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Abstract
Although hemagglutination serves the immunohematology reference laboratory well, when used
alone, it has limited capability to resolve complex problems. This overview discusses how
molecular approaches can be used in the immunohematology reference laboratory. In order to
apply molecular approaches to immunohematology, knowledge of genes, DNA-based methods,
and the molecular bases of blood groups are required. When applied correctly, DNA-based
methods can predict blood groups to resolve ABO/Rh discrepancies, identify variant alleles, and
screen donors for antigen-negative units. DNA-based testing in immunohematology is a valuable
tool used to resolve blood group incompatibilities and to support patients in their transfusion
needs.
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1. Introduction
Immunohematology reference laboratories arose from a need for a more thorough
examination of the serological nature of a positive antibody screen, incompatible
crossmatch, or unusual antigen reactivity. The discovery of blood group antigens has
occurred on a relatively continual basis from the 1940s to the present day, with nearly 300
blood group antigens characterized to date [1]. Historically, resolution of problems in the
immunohematology reference laboratory has depended on hemagglutination. While
hemagglutination remains the gold standard method, DNA-based methods are now being
applied to aid in solving these problems [2–5].

Blood group antigens are expressed on the outside surface of the red blood cell (RBC)
membrane. They are inherited structural moieties located on proteins, glycoproteins, or
glycolipids and are encoded by various alleles [6]. The consequence of the vast variation of
blood groups is observed through an immune response that can be induced when RBCs
expressing an antigen are introduced into a person whose RBCs lack the ‘foreign’ antigen.
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The antibodies that emerge from this immune response, can cause transfusion reactions,
fetal and neonatal anemia, and in some instances autoimmune hemolytic anemia.

Hemagglutination, the original method to test for blood group antigens and antibodies, is
simple, inexpensive, and when done correctly, serves the transfusion medicine well in the
majority of clinical scenarios. However, hemagglutination is a subjective test and has
limitations: it does not reliably predict a fetus at risk of hemolytic disease of the fetus and
newborn (HDFN), it is difficult to phenotype RBCs from a recently transfused patient or
when RBCs are coated with IgG, and has poor ability to predict zygosity in Rh-positive
individuals. Technical drawbacks include the need for multiple methodologies for optimal
reactivity by a vast array of antisera; limited automated high-throughput capability, and a
paucity of potent reagents for all clinically relevant antibodies. In fact, over the last few
years, source material has become expensive and its availability dwindling. The
understanding of the molecular bases associated with blood group antigens and phenotypes
has enabled the field to use this knowledge to screen donors for alleles that encode blood
group antigens conserves expensive and rare antisera for confirmation by hemagglutination
of predicted antigen-negativity. The purpose of this overview is to discuss how molecular
approaches can be used in the immunohematology reference laboratory.

2. DNA analysis of blood group genes
The genes encoding the 30 blood group systems have been cloned and sequenced, and the
molecular bases of most blood group antigens and phenotypes have been determined [7–9].
Analysis of DNA involves polymerase chain reaction (PCR) amplification of the target
sequence, typically using primers targeting the intron regions that flank one or more exons,
followed by analyses such as restriction fragment length polymorphism (RFLP) or direct
dideoxy-nucleotide sequencing. In addition, PCR can be a sequence-specific (SS)-PCR, or
performed in real-time using fluorescent probes. DNA array technology is currently semi-
automated and has the potential to be fully automated. DNA array technology has the added
advantage of computerized interpretation and documentation of results, and direct
downloading to a database. Molecular testing using DNA arrays, makes it feasible to
contemplate mass screening donors to increase inventories of antigen-negative RBC
components, and precisely matching the antigen-negative status of a transfusion recipient to
that of a donor [4;10–12]. DNA-based methods in the immunohematology reference
laboratory have tremendous value; however, when performed alone, can have limitations
(see later). Molecular immunohematology results should be evaluated in the context of
available serological information.

3. Databases for genes encoding RBC blood groups
The Human Genome Project resulted in the generation of an enormous amount of genetic
data. To use this genetic information effectively in the immunohematology reference
laboratory, an understanding of the genes and alleles that encode blood group antigens is
desirable. In some instances, the reference laboratory may need to develop a DNA-based
assay to resolve a unique serological problem or to characterize an allele encoding a new
antigen. The clinical laboratory scientist should be familiar with and be able to peruse the
repositories that house the genetic information for blood group antigens. The National
Center for Biotechnology Information (NCBI) is an excellent resource containing
collections of databases and computational tools for public use. NCBI provides access to
GenBank, the National Institute of Health (NIH) database that houses the collection of
nucleic acid sequences [13]. NCBI is part of a consortium that includes the DNA DataBank
of Japan (DDBJ) and the European Molecular Biology Laboratory (EMBL). These
institutions work together to maintain and exchange all public DNA information submitted
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world-wide. Entrez Gene is the NCBI online tool used to search the GenBank database and
also serves as a link to chromosome maps, citation, and expression data among other more
high-level data and tools [14]. The best single reference for information on all blood group
antigens is the Blood Group Antigen Gene Mutation Database (dbRBC), whose custodian is
NCBI [15]. Other useful electronic databases include: RefSeq, which contains a collection
of reference sequences, with RefSeqGene entries representing the consensus sequences of
genes, transcripts and proteins. The Online Medelian Inheritance in Man (OMIM) database
provides an overview of genes encoding blood group systems, and the Single Nucleotide
Polymorphism database (dbSNP) provides a catalog DNA variations of genes including
those nucleotide changes not associated necessarily with blood group antigens. In addition,
clinical scientists should be familiar with restriction enzyme databases, and be able to use
electronic tools to align similar sequences, devise PCR amplimers, and develop and validate
in-house assays. Alternatively, available DNA array platforms can be used to analyze
nucleotides that the manufacturer determined are of relevance. Table 1 summarizes genes
for some of the clinically relevant blood group system antigens, accession numbers, selected
blood group antigens, and the corresponding nucleotide polymorphisms.

4. Applications of DNA-Based Assays in the Reference Laboratory
The immunohematology reference laboratory that relies on serology alone is limited in its
capability to resolve complex transfusion associated incompatibilities. Applied to both the
blood donor and the transfusion recipient, DNA-based analyses provide important
information that serology alone cannot provide. Aside from the inheritance of an altered or
non-functional (silenced) gene, DNA analyses are a valuable adjunct to hemagglutination
and can increase the safety of blood transfusion. The clinical applications of molecular
analyses in immunohematology are summarized in Table 2.

To apply molecular approaches to clinical situations, several areas of knowledge are needed.
Namely, a knowledge of molecular biology, gene structure and the cellular processes from
gene to gene product, the molecular bases of blood groups, hemagglutination techniques,
and factors that may affect interpretation of a genotype (e.g., a natural chimera). Laboratory
supervisors will be required to understand regulatory compliance (cGLP, IRB, FDA), as
well as an ability to correlate DNA and serological results to the clinical problems being
addressed.

4.1. Fetal Blood Group DNA Testing
Serological analyses, including titers, have limited sensitivity to predict severity of HDFN,
especially for anti-K [16;17]. Fetal DNA blood group typing to predict an expressed antigen
can be of value in assessing risk early in pregnancy and to identify the fetus who is not at
risk of HDFN (i.e., predicted to be antigen-negative). In the latter case, the mother need not
be aggressively monitored and potentially can return to her primary care physician rather
than be followed at a high risk clinic. Sources of fetal DNA include amniocytes (in amniotic
fluid or cultured) and maternal plasma [18;19].

DNA-based typing should be considered when a mother’s serum contains an IgG
alloantibody that has been associated with HDFN, and when the father’s antigen status for
the corresponding antigen is heterozygous, indeterminable, or he is not available for testing.
The decision to perform amniocentesis should balance the potential for disease and the risks
associated with this invasive procedure. If it were not for certain patient restrictions, the
detection of fetal DNA in maternal plasma for all antigens implicated in HDFN could
replace amniocentesis for fetal blood group testing [20].
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In the prenatal setting, the approach to DNA typing should err on the side of caution. Thus,
the strategy should be to detect a gene even if the product is not expressed on the RBC
membrane, rather than fail to detect a gene, and should include the detection of common
silenced alleles. Results should be evaluated for possible contamination by maternal DNA.
For example, when testing for fetal DNA in maternal plasma, an underlying maternal RHD
(weak or partial D) can be suspected by the strong intensity (amplification) of the PCR
amplicons. In addition, DNA obtained from maternal plasma can be evaluated for a gene
absent in the mother (e.g., Y chromosome), or for non-maternal short tandem repeat
segments to establish that fetal DNA is present especially in light of a negative result [21].

Since the occurrence of alleles varies substantially in different populations, it can be helpful
to know the ethnicity of the parents. An important part of DNA testing to predict the blood
group of a fetus is to obtain an appropriate history to ascertain whether the mother has
undergone medical procedures such as artificial insemination, in vitro fertilization, or
whether she is a surrogate mother. A serological work-up and testing maternal DNA should
be performed to appropriately evaluate the fetal blood group DNA test result.

The RHD type is a prime target because anti-D is often clinically significant (reviewed in
Avent and Reid [22]). DNA analysis for the prediction of a paternally-derived fetal D
antigen is based on detecting the presence or absence of portions of RHD. In Europeans, the
molecular basis of the D-negative phenotype is usually associated with deletion of the entire
RHD, but several other molecular bases have been described [23;24]. One tenth of D-
negative Asians have an intact but inactive RHD and as many as 30% of Asians have the Del
phenotype [25–30]. About a quarter of D-negative African Americans have an RHD
pseudogene (RHDΨ) [31] and many others have a hybrid RHD-CE-D gene (e.g., the r’S

phenotype) [32], neither of which encode the D antigen. To predict the RhD antigen type by
DNA analysis requires probing for at least two regions RHD [33].

The use of sequence-specific (SS)-PCR requires special consideration when working with
DNA obtained directly from amniotic fluid, because these assays include an internal control
to ensure that DNA was added to the reagent mix. Because amniotic fluid is mainly dead
cells, the DNA is degraded and therefore, the amplified product should be relatively short
and the internal control product should be larger than that of the test allele. This rule ensures
that a negative test result is truly negative. If the internal control is amplified, then the blood
group allele of interest would have been amplified if it was present.

When performing fetal blood group genotyping in the prenatal setting, it is advisable to
determine the RHD status of the fetus, in addition to the blood group allele of interest. In so
doing, the RHD positive fetus does not require Rh-negative blood for intrauterine
transfusions. This is especially true if the mother has anti-c and fetal DNA is being typed for
RHCE*c as R1R1 blood is far more common than r’r’ blood.

4.2. Value of DNA Typing of Blood Group Antigens for Patients
When a patient receives transfusions, the presence of donor RBCs in the patient’s peripheral
blood makes RBC phenotyping unreliable and presents a major problem to the reference
laboratory. The historical practice of “best guessing” a patient’s antigen type based on the
strength of hemagglutination, the number of RBC components transfused, the length of time
since transfusion, the estimated blood volume of the patient, and the prevalence of the
antigen in question is more often inaccurate. To overcome this problem, PCR-based assays
using DNA isolated from WBCs, buccal smear, or even urine sediment can be used to
predict the antigen type of a patient [34–36]. Thus, reference laboratories can abandon
tedious and largely inaccurate methods of separating recipient RBCs from a post-transfusion
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blood sample and use DNA to predict the patient’s phenotype. In patients with SCD, the
techniques of hypertonic wash technique is a useful tool [37].

DNA methods are valuable to predict the type of a patient with warm autoimmune
hemolytic anemia (WAIHA) when direct agglutinating antibodies, or murine monoclonal
antibodies are not available, or if the antigen is sensitive to chemical treatment (acid
treatment to remove the IgG inactivates Kell blood group system antigens [38]). DNA-based
assays are also useful as tools to distinguish alloantibodies from autoantibodies and to
identify the molecular basis of unusual serological results.

However, care must be taken when using molecular methods in antibody investigations. One
must consider that the serological problem may involve the inheritance of a null allele, an
autoantibody with a particular specificity masking an autologous antigen [39], or a new
variant. Knowing the patient’s ethnicity, their parental and sibling phenotypes, and having a
good understanding of which blood group systems express variants, can provide clues to the
interpretation of molecular results or suggest further investigation like gene sequencing. As
genomic DNA contains intervening sequences of nucleotides, changes in which can affect
splicing, consideration should be given as to the value of preparing cDNA from mRNA in
addition to genomic DNA.

In summary, when recommendations for clinical practice are based on DNA-based analyses,
it is important to remember that, in rare situations, a genotype determination will not
correlate with antigen expression on the RBC [40]. When feasible, the appropriate assays to
detect nucleotide changes that alter the predicted phenotype should be included in
algorithms for DNA-based testing; e.g., FY GATA box and the Fyx associated
polymorphism at nt265 with FY testing [41;42], the presence of non-functional African and
Asian RHD genes with RHD typing [29;31], exon 5 analysis with GYPBS typing [43], and
silencing alleles in the Kidd system [44].

4.3. Value of DNA Typing for Patients with Sickle Cell Disease (SCD)
It is clear from the Stroke Prevention Trial II (STOP II) that to prevent strokes, SCD patients
benefit from continuous transfusions [45;46]. When this study was aborted prematurely, the
NHLBI issued an alert to advise physicians who treat children with SCD that interruption of
transfusions for primary stroke prevention is not recommended. However, with increased
transfusion comes the increased incidence of blood group alloimmunization: incidence rates
in SCD are approximately 20% or above, compared to 5% in other transfusion-dependent
patient populations [47–51]. Patients with SCD often produce multiple blood group
alloantibodies, which makes the provision of antigen-negative blood difficult. Because
screening a large number of donors for minor antigens by hemagglutination is labor-
intensive for testing and data entry, and the supply of typing grade reagents may be limited
or unavailable, we have been limited in ability to supply antigen-negative blood. To provide
appropriate transfusion support, there is a need to increase inventories of antigen-negative
components to reduce the risk of transfusion reactions and prevent alloimmunization,
especially in patients with SCD.

In order to provide antigen-negative blood products to patients with SCD of the type
commonly needed [C–, E–, K–, Fy(a–), Jk(b–)], blood components from African Americans
are screened because this phenotype is more prevalent than among Caucasians. However,
RBCs of up to 20% of African Americans express immunogenic antigens (VS, V, Goa,
DAK, Jsa), which are not present on RBCs from Caucasians and this has resulted in a high
proportion of patients who have antibodies to these antigens. Thus, antigen-negative blood
orders now often require RBC components that are VS–, V–, Go(a–), DAK–, or Js(a–)
Providing RBC products for these patients is particularly difficult because these antigens are
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not on antibody screening RBCs, the corresponding antibodies are not available to screen
donors, and the crossmatch is not always reliable for their detection. DNA-based assays
provide a tool to mass screen donors, thereby increasing the antigen-negative inventory for a
number of blood group systems, thereby improving patient care.

4.4. Screening Donors for Blood Group Antigens
DNA-based methods, especially DNA arrays, can be used to predict the phenotype of donors
to increase inventories of antigen-negative blood components and of donor blood used for
antibody identification reagent panels [52]. This is particularly useful when antibodies are
not available (e.g., anti-VS/V, -Doa, -Dob, -Jsa) or are weakly reactive (e.g., Fyb in Fyx, and
Kna/Knb to aid in antibody identification).

With donor typing, the presence of a grossly normal gene whose product is not expressed on
the RBC surface would lead to the donor being falsely thought to be antigen-positive, and
although this would mean loss of an antigen-negative donor, it would not jeopardize the
safety of blood transfusion. As automated procedures accommodate larger numbers of
alleles with faster throughput at lower cost, typing of blood donors by DNA-based methods
is becoming more widespread. Several molecular typing platforms have been published for
use as a screening tool to identify antigen-negative donors [53–56]. Antigens predicted to be
absent should be confirmed by hemagglutination, using the appropriate antibody or
crossmatch. In this manner, precious antibodies and expensive antisera are conserved for the
confirmation of DNA typing interpretations.

DNA array technology simultaneously performs multiple assays on one sample; thereby
providing the ability to predict antigen types for large number of donor samples with very
rapid throughput. Results are analyzed and interpreted by computer, and the data can be
used to create a useful repository of possible antigen-negative blood. Coupled with
confirmation of the lack of antigen expression with available antisera, phenotypic
discrepancies and human error should be reduced. The cost of DNA arrays is less than that
for comparable phenotyping methods and will depend on market influences and whether
manufacturers can develop FDA-approved kits. Laboratories that chose to apply DNA array
technology to blood group antigens should be aware of the added expense of investigating
any discrepancies. However, the biggest advantage is that high-throughput DNA arrays have
the potential to dramatically increase inventories of antigen-negative blood.

If antigen-negative inventories were large enough to meet demand, the following uses of
antigen-matched blood could be contemplated:

• To match the antigen profiles of chronically transfused patients with SCD,
especially those who have made an antibody to at least one blood group antigen

• To match unusual Rh phenotypes especially in African American recipients (e
variants, e.g., hrS–, hrB–, and D variants, e.g., DIIIa, Del)

• To match patients with multiple antibodies or with antibodies for which there is no
antiserum (e.g., V/VS, Goa, DAK, Jsa, Doa, Dob)

• To transfuse patients with antibodies to high prevalence antigens

• To transfuse antigen-matched blood to patients with WAIHA to eliminate periodic
labor-intensive procedures that are required to ensure that there are no underlying
clinically significant antibodies
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4.5. Testing for Do Antigens
RBC typing for Doa, Dob, Hy and Joa antigens of the Dombrock blood group system is
notoriously difficult because the corresponding antibodies, although clinically significant,
are often weakly reactive, available only in small volume, and present in sera containing
other alloantibodies. DNA-based assays to type patients and donors for DO*A, DO*B,
DO*B.HY and DO*A.JO are now frequently used and provide the reference laboratory with
a larger inventory of Do(a–), Do(b–), Hy– and Jo(a–) donors both for transfusion and for red
cell reagents. Due to the dearth of appropriate antiserum, testing for polymorphisms in the
Dombrock blood group system by DNA-based methods surpasses hemagglutination for
antigen typing [57].

4.6. DNA Analyses for ABO and RH Discrepancies
In the reference laboratory, DNA analyses can be used to resolve ABO discrepancies and to
distinguish an acquired phenotype from an inherited one without having to perform
laborious family studies. With well over 100 alleles encoding A and B antigens, DNA-based
analysis is complex; however, molecular methods can be useful to resolve ABO forward and
back typing discrepancies. The DNA analysis can identify donors with weakly expressed
ABO variants, thus resolving what was considered in the past an FDA reportable error.

DNA analyses can be valuable for the prediction of Rh antigens when suitable panels of
monoclonal antibodies are not readily available, or the antibodies are not available in the
needed strength or volume. DNA assays also may be useful to define variants, predict the
expression of antigens (e.g., V and VS) and to precisely match the D and e antigen status of
a donor to a recipient, especially those with SCD. Moreover, DNA-based methods are useful
in solving D discrepancies and predicting D antigen epitopes expressed on the Rhce
polypeptide [58–60].

4.7. DNA Typing for High Prevalence Antigens
Testing DNA to obtain Lu(b–), Yt(a–), Sc1–, LW–, and Co(a–) is the desirable alternative to
hemagglutination because antibodies to these high prevalent antigens are inconsistently
available. However, the availability of anti-k, -Kpb, -Jsa, -Fy3, and -Jk3 often makes
hemagglutination the method of choice to type for these antigens. As addition of appropriate
nucleotide changes to high-throughput a DNA array adds little incremental cost, all of the
above antigens could be screened at the DNA level using this platform, with confirmation
using hemagglutination on the few donors with the nucleotide change associated with high
prevalence antigen-negativity. Detection of Vel–, Lan–, At(a–), or Jr(a–) donors is restricted
to hemagglutination because the molecular bases of these antigen are unknown. Detection of
null phenotypes such as Rhnull, K0, Gy(a–), Ge–, or McLeod is complex due to the diverse
molecular bases associated with these phenotypes [15].

4.8. Other Applications of DNA-Based Testing
Other applications of molecular testing in the immunohematology reference laboratory
include expression of antigens in heterologous systems by using mRNA in transfection
studies to potentially detect and identify blood group antibodies in a single, objective,
automated assay [61], to explore expression of new alleles or biochemical pathways required
for expression [62;63], to produce soluble recombinant forms of an antigen for use in
inhibiting an antibody [64], and to use as immunogens for the production of monoclonal
antibodies [65;66].
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5. Limitations of DNA analyses
Although DNA-based testing for the prediction of blood groups has great value there are
several limitations that preclude this methodology from being the sole method by which
clinical decisions should be made. There are several reasons for this and some of the
limitations of DNA testing are listed in Table 3.

Also the DNA-based analyses have technical, medical, and genetic pitfalls. Medical pitfalls
include recent transfusions, stem cell transplantation, and natural chimerism [36;67;68]. In
these scenarios, results of testing DNA may not agree with hemagglutination results. Stem
cell transplantation and natural chimerism cause confounding results especially in methods
using allele discrimination and because results of testing DNA from somatic cells can differ
from results of testing DNA from WBCs. Thus, when using DNA testing, it is important to
obtain an accurate medical history. There are many genetic events that cause apparent
discrepant results between hemagglutination and DNA test results; the genotype is not the
phenotype. These limitations should be documented in the appropriate section of the
laboratory’s quality plan and/or standard operating procedures, and to follow defined
algorithms for the use of these procedures.

The majority of DNA-based assays target specific nucleotide(s) and will detect an apparent
grossly normal allele, which can be silenced by a nucleotide elsewhere in the gene. Thus,
antigens are not expressed on RBCs, and the interpretation can lead to a donor being falsely
identified as antigen-positive. This would mean that a valuable antigen-negative (e.g.,
system null) donor would be lost to the inventory, but would not jeopardize the safety of a
patient receiving blood transfusion. In a patient, a false positive interpretation has greater
significance. For example, RBCs from a patient with a silenced KEL2 allele in trans to a
KEL1 allele would be predicted to be K+k+ and she/he could make anti-k. Furthermore,
homozygosity for a silenced allele will result in a blood group system null and, thus the
patient could make antibody to the protein absent from his/her RBCs. Confirmation by
hemagglutination of predicted antigen-negativity is recommended using a reagent antibody
if applicable (ie. for donors), and/or by cross-matching using a method optimal for detection
of antibody/antigen incompatibility.

In some blood group systems, a large number of alleles encode one phenotype (e.g., ABO,
Rh, and the null phenotypes in many blood group systems), some alleles have large
deletions (e.g., Ge–) or are hybrid genes (e.g., in the Rh and MNS systems) (see dbRBC
database). Additionally, there is a high probability that not all alleles in all ethnic
populations are known; this was recently illustrated in the Dombrock blood group system
[69]. Thus, analyses of the molecular bases associated with many antigens have been
restricted to a relatively small number of people with known antigen profiles. This
information is being applied to DNA typing with the assumption that such analysis will
correlate with RBC antigen typing in all populations. A much larger number of people from
a variety of ethnic backgrounds need to be analyzed in order to establish more firmly the
correlation between genotype and the blood group phenotype. Until such data is available,
caution should be exercised when recommending clinical practice based on DNA typing for
blood group antigens.

6. Consent for the Use of DNA
Molecular testing applied to immunohematology is generally not considered to be
genotyping or genetic testing, but simply represents antigen typing using a different
methodology. As the DNA testing is not used to identify or diagnose a genetic disease, and
if results will not be published, informed consent is not required; however, it would be wise
to check local laws in this regard. The interpretations do not differ from those that can be
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presently accomplished by hemagglutination. Consideration of Institutional Review Board
(IRB) depends on whether the samples are being tested for clinical purposes or research,
whether the samples already exist or are collected specifically for a study, whether personal
identification is unlinked or linked, and whether there is any risk to the human subject (in
the context of the Helsinki declaration). No IRB approval is needed if a sample is tested only
for patient care. However, informed consent from the patient should be obtained if results
are to be published as an abstract or article.

7. Final remarks
Repositories of serologically-defined variants contributed to the rapid rate with which the
genetic diversity of blood group genes was determined. Initially, the molecular information
associated with a variant was obtained from only a small number of samples and the
information was applied to molecular techniques in the clinical laboratory with the hope that
the results would correlate with RBC antigen typing. As more information was obtained, it
became apparent that multiple molecular changes result in genotype-phenotype
discrepancies, and that more than one genetic event can give rise to the same phenotype.
This is especially true for null phenotypes, e.g., Rh, Kell, Kidd, and Kx blood group systems
and the p phenotype (see dbRBC database).

The analyses of multiple parts of a gene has made it possible to predict some antigen types,
e.g., the FY GATA and FY nt265 with FY*A/FY*B typing, and the identification of
additional nucleotide targets for all blood group systems will likely continue. The concept of
whether results of DNA-based tests could be used without confirmation by hemagglutination
is being debated. The use of DNA-based results alone should be considered only if such a
practice is unlikely to harm the patient. If there was a simple, inexpensive way to positively
identify a donor at subsequent donations, DNA typing could be performed only once.
Electronic fingerprint identification at the time of donation is one possibility. In addition, to
have a fully automated system of DNA preparation and analysis with positive sample
identification from the beginning of the process to the end (i.e., from bar-coded tube of
blood to downloading of interpreted results to a patient/donor database) would have great
value.

In the immunohematology reference laboratory, hemagglutination is the gold standard test to
detect reactions between antibody and antigens. DNA-based testing, used as an adjunct to
hemagglutination, is a valuable tool that has radically changed the approach used to resolve
blood group incompatibilities and to support patients in their transfusion needs.
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Table 1

List of blood group genes, transcripts, clinically relevant antigens, and nucleotide polymorphisms.

ISBT Name
(Symbol No.)

Reference Seq Gene
(mRNA)

Common
Antigens

Nucleotide polymorphism
(dbSNP)

ABO (ABO 001) NG_006669.1
(NM_020469.2)

A1>A2
A>B
A>O

nt1061ΔC (rs56392308)
nt526C>G (rs7853989)
nt703G>A (rs8176743)
nt796C>A (rs8176746)
nt803G>C (rs8176747)
nt261G/ΔG (rs8176719)

MNS (MNS 002) NG_007470.2
(NM_002099.4)
NG_007483.1
(NM_002100.3)

M>N
S>s

nt59C>T;71G>A;72T>G
(rs7682260;7687256;7658293)
nt143T>C (rs7683365)

Rh (RH 004) NG_007494.1
(NM_016124.3)
NG_009208.1
(NM_020485.3)

D
C>c
E>e

(multiple targets)
nt307T>C (rs676785)
nt676C>G (rs609320)

Lutheran (LU 005) NG_007480.1
(NM_005581.3)

Lua > Lub nt230A>G (rs28399653)

Kell (KEL 006) NG_007492.1
(NM_000420.2)

K>k
Kpa>Kpb

Jsa>Jsb

nt578T>C (rs8176058)
nt841T>C (rs8176059)
nt1790C>T (rs8176038)

Duffy (FY 008) NG_011626.1
(NM_002036.2)

Fya>Fyb

Fyb>Fyx

Fynull

nt125G>A (rs12075)
nt265C>T (rs34599082)
nt-67t>c (rs2814778)

Kidd (JK 009) NG_011775.1
(NM_015865.4)

Jka>Jkb nt838G>A (rs1058396)

Diego (DI 010) NG_007498.1
(NM_000342.3)

Dia>Dib nt2561T>C (rs2285644)

Yt (YT 011) NG_007474.1
(NM_015831.2)

Yta>Ytb nt1057C>A (rs1799805)

Scianna (SC 013) NG_008749.1
(NM_018538.3)

Sc1>Sc2 nt169G>A (rs56025238)

Dombrock (DO
014)

NG_007477.1
(NM_021071.2)

Doa>Dob

Hy
Jo

nt793A>G (rs11276)
nt323G>T (rs28362797)
nt350C>T (rs28362798)

Colton (CO 015) NG_007475.1
(NM_198098.1)

Coa>Cob nt134C>T (rs28362692)

Cromer (CR 021) NG_007465.1
(NM_000574.3)

Cr(a+)>Cr(a−
)

nt679G>C (rs60822373)

Knops (KN 022) NG_007481.1
(NM_000573.3)

Kna>Knb

McCa>McCb

Sla>Vil

nt4681G>A (rs41274768)
nt4768A>G (rs17047660)
nt4801A>G (rs17047661)
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Table 2

Clinical applications for molecular immunohematology.

• identify a fetus at risk for hemolytic disease of the newborn

• type a patient whose red cells are coated with immunoglobulin (DAT+)

• type a patient who has been recently transfused

• type patients and donors for antigens where antibodies are not available

• mass screen donors for antigen-negative blood types

• type donors for antibody identification panels

• resolve phenotype discrepancies (especially A, B D, and e)

• determine RHD zygosity

• identify null and novel alleles
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Table 32

Limitations of DNA-based approaches for the predication of blood groups in clinical applications

• DNA-based assays will detect nucleotide of interest but allele contains silencing changes; the encoded antigen is not expressed on
the red cell (interpretation error)

• DNA-based assays may not detect an allele with an alteration where probe/primer binds (e.g., when there are three of more alleles at
a locus) or where a restriction enzyme cuts, but antigen is expressed

• Certain hybrid alleles (especially in MNS and RH systems) can give false positive or false negative results

• Preferential amplification of one allele in heterozygotes

• There may be many alleles per phenotype and it is impractical to assay for all of them (ABO, Rh, null system genes)

• Medical procedures such as insemination with non-spousal sperm

• In chimeras, the results may be difficult to interpret after transfusion, transplantation, or in a natural chimera

• Unlikely that all alleles in all populations are known

• Not all blood groups can be analyzed (Vel, Lan, Jra, Ata)
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