of

multiple reference genes [7,8]; the selection of particular genes or

the number of reference genes remains unchanged in different

experiments. In addition, the relationship between the number of

reference genes and the accuracy in RT-qPCR data normalization

has not been clearly addressed. Here we investigate these issues

using a panel of 20 candidate reference genes and 15 cDNA

samples from Drosophila heads that are associated with brain aging

or neurodegeneration.

The fruit fly, Drosophila melanogaster, constitutes a valuable model

organism for aging research and is becoming increasingly popular

for the study of neurodegeneration. Quantitative examination of

gene expression in Drosophila brains during aging may help to

identify the genetic components of neuronal aging as well as

genetic modifiers of neurodegenerative diseases. Even though RT-

qPCR is a powerful tool to achieve this goal, a systematic

verification of expression stability for reference genes used for RT-

qPCR data normalization is still absent in Drosophila. The so-called

‘‘housekeeping’’ genes most often selected for normalization of
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transcription variation in Drosophila tissues are adopted from other

species without experimental verification. In many cases, however,

the expression stability of these genes in other species is also

problematic. In this study, we measured the expression stability of

20 candidate reference genes most of which have been previously

used as typical PCR reference genes. We found that their

expression stability varies among different sample subsets. No

particular gene exhibits constant expression stability among

various samples negating its suitability for all-purpose data

normalization. Accurate data normalization thus requires an

experiment-specific subset of internal reference genes selected

from a particular gene panel and optimized for a particular sample

set.

Results

PCR efficiencies and Ct profiling of candidate reference
genes

Genome-wide expression of most Drosophila genes has been

measured previously in multiple tissues of 7-day-old adults of

Canton-S strain using Affymetrix microarray and is publicly

accessible in the FlyAtlas expression database [9]. In order to

avoid high Ct values which could result in irreproducible RT-

qPCR quantification [10,11], we excluded candidate reference

genes with low expression in fly brain/heads (FlyAtlas val-

ues,100). The linear regression for 10-fold dilution series of

standard samples shows that the squared correlation coefficients

(R2) of all tested primer sets are greater than 99%. The primer sets

for Exba and Faf have lower PCR efficiencies (93 and 83%

respectively) and were excluded in this study (Table S2). The raw

Ct values for the remaining 20 genes measured in 9 aging-related

samples range from 13.5–22.8 (Fig. 1A) which is acceptable for

reliable RT-qPCR quantification. The Ct values correlate with

expression levels derived from mRNA microarray signals reported

in FlyAtlas (Fig. 1B).

Candidate reference genes exhibit sample-specific
expression stability

To determine the best RT-qPCR reference genes from the gene

panel with 20 candidates, we evaluated their expression stability

across 15 aging- or neurodegeneration-related samples (Table S3).

Expression stability for a particular gene is reflected by the M

value calculated as the mean standard deviation of the log-

transformed expression ratios across samples for the particular

gene relative to other reference genes remaining in the gene panel

[7]. The calculation was performed by stepwise exclusion of

individual gene with the highest M value (i.e. the least stable gene)

from the panel until reaching the last two genes with the smallest

M value (i.e. the most stable genes). The M values for the 20

candidate genes were first evaluated across 9 aging-related samples

(Fig. 2A). We excluded the 5 least-stable genes (Nrv2, GstD1,

Efla48D, RpII215 and CG13220) and the remaining 15 genes were

further evaluated in 6 neurodegeneration-related samples (Fig. 2B).

Previous studies defined M,1.5 as an acceptable criterion for

selection of RT-qPCR reference genes [12,13]. In our samples, the

M values for all genes are less than 1.0.

The expression stability of the candidate reference genes

exhibits obvious discrepancies when compared in different sample

subsets. For example, the expression stability of Act5C in the aging-

related samples has a rank order of 13 (from most to least stable)

when calculated across 9 samples, but is 19 when calculated across

3 samples (Fig. 2A). This type of discrepancy is even more

apparent in different neurodegeneration-related sample subsets.

Elav and Appl, for example, show relatively good stability in young

samples but poor stability in aged samples (Fig. 2B). RpL13A

exhibits the least stability when calculated across the 6 neurode-

generation-related samples but is one of the most stable genes

when calculated across the 3 aged samples. In addition, the most

stable genes with the lowest M values calculated in each sample

subset are not exactly the same. This result suggests that the

Figure 1. Ct values of 20 candidate reference genes and their mRNA levels reported in the FlyAtlas. (A) Scatter plot of the raw Ct values
obtained from the 9 aging-related cDNA samples. Each gene has an average of 54 Ct values and the order of genes has been sorted by the mean Ct
values. The Ct values were adjusted to the same baseline using IQ5 software (Bio-Rad) for construction of this plot and are thus not exactly the same
as those used in other statistical analyses. (B) The reported mRNA levels from FlyAtlas for the 20 candidate reference genes. The FlyAtlas microarray
signals are negatively correlated to the Ct values (Ct vs. FlyAtlas brain: Pearson’s R = 20.905, P,0.0001; Ct vs. FlyAtlas head: Pearson’s R = 20.882,
P,0.0001).
doi:10.1371/journal.pone.0017762.g001

RT-qPCR Data Normalization
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expression stability of a particular gene is not constant in different

sample sets even if all samples have the same tissue composition.

The expression stability of candidate reference genes is thus

sample specific or more precisely analysis specific.

Vn/n+1 curve and the optimal number of reference genes
for data normalization

Proper normalization of expression data across samples

determines the accuracy of RT-qPCR quantification. To obtain

the optimal number of reference genes for data normalization, we

calculated the pairwise variation (Vn/n+1) of serial log-transformed

NF ratios using N relative to N+1 reference genes (i.e. log2(NFn/

NFn+1) as previously described [7]). The Vn/n+1 value reflects NF

stability across samples. While individual reference genes have

considerably differential expression levels across samples, NF will

be sensitive to stepwise inclusion of these reference genes resulting

in an increase or decrease in Vn/n+1 value. If inclusion of more or

less reference genes has little or no effect on Vn/n+1 value, NF will

become insensitive to stepwise inclusion of these reference genes

and approach a relatively stable status with a minimal Vn/n+1

value. The corresponding number of validated reference genes will

approach the most reliable NF calculation across sample leading to

accurate data normalization.

The Vn/n+1 calculated across the 9 aging-related samples

exhibits an initial decrease as stepwise inclusion of individual

reference genes (Fig. 3A, black line), suggesting that more (.5)

reference genes likely achieve more stable NF across samples.

Subsequent inclusion of additional reference genes make Vn/n+1

slowly approach a minimal value. An interesting finding, however,

is that continuous addition of more reference genes (.17, Fig. 3A,

black line) results in an increase in Vn/n+1. This increased NF

variation is likely due to the stepwise inclusion of genes with

relatively unstable expression. This broad U-shape curve suggests

that inclusion of either too few or too many reference genes may

detriment the robustness of data normalization.

The minimal Vn/n+1 on the U-shape curve represents the most

stable NF achievable within a particular sample set and a

particular panel of reference genes, thus corresponding to the

optimal number of reference genes for the most accurate data

normalization. The optimal number of reference genes varies

when calculated among different sample subsets. For the aging-

related samples and 20 input reference genes, the optimal number

is 13 when calculated across 9 samples, 14 across a subset of 6

samples and 9 across a subset of 3 samples (Fig. 3A, arrows).

Similar analyses among subsets of the neurodegeneration-related

samples and 15 input reference genes show that 6 reference genes

are optimal for the total 6 samples while only a single reference

gene is optimal for either the 3 young or the 3 aged samples

(Fig. 3B, arrows). The shape of the Vn/n+1 curves suggests that the

optimal number of reference genes for reliable RT-qPCR data

normalization should be determined by stepwise inclusion of

individual reference genes based on their expression stability until

Figure 2. Expression stability (M value) of candidate reference genes in different sample subsets. (A) M values for 20 candidate
reference genes calculated across different aging-related sample subsets (3 samples: control, mid- and old-age; 6 samples: the previous 3 samples
plus low-T, high-T and male samples; 9 samples: the previous 6 samples plus 3 additional treatments. See Table S3 for details). (B) M values of the 15
candidate reference genes calculated across different neurodegeneration-related sample subsets (3 young: control, Ab1–42 and tau at 3 days; 3 aged:
control, Ab1–42 and tau at 20 days; 6 total: combined 3 young and 3 aged samples. See Table S3 for details).
doi:10.1371/journal.pone.0017762.g002
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a relatively stable and minimal NF variation is achieved across

samples in a particular assay.

Target gene expression normalized by different numbers
of reference genes

Normalization of RT-qPCR data has been performed most

frequently using either a single reference gene or 3 reference genes

as a proposed way to increase accuracy. However, we show here

that the optimal number of reference genes for RT-qPCR data

normalization may change from analysis to analysis. Arbitrary

selection of more or fewer reference genes may thus decrease the

accuracy of calculating target gene expression. For an example

study, here we measured the transcript variations of 7 target genes

(Table 1) in 9 aging-related samples using 1, 3 or 13 reference genes

for data normalization. The relative levels of Atg1, CathD and Rab5

expression show no significant differences when calculated using the

different numbers of reference genes (Table S4). However, InR

expression, when normalized by only 1 reference gene, exhibits a

significantly age-dependent increase (Fig. 4A). Normalization using

3 reference genes lowers the magnitude of relative expression level

but the trend of the age-dependent increase is still apparent. When

data are normalized by 13 reference genes, the optimal number

predicted for this sample group (Fig. 3A), the expression level in the

50-day samples is not significantly different from that in the 30-day

samples. After using optimal number of reference genes for data

normalization, the modified conclusion is that brain InR expression

in older flies is higher than in young flies but does not show

significantly age-dependent increase. Similar changes also occur in

the calculated relative expression levels of Hsp70 and GstD1 after

normalization by 1, 3 or 13 reference genes respectively (Fig. 4B and

4C). Note that all reference genes are selected on the basis of their

rank ordered expression stability (Fig. 2A). The relative expression

levels of these genes are even more divergent if calculated using

arbitrarily selected reference genes (for example, Act5C, data not

shown). These results indicate that appropriate calculation of NF

across samples determines both the magnitude of relative expression

levels and its statistical significance. Thus determination of the

optimal number of reference genes is important for accurate

normalization of RT-qPCR data especially when differences in

expression levels are subtle.

We show that stepwise inclusion of more reference genes across

3 aged neurodegeneration-related samples exhibit no apparent

NF variation (Fig. 3B, red line), suggesting that a single reference

Figure 3. Pairwise variation (Vn/n+1) of NF ratios across samples and the optimal number of reference genes. (A) The Vn/n+1 of 20
candidate reference genes calculated across different numbers of aging-related samples. (B) The Vn/n+1 of 15 candidate genes calculated across
different numbers of neurodegeneration-related samples. Stepwise inclusion of individual genes is based on their rank order of expression stability
using indicated sample subsets (Fig. 2). The data points were fit well with the second order polynomial curves. The arrows pointing the minimal
Vn/n+1 value indicate the optimal numbers of reference genes for indicated sample subsets.
doi:10.1371/journal.pone.0017762.g003
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gene is sufficient for data normalization across these samples. To

test if there is any significant difference in relative expression

normalized between single and multiple reference genes, we

normalized the relative expression of the 7 target genes by a single

reference gene (Gapdh2) or multiple reference genes (Gapdh2,

RpL13A and l(3)02640) based on their rank ordered expression

stability for 15 candidate reference genes. The results show no

obvious differences among 7 target genes in relative expression

levels using either 1 or 3 stable reference genes for normalization

(Table S5). Thus a single reference gene in this case is sufficient for

RT-qPCR data normalization, consistent with the relative

stability and low level of the Vn/n+1 curve starting from the initial

part (Fig. 3B, red line). Taken together, what and how many

reference genes are sufficient for RT-qPCR data normalization

varies on a case-by-case basis. Thus accurate data normalization

needs assessment of a panel of candidate reference genes for a

particular sample set.

Discussion

RT-qPCR quantification requires data normalization by

internal reference genes that are measured simultaneously along

with target genes to offset experimental confounding variations.

However, improper selection of reference genes will result in

inaccurate calculation of NF and consequently obscure actual

biological differences among samples. Here we evaluate the

expression stability of 20 candidate reference genes in 15 Drosophila

head cDNA samples associated with brain aging or Ab1–42/tau-

induced neurodegeneration. Although most of these candidates

are considered to be ‘‘typical’’ housekeeping genes and are widely

used for data normalization, they exhibit considerable variation in

expression stability across various sample sets. Pairwise analyses of

NF variation through stepwise inclusion of an increasing number

of reference genes reveals that the optimal number varies from 1 to

more than 10 for a particular sample set. Our results suggest that

Table 1. Candidate reference and target genes used in this study.

Drosophila gene Human homologue References

Symbol Name Locus ID

22 candidate reference genes

Gapdh2 Glyceraldehyde-3-phosphate dehydrogenase CG8893 GAPDH [4,7,13,14]

aTub84B Alpha tubulin CG1913 TUB [9,13,14,18]

RpL32 Ribosomal protein 49/L32 CG7939 RP49 [9,13,14]

RpL13A Ribosomal protein L13a CG1475 RPL13a [7,14,18]

Ef1a48D Elongation factor 1 alpha CG8280 EF1a [13]

eIF-1A Eukaryotic initiation factor 1A CG8053 EIF1AY [9]

Sdha Succinate dehydrogenase A CG17246 SDHA [4,7,14]

GstD1 Glutathione-S-transferase 1 CG10045 GST1 [14]

Cyp1 Peptidylprolyl isomerase F CG9916 PPIF

14-3-3e Tyrosine-3-monooxygenase CG31196 YWHAE [4,7,9]

exba CG2922 – [9]

Act5C Actin CG4027 ACTG1

Su(Tpl) elongation factor RNA polymerase II CG32217 ELL [9]

Faf Fas-associated factor CG10372 FAF2 [9]

CG13220 CG13220 – [9,13]

robl dynein, light chain, roadblock-type 2 CG10751 DYNLRB2 [9]

Rap2l Ras-associated protein 2-like CG3204 RAP2B

l(3)02640 hydroxymethylbilane synthase CG9165 HMBS [4,7,14,18]

RpII215 RNA polymerase II CG1554 RPII [4,18]

nrv2 Na+/K+ ATPase CG9261 ATP1B2

Elav Embryonic lethal abnormal vision CG4262 ELAVL2 [20,23]

Appl Beta amyloid protein precursor-like CG7727 App [19,24]

7 target genes

Atg1 Autophagy-specific gene 1 CG10967 ULK2

Rab5 Rab-protein 5 CG3664 RAB5A

Lamp1 lysosomal-associated membrane protein 1 CG3305 LAMP1

CathD Cathepsin D CG1548 CTSD

InR Insulin-like receptor CG18402 IGF1R

Ire-1 Inositol-requiring enzyme-1 CG4583 ERN1

Hsp70 Heat shock protein-70 CG31366* HSPA1

*There are multiple Hsp70 genes in the Drosophila genome. The primer set for this gene (Table S2) does not distinguish the RNA transcripts from different Hsp70 genes
including CG31366, CG18743, CG6489, CG31449, CG31359 and CG5834.
doi:10.1371/journal.pone.0017762.t001
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no particular gene exhibits constant expression stability across all

sample sets thus precluding selection of an all-purpose reference

gene for data normalization.

The expression stability of candidate reference genes is often

estimated using geNorm first developed by Vandesompele, et al in

their landmark paper where reference genes with M,1.5 were

suggested as appropriate [7]. This cut-off value has been widely

adopted as a criterion for selection of reference genes

[10,11,12,13,14,15]. Our results suggest that adoption of a fixed

cut-off M value may be arbitrary since M values change with the

composition not only of particular cDNA samples but also of

individual reference genes. The individual M values for a

particular gene panel are calculated using the same sample set

but different subsets of candidate genes due to stepwise exclusion

of one gene in each calculation cycle. Our data suggest that the

order of stepwise exclusion, rather than the absolute M value, is a

better index of the relative expression stability of individual

candidate genes within a gene panel. The actual M value is less

meaningful and basically incomparable through intra- and inter-

analyses. For example, aTub84B has a higher M value but its

expression is more stable than l(3)02640 in the 6 neurodegener-

ation-related samples (Fig. 2B, black line). In terms of the

underlying mathematics, the M value of l(3)02640 was calculated

using a gene panel containing 12 candidates and its value

(M = 0.263) is the highest among the genes in this panel. The

next calculation excluding l(3)02640 and using a gene panel with

the 11 remaining candidates results in aTub84B to have the next

highest M value (M = 0.274). Thus the M values of l(3)02640 and

aTub84B genes are not comparable to each other due to the

calculation using different gene panels (12 vs. 11 candidate genes).

In another example, the M value of GstD1 is 0.5 across the 9 aging-

related samples (Fig. 2A), obviously less than the arbitrary criterion

of 1.5. However, its expression at 50 days is 3 or more times higher

than the control samples at 10 days (Fig. 4C). Apparently GstD1 in

aging-related samples is not suitable for use as a valid reference

gene since normalization by this gene will obviously result in

considerable underestimation of target gene expression in the old

age samples.

Another important but underappreciated issue in RT-qPCR

quantification is the relationship between NF stability and the

number of reference genes used for NF calculation. Most previous

studies evaluated fewer than 10 candidate genes that appear to be

not sufficient to characterize the relationship between the NF and

the number of reference genes. Using 20 candidate reference

genes, we see a wide U-shaped relationship between NF stability

and the number of reference genes. Characterization of the NF

stability across samples is practically important to determine the

optimal number of reference genes for data normalization. In

previous studies, a cut-off of Vn/n+1,0.15 was suggested as an

appropriate selection criterion for estimating the optimal number

of reference genes; or practically 3 stable reference genes were

suggested to be sufficient for data normalization in most cases

[3,6,13]. These suggestions also appear arbitrary without proper

statistical verification. For example some analyses had never

achieved Vn/n+1,0.15 but they could obtain the lowest Vn/n+1

value [6]. Based on the relationship between NF and the number

of reference genes characterized here, we propose that the optimal

number of reference genes corresponds to the most stable NF

achievable with a particular panel of candidate reference genes

and a particular sample set.

In summary, 20 candidate genes were evaluated to determine

the optimal internal reference genes for RT-qPCR data

normalization using Drosophila head cDNA samples associated

with brain aging or neurodegeneration. The expression stability of

the candidate genes exhibits sample-specific variation. The

optimal number of reference genes for accurate data normaliza-

tion is determined by the stable and minimal NF variation

achievable in a particular panel of candidate genes and a

Figure 4. Relative expression of target genes normalized with different numbers of reference genes. (A–C) Target genes expressed in fly
heads at 30 or 50 days relative to 10 days. The relative expression levels were normalized by 1, 3 or 13 validated reference genes: Rap2l (1 reference
gene); 14-3-3e, Rap2l and eIF-1A (3 reference genes); 14-3-3e, Act5C, Appl, Cyp1, Elav, Rap2l, Robl, RpL13A, Sdha, Su(Tpl), aTub84B, eIF-1A and l(3)02640
(13 reference genes). The reference genes are selected based on the rank order of expression stability for the 20 candidate reference genes in the 9
aging-related samples (Fig. 2A, black line). Data are mean+SEM. *, P,0.05; **, P,0.01; ***, P,0.001. Two-tailed P values were calculated between
indicated column and its left adjacent column using Student’s t-test. (A) InR expression exhibits an age-dependent increase; however, normalization
with 1, 3 or 13 reference genes results in a sequential decrease in both the magnitude and statistical significance of expression differences across age
groups. (B) The age-dependent increased Hsp70 expression also shows minor decrease when normalized sequentially by 1, 3 or 13 reference genes.
(C) An age-dependent increase in relative expression of GstD1.
doi:10.1371/journal.pone.0017762.g004
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particular sample set. An improper selection of reference genes for

normalization of RT-qPCR data may cause false results. We

found that GstD1, Hsp70 and InR genes exhibit significantly

increased mRNA transcript levels with advancing age. Additional

examples appearing in our recent publication addressed the

practical application in laboratories of assay-specific selection of

internal reference genes and NF optimization for RT-qPCR data

analyses [16]. Taken together, RT-qPCR quantification requires

the simultaneous measurement of a panel of candidate reference

genes rather than few empirically-determined or pre-validated

reference genes and that robust data normalization needs to be

optimized for each particular assay.

Materials and Methods

Candidate genes
Candidate reference genes were selected from a total of 29

‘‘housekeeping’’ genes that are often used for PCR normalization

in other species [4,7,13,14,17,18] or were predicted to be stably

expressed in various Drosophila tissues on the basis of tissue-specific

mRNA microarray data [9]. Ten of these genes were not included

in this study due to their unsuitability as described (Table S1). An

additional 3 Drosophila genes (Elav, Appl and Nrv2) were also

selected because they are constitutively expressed in Drosophila

neurons and thought to be neuronal ‘‘housekeeping’’ genes

[19,20]. We evaluated a total of 22 candidates using RT-qPCR

tested in various Drosophila head cDNA samples. Two genes (Exba

and Faf) were excluded from further experimental and statistical

analyses because of lower PCR efficiencies (,95%). Twenty

candidate reference genes were included for further experiments

and statistical analyses (Table 1). We also studied 7 target genes

(Table 1) to determine if their expression levels are associated with

brain aging or neurodegeneration conditions.

Primer design and verification
The common sequences from genes with multiple mRNA

transcript variants were used for PCR primer design. Primers were

designed using Beacon Designer (Premier Biosoft International).

The primer sets with any secondary structures predicted to form

primer dimers were excluded. The PCR specificity for each primer

set was theoretically verified by Primer-Blast (http://www.ncbi.

nlm.nih.gov/tools/primer-blast/) using the Drosophila transcip-

tome. Some primer sets were designed to cross exon-intron

boundaries. The size of PCR amplicons were limited to 60–

250 bp. Additionally, all primer sets were verified to produce a

single symmetrical amplicon peak in melting curve analyses and

no primer-dimer peaks in no-template-control (NTC) reactions

(Fig. S1A–C). Agarose gel electrophoresis was used to experimen-

tally verify PCR specificity and also to rule out any potential

contamination of genomic DNA in cDNA samples (Fig. S1D).

PCR efficiency was calculated from 10-fold serial dilutions of

standard cDNA samples and only primer sets with PCR

efficiencies$95% were accepted (Table S2).

Fly head samples
Drosophila melanogaster were harvested within 24 hours after

eclosion and incubated at various conditions (Table S3) in fresh

food vials. Live flies were transferred to new food vials every 3

days. Aging-related head samples were from w1118 female flies

collected at 10 (Control), 30 (Mid-age) or 50 (Old-age) days after

eclosion to model normal neurological aging based on expected

lifespan [21]. Ten day old flies were treated with instant starvation,

oxidative conditions or heat shock to induce aging-related stressful

conditions. An additional 3 samples were incubated at 18uC (Low-

T), 25uC (Control) or 32uC (High-T) for 10 days to evaluate

temperature-sensitive variations associated with fly lifespan.

Neurodegeneration-related samples were from 3 (young samples)

or 20 (aged samples) day old female flies with or without

expression of neurodegeneration-associated human amyloid beta

42 (UAS-Ab1–42) or tau (UAS-tauR406W) whose expression was

controlled by a pan-neuronal Elav-Gal4 driver. Ab1–42 and

phosphorylated tau are aggregate-prone proteins associated with

Alzheimer’s disease [21,22]. Fly samples were snap frozen on dry

ice and stored at 280uC prior to RNA extraction. Three

biological replicates were used for each experimental condition.

RNA extraction and RT-qPCR
Total RNA was extracted from 30 fly heads using RNA STAT-

60 (Tel-Test), treated with DNase I (Ambion) to remove potential

genomic DNA contamination and purified using RNeasy Mini Kit

(Qiagen). The integrity of the representative RNA samples was

assessed using Agilent 2100 Bioanalyzer (Fig. S1E). Total RNA

concentration was measured in duplicate using NanoDrop ND-

1000 Spectrophotometer and the purity of the samples was

estimated by the OD ratios (A260/A280, ranging within 1.8–2.2).

cDNA was synthesized from 1 mg of DNA-free total RNA in a

20 ml reaction volume using RETROscript Kit (Ambion) and

random decamers as reverse transcription primers. cDNA samples

were diluted 10-fold for real-time PCR reactions. Gene-specific

transcription levels were determined in a 20 ml reaction volume in

duplicate using SYBR Green and an IQ5 real-time PCR machine

(Bio-Rad) following the manufacturer’s instructions. Standard

cDNA samples with 10-fold serial dilutions were used for PCR

efficiency calculations. Real-time PCR reactions of the standard,

test cDNA samples and no template controls (NTC) using the

same primer set were analyzed together in the same 96-deep well

plate (Bio-Rad) in order to minimize run-to-run variations and use

exactly the same threshold setting (user defined baseline subtracted

curve fit) for determination of the threshold cycle values (Ct).

Parallel samples were processed using the same batch of reagents

to minimize overall sample-to-sample variations.

Data analyses
After completing each real-time PCR run, outlier data points

were identified and excluded manually using IQ5 software (Bio-

Rad) based on obvious deviations in both the normal shape of

amplification curves and the Ct values of other repeated

observations (biological triplicates6PCR duplicates). Data analyses

were performed using a custom SAS macros to automatically

calculate the key variables including PCR efficiency (E) and

squared correlation coefficients (R2) of primer sets, expression

stability (M values) of candidate reference genes, pairwise variation

of NF ratios using different numbers of multiple reference genes

(Vn/n+1), normalized expression ratios of target genes and statistic

comparison using Student’s t-test. The SAS code for calculation of

M value and Vn/n+1 were developed primarily based on the

previous algorithm [7].

Supporting Information

Figure S1 Quality control of RT and real-time PCR
performance. (A) Representative melting curve for real-time

PCR products exhibits only one symmetrical peak. (B) An

asymmetric melting curve suggesting unspecific amplification.

These types of primer sets were not used for analyses. (C) Absence

of a melting peak in no-template-control (NTC) reactions

suggesting an absence of primer-dimers during real-time PCR

reaction. (D) Agarose gel electrophoresis to verify PCR specificity
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of the tested primer set and confirm the absence of potential

genomic DNA contamination in cDNA samples. The representa-

tive data were from the RpII215-specific primer set predicted to

generate a 308 bp fragment from genomic DNA and a 244 bp

fragment from cDNA. Lanes from left to right are: 1, 50 bp DNA

ladder (#N3236S, NEB); 2, a genomic DNA sample; 3–6,

representative cDNA samples used in our experiments; 7, a

negative control without adding M-MLV reverse transcriptase

during RT; 8, a cDNA sample without DNase 1 pre-treatment. (E)

The integrity of the representative RNA samples were assessed

using Agilent 2100 Bioanalyzer. The electropherogram shows 2

sharp rRNA peaks that migrate close to each other, representing a

typical Drosophila ribosomal RNA profile and suggesting excellent

integrity of the RNA sample.

(TIF)

Table S1 Classic reference genes unsuitable for brain
aging and neurodegeneration study in Drosophila*.

(DOC)

Table S2 Sequences and PCR efficiencies of primer
sets.

(DOC)

Table S3 Experimental details of fly head samples.
(DOC)

Table S4 Relative expression of target genes in aging-
related samples normalized by different subsets of
reference genes.
(DOC)

Table S5 Relative expression of target genes in neuro-
degeneration-related samples normalized by different
subsets of reference genes.
(DOC)
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