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Abstract
Mitochondrial DNA (mtDNA) and the non-recombining portion of the Y chromosome are
inherited matrilinealy and patrilinealy, respectively, and without recombination. Collectively they
are termed ‘lineage markers’. Lineage markers may be used in forensic testing of an item, such as
a hair from a crime scene, against a hypothesised source, or in relationship testing.

An estimate of the evidential weight of a match is usually provided by a count of the occurrence in
some database of the mtDNA or Y-STR haplotype under consideration. When the factual
statement of a count in the database is applied to a case, issues of relevance of the database and
sampling uncertainty may arise. In this paper, we re-examine the issues of sampling uncertainty,
the relevance of the database, and the combination of autosomal and lineage marker evidence. We
also review the recent developments by C.H. Brenner.
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Introduction
Lineage markers have particular forensic utility in cases of degraded samples, in remains
identification and in sexual assault cases. Attaching numerical strength to matching profiles
for mitochondrial or Y-chromosome haplotypes (broadly) follows the same principles as for
autosomal markers, but the lack of recombination within such haplotypes suggests some
modifications to avoid seriously understating the evidential power of a match. We first
present a population genetic theory approach to put lineage marker testing in the same
framework as autosomal marker testing, and then we review the recent interesting work of
Brenner [1] that addresses the common situation of a particular profile not appearing in a
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database. Our approach is based on frequencies of particular lineage markers whereas that of
Brenner assumes that the particular type contains no information when most types occur
only once in a database.

Autosomal Markers
Suppose an autosomal DNA profile of interest is homozygous AA at some locus. Population
genetic theory (e.g. [2]) distinguishes between three types of frequency of allele A. First,

there is the ‘sample frequency’ , i.e. the frequency of A in a sample of, say, n individuals

(e.g. a database). Note that  is a random variable with a value that depends upon the
sample. Second, there is the frequency of A in the population from which this sample has
been taken, , which may be termed the ‘actual frequency’ of A. Note that  also equals

the expected value of  taken over samples from that population. With random sampling of
individuals, and if the population in question is in Hardy-Weinberg equilibrium, the number
of A alleles in a sample of n genotypes has a binomial distribution with parameters 2n and

, so that the variance of  is

However, any population genetic theory aimed at sensible match probabilities must address
another level of sampling, namely that inherent to the underlying evolutionary process. The
actual allele frequency  is just one of many values that are possible for a given
evolutionary history, and the expected value of  taken over many different realizations of
this history is written as pA, usually referred to as ‘the allele frequency’ of A. It is the
probability that an allele drawn at random from a population, not yet specified in terms of
the actual allele frequency , is of type A, i.e. “probability” in this context has an

evolutionary connotation. Note that the total expectation of the sample frequency , taken
over samples and over populations with the same evolutionary history, also equals pA.

For a very wide class of evolutionary models, the variance of the actual allele frequency 
over populations is

which introduces parameter θ as a measure of normalized variance of allele frequencies over
populations. Note that θ is synonymous with Wright’s fixation index FST [3] which is
usually interpreted as a measure of similarity of alleles within populations, relative to the
similarity of alleles between populations. In fact, under most evolutionary scenarios, as
similarity increases within populations, so does the dissimilarity between populations. Two
special cases are noteworthy: θ = 1, when all alleles within a population are the same
because of a shared ancestry, but are different from alleles in other populations, and θ = 0,
when there is no excess similarity of alleles within populations due to shared ancestry.

If there is Hardy-Weinberg equilibrium within the population of interest, the probability that

a randomly drawn profile is AA equals  and this has an expected value over
populations of
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(1)

Still assuming Hardy-Weinberg equilibrium, the probability that two randomly and

independently drawn individuals in the same population of interest are both AA is , so
the probability that an unknown person has AA given that one instance of AA has been seen

in the population of interest is Pr(AA|AA) = Pr(AA,AA)/Pr(AA), and this equals . Thus,
the match probability is the same as the profile probability in this case.

This simple result breaks down, however, if there is population structure and if the relevant
subpopulation is either not known or has not been sampled. Thus, let us suppose that  is
the actual allele frequency in the relevant subpopulation, but that  has been estimated by a

sample allele frequency  that is from the whole population. The quantity θ now refers to
the variation in actual allele frequencies over subpopulations. Note that there is an analogous
quantity for the variation among populations but we will ignore this variation here. In other
words we ignore dependencies in terms of  between subpopulations.

Finding the expected value of  for structured populations is simplified under additional
assumptions about the evolutionary process, namely drift-mutation equilibrium and equal
mutation rates between alleles. One situation where the second assumption holds is the
‘infinite alleles’ model under which every mutation gives rise to a new allele, and this may
be a reasonable approximation for long mtDNA sequences or haplotypes comprising many
Y-STR markers. Under the above assumptions, and adding selective neutrality, Wright [3]
showed that the  values follow a Beta distribution over subpopulations, i.e.

(2)

This distribution has expected value pA and variance pA(1 – pA)θ. Moreover, Balding and
Nichols [4] showed that, in a structured population where pA refers to the whole population,
the Beta distribution assumption yields

This leads to the match probability result given by the National Research Council [5]:

(3)

The quantity in Equation 3 is greater than both the profile probability

 and the “product rule” value . In other words, variation of allele
frequencies over subpopulations implies that the population frequency pA, estimated by a

population-wide , cannot be used directly to calculate match probabilities for a particular
subpopulation.
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Since its introduction by Balding and Nichols in 1994, the match probability in Equation 3
has been extended to allow for inbreeding [6], mixtures [7] and relatedness [8]. It has been
of substantial benefit for the interpretation of matching autosomal profiles, and it was
endorsed by the US National Research Council [5]. For a single-contributor stain, for
example, when both the stain and the suspect have profile AA, two hypotheses of interest
may be

Hp: The suspect is the source of the stain.

Hd: The suspect is not the source of the stain.

and the likelihood ratio for Hp versus Hd might be simply

Matching with Lineage Markers
For an mtDNA or Y-chromosome haplotype of type A, the match and profile probabilities
for a specific subpopulation are both equal to , the profile frequency in that subpopulation.
If there was a sample available from that subpopulation, it would furnish an estimate of this
quantity although, as described in the following section, care is needed if the profile is not
present in the sample.

With population structure, match and profile probabilities are no longer the same and the

expected value of  is needed. There is no need to invoke the Beta distribution here since
Equation 1 already provides the match probability

(4)

This can be given a numerical value if reasonable estimates of pA (e.g. ) and θ are
available. Note that the match probability within a particular subpopulation is also greater
than the haplotype frequency in the whole population since θ + (1 – θ)pA > pA. Two
haplotypes are more likely to be the same when they are taken from the same subpopulation
than when they are taken randomly from the whole population.

Estimation of Haplotype Frequencies
Statistical Sampling Only

If a sample from the relevant subpopulation is available, the sample haplotype frequency 
is a reasonable estimate of the actual haplotype frequency  and therefore can be used to
estimate pA, leading to the match probability. If haplotype A is seen x times in a sample of n
haplotypes, . There has been a tendency in the literature arising from [9] to regard
this quantity as being normally distributed and to acknowledge sampling variation with a
100(1 – α)% confidence interval of the form
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and

For 95% confidence, α = 0.05 so that z(1 – α/2) = 1.96 and z(1 – α) = 1.645.

As acknowledged by the original authors [9], the actual sampling distribution is binomial

and this is approximately normal only for moderately large values of , say five or more.
An exact confidence interval based on the binomial distribution was described by Clopper
and Pearson [10]. An upper 100(1 – α)% one-sided confidence limit p0 is found by solving

(5)

If the sample does not contain any copies of A, then Equation 5 gives p0 = 1 – α1/n and, for a
95% confidence limit, this is approximately 3/n once n is 100 or more. These confidence
limits do not, however, address variation of  over subpopulations.

Statistical and Genetic Sampling
If there is population structure and Equation 4 is used for calculating the match probability,
it is still possible to account for the effect of sampling variation on the relevant expression

. Different samples will provide different values of  and the variation among
these values will decrease as the sample size increases. Use of Equation 4, however,
explicitly acknowledges variation among subpopulations and this variation, in turn, inflates

the variance of . If a sample of n haplotypes consists of nv haplotypes from the vth

subpopulation, the sample haplotype frequency  is a weighted average of the sample

frequencies  for each subpopulation, where the weights are the nv’s. The sample sizes nv

are usually not known but . As we are assuming the subpopulations are independent

(6)

The variance expression is derived in the Appendix. The term  is the
‘among subpopulation’ component of variance, and pA(1 – pA)(1 – θ)/n is the ‘within
subpopulation’ component.
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When θ = 0, Equation 6 reduces to the binomial variance pA(1 – pA)/n. The same result is
obtained if every haplotype is systematically sampled from a different subpopulation so that
the haplotypes are evolutionarily independent. There is no among subpopulation
contribution to the variance. At the opposite extreme, if all haplotypes were sampled from
the same subpopulation, they would all be dependent on each other and Equation 6 gives

, showing that there is a non-zero variance even for very
large sample sizes n. There are still among- and between-subpopulation contributions to the
variance. Only when θ = 1, and all alleles within a subpopulation are completely dependent,
does the within-subpopulation component of variance disappear.

The individual sample sizes nv are not known but they may reflect the composition of the
population. For a population in which there are s equally sized subpopulations, the variance
would be

If s is large enough so that θ/s can be ignored relative to (1 – θ)/n, then

We believe it helpful to accompany match probabilities or likelihood ratios by measures of
sampling variation because the latter reflect the effects of basing the former upon estimates
from samples of profiles. Two likelihood ratios of 1,000 may be viewed quite differently if
one had an estimated standard deviation of 1 and the other had an estimated standard
deviation of 100.

Bayesian Approach

An alternative framework is to suppose that the actual subpopulation frequency  is a
random variable with a prior distribution that is conveniently taken to be Beta. Although any
Beta distribution could be assumed here, including the uniform distribution as a special case,
there is population-genetic appeal in taking the distribution in Equation 2. This is combined
with the binomial sampling distribution to give a Beta posterior distribution when a sample
of size n contains x copies of A:

The expected value of this distribution is , a weighted

mean of pA and  with decreasing weight on the prior as the sample size increases. The
Bayesian analog of a confidence interval is the credible interval based on 100(1 – α)% of the
posterior distribution as opposed to 100(1 – α)% of the sampling distribution of an estimate.
Numerical values for the boundaries of these credible intervals can be calculated with a
program obtainable from the senior author of this paper.
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Estimating θ
For autosomal markers, it is usual [5] to assign a value in the range 0.01 to 0.05 to θ.
Because θ describes the normalized variance of allele frequencies over subpopulations, it is
necessary in a non-Bayesian framework to have data from at least two subpopulations in
order to estimate θ. Recall that if a sample was available from the relevant subpopulation,
the sample haplotype frequency from those data could be used directly for calculating match
probabilities without having to invoke θ. Otherwise, any estimation of θ would have to use
data from a set of samples from subpopulations that were considered relevant. The average
haplotype frequency over these samples could be used as an estimate of pA, along with θ
estimated from the between-subpopulation variation of the  values.

A classical estimator for θ was given by Weir and Cockerham [11] and this estimator will
return a value of zero if every haplotype appears only once in all samples combined. There
would be no evidence then of more haplotype similarity within than among samples, as is
required for θ to be greater than zero. Indeed, Budowle et al. [12,13] noticed that estimates
became smaller as more Y-STR markers were used and each haplotype became less frequent
in the data, although they did not encounter data where every haplotype was unique.

Ewens’ Sampling Theory
Ewens’ [14] approach, and that of Brenner [1] discussed below, do not focus on particular
lineage types, A, as has been the case so far. Ewens gave a treatment of allele frequency
distributions that required mutation-drift equilibrium and allelic exchangeability. These are
the same assumptions made earlier by Wright [3] but they go beyond those made by Weir
and Cockerham [11] who did not restrict the mutation model and did not assume
equilibrium. Weir and Cockerham worked only with the mean and variance of the
distribution of allele frequencies over populations whereas Wright’s and Ewens’
assumptions lead to the whole distribution. Ewens’ conclusions apply, for example, to the
infinite alleles model where drift and mutation are in balance. He showed that the number, k,
of distinct alleles (or haplotypes for that matter) in a sample is sufficient for estimating
parameter ψ, where 1/(1 + ψ) is the probability that two alleles (haplotypes) drawn randomly
from a population are the same. The latter probability is also a definition of θ, and for a
haploid population of size N with an infinite-alleles mutation rate of μ, ψ = 2Nμ so that θ =
1/(1 + 2Nμ). Note that θ decreases as the mutation rate increases, and that haplotype
mutation rates increase as the number of constituent markers increase.

A maximum likelihood estimate of ψ (or θ) is found by setting the observed value of k equal
to its expected value

Numerical methods are needed to solve this equation for θ. Note that the frequencies of
particular alleles are not used here. If every haplotype in a sample is unique, then k = n,
which provides an estimate of zero for θ corresponding to (infinitely) large mutation rates.

Brenner’s Approach
Brenner [1] addressed the issues by an approach that is reminiscent of, and refers to, Ewens’
work, although he does not specify an explicit genetic model. Even though Brenner has a
purely statistical approach, we discuss it here because of the parallels to the work of Ewens.
Instead of employing the sufficient statistic k, Brenner used k, the proportion of haplotypes
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seen only once in a sample of size (n – 1) augmented by the crime-scene haplotype. He
approximated the match probability between an innocent suspect and a previously unseen
trace haplotype as (1 – k)/n. In most cases, this will lead to a likelihood ratio of n/(1 – k)
rather than the n that would result if the match probability was set to 1/n, and for this reason
Brenner refers to 1/(1 – k) as the “inflation factor”.

If the trace haplotype had been seen (x–1) times in a database of size (n–1), Brenner
modifies the likelihood ratio to n/[x(1 – k)]. Note that, if all haplotypes are seen only once in
a database, then k = 1 and the match probability is zero. Note also that the same
quantification of evidential strength is applied to all types of a lineage marker.

Ewens has shown, and Brenner repeats, that the expected value of k is

although Ewens did not suggest using this equation to estimate ψ or θ.

Searches of Frequency Databases
Using Equation 4, the problem of deriving match probabilities essentially reduces to one of
estimating haplotype frequencies (in addition to θ). It is therefore helpful to compare some
of the “counting estimates” of pA that can be obtained from a database of (n–1) haplotypes
H1,H2,…,Hn−1 when information is also available on the haplotype HA of a suspect and HT
of some trace evidence. A generic estimator  of the population frequency of HA is the

sample frequency . An adapted estimator  adds the suspect’s type to the database, so
that the count of A is increased by one, and divides by n. Brenner added the trace haplotype,
rather than the suspect’s haplotype, to the database but the numerical results will be the
same when suspect and trace types match. If 1{X} takes the value of one when X is true and
the value zero otherwise, the generic and adapted estimates of the population frequency of A
can be written as

(The suspect’s type is the nth type in the augmented database.) The expected value of  is
just pA from standard statistical theory. Here “expected” means the expectation over all
possible databases. If attention is restricted to those databases that do not contain haplotypes
of type A, then the conditional expectation of  is zero, which is anti-conservative with
respect to the match probability. The adapted estimate , in contrast, has an expected value
of [(n – 1)pA/n + 1/n] over all samples and so is biased but conservative (on average). In
particular, when conditioning on databases that do not contain type A,  has an expected
value of 1/n.

Since (1 – k) is the proportion of haplotypes in a database that occur more than once,

Brenner’s [1] estimator  of pA may be written as
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Taking expectations over all augmented databases that contain only one copy of A gives the

following conditional expectation of :

where pi is the population frequency of the ith type different from A, and a is the number of
such types in the sample. Without an evolutionary model such as that described by Wright

[3] and Ewens [14], it is difficult to determine just what is being estimated by . Moreover,

the conditional expectation of  does not depend only on pA itself but is a complex function
of all other sample haplotype frequencies. Therefore, it is difficult to judge for a particular

database if, and to what extent,  is either conservative or anti-conservative. We emphasize
that both scenarios are possible, as Brenner [1] demonstrated himself by providing an
example for each of them. Finally, Brenner’s estimator implies that

is reasonably estimated by 1 – k. In other words, the probability that a singleton (i.e. A) from
the original database would occur more than once in a second realization of the same
database (i.e. [1 – (1 – pA)n−1]) is assumed to be equal to the proportion of non-singletons in
the original database (i.e. 1 – k). Why, and under which genetic model, such a link should
exist is not detailed by Brenner [1].

Combination of Lineage and Autosomal Markers
Recently, Amorim [15] raised the issue whether likelihood ratios calculated from lineage
and autosomal markers may be multiplied in order to obtain a single measure of the genetic
evidence in a given case. Amorim challenged the practice of LR multiplication mainly on
the grounds that lineage markers are not individual-specific but are instead shared by the
suspect’s whole lineage. He argued that instead of

Hp: The suspect is the source of the stain.

Hd: The suspect is not the source of the stain.

the prosecution and defense hypotheses should read

: The suspect or somebody from their lineage is the source of the stain.

: Neither the suspect nor anybody from their lineage is the source of the stain.

when lineage markers are employed for genetic analysis. Due to these imponderabilities,
Amorim [15] concluded that “the combination of likelihood ratios from the two sources of
data should be avoided.”
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Unless the circumstances of an individual case suggest differently, however, there seems to
be neither a logical nor a legal basis for changing the prosecution hypothesis from Hp to ,
i.e. for incriminating individuals for which there is no prior evidence of being the stain
donor. Moreover, if the possibility of mutation is neglected, then the likelihoods of the two
hypotheses Hp and  would be identical for lineage markers anyway. Furthermore, the way
match probabilities are usually translated into likelihoods of either Hd or  implies that the
formulations given above are slightly incorrect. In both instances, the match probability
refers to a situation where an “unknown person” has a particular genotype, given that one
instance of this genotype has been seen in the population of interest. This means that the two
defense hypotheses, Hd and , are also formally the same. Note that, under this view, the
likelihood ratio is also the same for all members of the suspect’s lineage.

Amorim’s criticism was partly motivated by his perception of a common practice of
sampling lineages rather than sampling at random. Under such regimes, people with the
same surname would be deliberately avoided when constructing a frequency database
which, in turn, would lead to biased haplotype frequency estimates. However, while lineage-
based sampling may have been exercised in the early days of some genetic databases, to our
knowledge, this is not (or no longer) the case for major projects such as, for example,
YHRD (www.yhrd.org) or EMPOP (empop.org). This notwithstanding, it may be worth
reiterating that databases underlying match probabilities need to be representative of the
population(s) of interest. Moreover, such databases should also be large enough to reveal
whether previously proposed adjustments of LR products for dependencies between, and
different levels of coancestry of, lineage and autosomal markers [16] are valid.

Discussion
We have considered the interpretation of both autosomal and lineage markers from a
statistical genetic viewpoint. We have been careful to distinguish between three frequencies
for a genetic profile: the value in a sample, the value in a subpopulation of relevance and the
value over all subpopulations. We have adopted the established scientific meaning of
“probability” as being a theoretical construct obeying the Laws of Probability. The
probability of an allele drawn randomly from a population being of a certain type can be
estimated by the frequency of that type in a sample and we do not understand Brenner’s
discussion of frequencies and probabilities [1], especially when he states that “Probability,
by contrast, depends by definition only on the available data.”

We believe there is merit in focusing on the type, or name [1], of a lineage marker although
we acknowledge that there is certain equivalence among all types that are not seen in a
database. It appears useful to us to attach different evidential weights to lineage marker
types that occur different numbers of times in a database. We also believe it to be useful to
compare sample frequencies in databases from different populations or ethnicities. Given
our consideration of sample profile frequencies, it is natural for us to treat the variation
inherent in these sample values and we see merit both in confidence intervals and in
Bayesian credible intervals.

Brenner’s match probability, like those emerging from the counting estimates of pA
discussed above, does not refer to a specific profile type. Instead, it treats types as “arbitrary
names” [1]. Particularly in the case of short tandem repeat (STR) markers, however, such
ignorance of type implies a substantial loss of information because the evolutionary
relationship between STR haplotypes is encrypted in their constituent repeat lengths. A
model to exploit type information in Bayesian fashion has been introduced in [17], and has
recently been validated and improved [18]. Whether or not type-based frequency estimation
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warrants further investigation is a matter of debate, but it is difficult to perceive any useful
alternative to the counting method that ignores the likely evolutionary relationship of a
haplotype of interest and the remainder of a database. Brenner’s approach [1], although
intuitively appealing, seems not to be a solution to this dilemma. Moreover, as we have
shown, Brenner’s approach [1] also suffers from potential anti-conservativeness in the way
it inherently estimates haplotype frequencies. It is therefore at odds with the requirement
that forensic match probabilities should not lead to over-statements of the strength of the
evidence.

Brenner’s match probabilities and likelihood ratios seem most applicable to profiles not seen
in a database. It would be interesting to compare the utility of his use of k, the proportion of
singletons in a database, with Ewens’ use of k, the number of different types in a database.
The other comparison that may be fruitful is the upper credible interval based on the use of a
Beta prior for profile probability and Brenner’s “inflated” probability (k – 1)/n. In any case,
we would not apply the inflation factor to the upper confidence limit for a profile not seen in
a database because that seems to confound approaches.

In our view, the problem addressed by Amorim [15] on combining autosomal and lineage
markers is mainly one of communication, not calculation. As a (usually unrequested) by-
product, a small match probability for autosomal markers excludes the suspect’s parents,
siblings and offspring from being the source of the stain as well. Courts need to be informed
that this is not necessarily the case with lineage markers and, therefore, with likelihood ratio
products combining match probabilities for autosomal and lineage markers.
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Appendix
The derivation of the variance of sample allele frequencies from a structured population can
be based on indicator variables xvi for the ith allele sampled from the vth subpopulation.
Each x = 1 if the corresponding allele is of type A and x = 0 if the allele is not of type A.
Then, under the model in this paper, taking expectations over samples and subpopulations:

The sample allele frequency can be expressed as the average of the x’s for all alleles in the
sample:

and, taking expectations,
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