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Abstract

Expression of an individual gene can vary considerably among genetically identical cells due to 

stochastic fluctuations in transcription. However proteins comprising essential complexes or 

pathways have similar abundances and lower variability. It is not known whether coordination in 

the expression of subunits of essential complexes occurs at the level of transcription, mRNA 

abundance, or protein expression. To directly measure the level of coordination in the expression 

of genes, we used highly sensitive fluorescence in situ hybridization (FISH) to count individual 

mRNAs of functionally related and unrelated genes within single Saccharomyces cerevisiae cells. 

Our results revealed that transcripts of temporally induced genes are highly correlated in 

individual cells. But in contrast, transcription of constitutive genes encoding essential subunits of 

complexes is not coordinated due to stochastic fluctuations. Therefore the coordination of these 

functional complexes must occur post-transcriptionally, and likely post-translationally.

Proper execution of cellular processes is mediated through various proteins working together 

in complexes to perform specific tasks1. A crucial task for cells is to coordinate the 

expression of genes that encode these functionally related proteins to ensure proper complex 

stoichiometry. Considerable progress has been made in identifying genes encoding 

functional complexes and characterizing transcriptional networks that co-regulate their 

expression2–6. These transcriptional networks describe regulator-gene interactions that 

allow a cell to coordinate the expression of proteins needed to facilitate biological functions 

such as optimal assembly of multi-protein complexes7–9.

The expression of a gene, however, involves random interactions between molecules present 

in small numbers per cell. Most proteins are produced from fewer than ten copies of mRNA, 

which in turn are produced from just one or two copies of a gene per cell4,10. Therefore, the 

process of gene expression is subject to stochastic fluctuations and can lead to considerable 

differences in the level of expression between genetically identical cells11. Several studies 
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have utilized fluorescent protein reporters to track protein levels in single cells for a 

comprehensive understanding of sources of variation in expression, generally classified into 

extrinsic and intrinsic components12–15. Extrinsic variation arises from cell-to-cell 

differences in global factors such as transcriptional activators, metabolic status, or cell cycle 

stage. Intrinsic variation, on the other hand, arises from inherently random fluctuations in 

molecular events such as production or destruction of mRNAs and proteins.

Initial experiments in yeast, largely limited to induced genes, suggested that cell-to-cell 

differences in expression were mostly due to extrinsic sources16,17. However recent studies 

aimed at a broader set of genes reported a more substantial contribution from intrinsically 

random fluctuations, especially for proteins with low or intermediate abundance18–20. These 

high-throughput studies also noted protein-specific differences in variation. Particularly, 

essential genes encoding subunits of multi-protein complexes were characterized by low 

variation21. Moreover, a proportional relationship between expression variance and mean 

suggested that variation in protein levels arises from fluctuations in mRNA levels due to 

random production and decay of mRNAs or random activation and inactivation of the gene 

promoter13,18. Therefore, direct measurements of mRNA abundance are crucial to 

understanding how individual cells co-regulate the expression of functionally related 

proteins.

While ensemble methods such as northern blots and reverse-transcription PCR are 

inadequate for measuring mRNA abundance in individual cells, technological advances in 

detecting single mRNAs have made it possible to measure mRNA abundance as well as 

transcriptional activity in single cells22–25. Indeed, a recent study in yeast Saccharomyces 

cerevisiae showed that random fluctuations in mRNA abundance of constitutive genes arise 

from single, uncorrelated transcription-initiation events24. Constitutive genes, which are 

expressed throughout the cell cycle without requiring additional stimuli when cells are 

grown in rich media, account for two thirds of the yeast genome. Therefore, studying how 

their expression is coordinated in the presence of stochastic fluctuations is instrumental to 

understanding how cellular systems work. In particular, how does an individual cell 

coordinate the expression of functionally related genes and produce the stoichiometry 

required for a multi-protein complex in the presence of stochastic fluctuations?

To address this question, we used a highly sensitive fluorescence in situ hybridization 

(FISH) based approach to count the mRNAs of multiple functionally related and unrelated 

genes simultaneously in single S. cerevisiae cells. We hypothesized that mRNA abundances 

of essential genes encoding proteins in the same complex or pathway would be more 

correlated than transcripts of functionally unrelated genes. We show that cells transcribe 

induced genes in a highly coordinated manner. However transcripts of constitutive genes 

encoding essential subunits of multi-protein complexes, such as the proteasome, RNA 

polymerase II, or the general transcription factor TFIID, are not correlated any more than 

functionally unrelated genes. Finally, our modeling results show that synchronizing effects 

of cell division account for weak correlations observed among transcripts of all 

constitutively active genes.
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RESULTS

We used a previously described FISH-based approach to detect nascent mRNAs at the site 

of transcription in the nucleus as well as mature mRNAs in the cytoplasm for two genes in 

single S. cerevisiae cells22,24. Multiple oligodeoxynucleotide probes, each labeled with five 

fluorescent dye molecules, hybridized to nascent transcripts at the transcription site in the 

nucleus and mature transcripts in the cytoplasm. Spectrally distinct fluorescence signals 

from individual mRNAs of each gene, labeled with either cyanine 3 or cyanine 3.5, were 

detected with a spot-detection algorithm and counted26. The approach allowed us to simply 

fix cells and generate single cell expression profiles of endogenous genes without requiring 

any genetic perturbations. Single cell mRNA abundances were then used to calculate pair-

wise correlation coefficients (r), representing the degree of coordination between two genes 

with extremes of: +1 (most correlated), 0 (uncorrelated), and −1 (most anti-correlated).

Highly coordinated transcription of galactose network

We used a network of galactose inducible (GAL) genes to validate our method of 

quantifying the level of coordination in individual cells. Transcription of GAL1, GAL10, and 

GAL7 is activated through de-repression of a common transcription factor Gal4p upon 

induction with galactose27,28. Gal4p operates through four binding sites in the upstream 

activating sequence (UAS) of the GAL1-GAL10 divergent promoter (Fig. 1a). Gal4p also 

activates the transcription of GAL7 through two binding sites in a similar, but distinct UAS 

from the GAL1-GAL10 UAS.

We first examined whether nascent GAL transcripts were present in a coordinated manner at 

the site of transcription in the nucleus. Pair-wise analysis of transcription sites for these three 

genes revealed various modes of transcription (Fig. 1b–d). GAL genes were tightly 

repressed in cells grown in 2% (w/v) raffinose. Only 6±2% of cells were actively 

transcribing either GAL1 or GAL10 and had less than one transcript in the cytoplasm on 

average. After induction with 2% (w/v) galactose for 15 minutes, a majority (60±4%) of 

cells were actively transcribing both GAL1 and GAL10 (Fig. 1d). However, a small fraction 

of cells were transcribing only GAL1 (12±2%) or GAL10 (7±1%). The remaining 21±3% of 

cells did not have a transcription site for either gene. A pair-wise analysis of two genes with 

similar but distinct UAS (GAL1 and GAL7) showed a similar fraction of cells with both 

genes in the off state (Fig. 1c). However, a slightly smaller percentage of cells were actively 

transcribing both genes (44±5%) compared to GAL1-GAL10.

Since transcription sites in the nucleus only describe the earliest stages of coordination in 

gene expression, next we compared cytoplasmic expression profiles in a pair-wise manner 

(Fig. 2). As expected, the three induced genes show expression profiles with similar means 

after 15 minutes of induction with 2% (w/v) galactose. However, the expression level varied 

between individual cells in the population. For example, GAL1 expression ranged between 0 

and 40 mRNAs per cell with a mean of 9.2 transcripts (Fig. 2b, right histogram). GAL10 

expression in the same population ranged between 0 and 40 mRNAs per cell with a mean of 

7.6 (Fig. 2b, top histogram). Importantly, we found that GAL1 and GAL10 transcript levels 

within the same cell were highly correlated (Fig. 2b, heatmap). A correlation coefficient of 

0.88±0.01 was calculated from the joint distribution of GAL1 and GAL10 mRNAs per cell. 
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The same pair-wise measurement between GAL7 and GAL1, two genes with distinct Gal4p 

binding sites, yielded a slightly lower r = 0.69±0.03 (Fig. 2a). The lower correlation was 

consistent with a slightly lower probability of both promoters actively transcribing at the 

same time. Nevertheless, coordinate activation of transcription sites in the nucleus and high 

correlation coefficients between cytoplasmic mRNAs indicate that expression of GAL 

transcripts is highly coordinated in individual cells.

Anti-correlated mRNAs of cell-cycle-stage-regulated genes

Progression through the cell cycle requires orchestrated expression of specific proteins at 

well-defined time intervals. Many genes have been shown by ensemble measurements to be 

transcribed only within specific windows during the cell cycle29. Therefore, we expected 

that within single cells, genes expressed during different stages of the cell cycle would be 

anti-correlated; that is their expression would be mutually exclusive. We measured pair-wise 

correlations between mRNA abundance for a network of cell-cycle-stage-regulated genes 

(Fig. 3a). The expression of transcriptional activator NDD1 peaks during S phase and is 

essential for expression of its target genes, SWI5 and CLB2, during the G2/M phase30,31. To 

measure the expression profiles of these genes, we used differential interference contrast 

(DIC) images to divide 503 asynchronous cells into three different cell cycle stages based on 

morphology: G1, S, and G2/M. As expected, SWI5 and CLB2 expression is off during most 

of the cell cycle, but peaks sharply during the G2/M phase. NDD1 expression, on the other 

hand, is broader and peaks during S phase (Fig. 3b). Since the expression of NDD1 and its 

target genes peak during different stages of the cell cycle, we expected the number of NDD1 

mRNAs to be anti-correlated with SWI5 or CLB2 mRNAs within the same cell. On the other 

hand, we predicted that mRNA levels of the transcription factor SWI5 and cyclin CLB2 

would be highly correlated since their expression peaks during the same cell cycle stage.

Figure 3c shows representative FISH images with some cells in G1 where transcription of 

both NDD1 and SWI5 is essentially off, and other cells in stages (S – M) where they are 

expressing either NDD1 or SWI5. Transcript distributions for cells in G1 showed that NDD1 

expression ranged between 0 and 8 mRNAs per cell and SWI5 ranged between 0 and 11 

mRNAs per cell, with more than 90% of cells expressing only 0 or 1 mRNAs 

(Supplementary Fig. 1a, b). Since mRNAs of these genes are not expressed during G1 phase 

of the cell cycle, we used DIC images to exclude unbudded G1 cells from our analysis. As 

expected, mRNA levels of NDD1 and SWI5 in the remaining cells were weakly anti-

correlated (r = −0.26±0.08) (Fig. 3d). For comparison, we used the same approach to 

measure the pair-wise correlation between SWI5 and CLB2; two target genes of NDD1 that 

are activated during the same cell cycle stage. Pairwise measurements between SWI5 and 

CLB2 showed similar expression profiles for both genes (Fig. 3e, Supplementary Fig. 1b, c). 

Moreover, their transcript abundances in individual cells were highly correlated (r = 

0.68±0.06) as expected.

These experiments show that mRNA expression can be highly correlated or anti-correlated 

within single cells, and confirm that single mRNA counting provides a very precise 

approach for quantifying a wide range of coordination in transcript abundance.
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Weakly correlated functionally unrelated constitutive genes

After validating our method with genes expected to be positively or negatively correlated, 

we turned our attention to a common class of genes, the housekeeping genes. Previous 

single-cell measurements of mRNA abundance for constitutive genes have shown that cell-

to-cell variation can be described by a Poisson distribution and arises from intrinsically 

stochastic fluctuations in transcription initiation24. However, the extent to which these 

random fluctuations affect a cell’s ability to coordinate mRNA levels of multiple genes, and 

of the entire transcriptome in general, is not known.

We began by measuring pair-wise correlation coefficients between mRNAs of three 

functionally unrelated constitutive genes: MDN1 (ribosome biogenesis), PRP8 (pre-mRNA 

splicing), and KAP104 (nucleocytoplasmic transport). Representative FISH images of 

MDN1 and PRP8 mRNAs within single cells are shown in Figure 4a. The three genes show 

similar expression profiles with variation that can be described by a Poisson distribution, 

consistent with uncorrelated transcription initiation of constitutive genes described 

previously (Fig. 4b–d, histograms on top and right)24. As such, we predicted that transcript 

levels of these unrelated genes, without any known regulatory pathways in common, would 

be essentially uncorrelated (r ~ 0). Indeed, we observed a weak correlation (r = 0.26±0.05) 

between the number of MDN1 and PRP8 transcripts in a cell (Fig. 4b, heatmap). Pair-wise 

comparison of these two genes against KAP104 also yielded the same result (Fig. 4c, d). 

These results suggest that global or extrinsic factors lead to weak correlations between 

transcripts of functionally unrelated constitutive genes within a cell.

Functionally related genes are only weakly correlated

Previous studies have suggested that optimal complex assembly depends on equal levels of 

protein subunits in a cell7. Furthermore, proteins in the same complex or pathway tend to 

have similar mean abundances and lower variability between individual cells8,18,20,21. This 

would suggest that mRNA expression of genes encoding subunits of multi-protein 

complexes should also be coordinated to facilitate efficient complex assembly. However, 

whether transcripts of constitutively expressed functionally related genes within a cell are 

more correlated compared to functionally unrelated genes is not known.

For comparison, we measured pair-wise correlations among several groups of genes 

encoding subunits of multi-protein complexes (Fig. 5). The complexes we investigated were 

constitutive, essential, and required rigid stoichiometry between subunits. For all genes, the 

variance of transcript distributions was equal to the mean transcript abundance, 

characteristic of fluctuations due to uncorrelated stochastic processes. Surprisingly, mRNAs 

of genes encoding β-subunits of the stable proteasome core complex were not correlated any 

more than functionally unrelated genes (Fig. 5a, Supplementary Fig. 2). TBP-associated 

factor (TAF) genes encoding subunits of general transcription factor TFIID, essential for 

initiating RNA polymerase II transcription, also exhibited pair-wise correlation coefficients 

in the same range (Fig. 5b, Supplementary Fig. 3). Finally, transcripts of three genes (RPB1, 

RPB2, and RPB3) encoding core subunits of RNA polymerase II were only weakly 

correlated, just like functionally unrelated genes (Fig. 5c, Supplementary Fig. 4). These 

results suggest that coordination of both functionally related and unrelated genes is subject 
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to a balance between two opposing processes: global factors simultaneously affecting all 

constitutively active genes in a cell (correlated process) and stochastic fluctuations 

independently affecting individual genes (uncorrelated process).

One alternative possibility is that the lack of strong correlation between mRNAs of 

functionally related genes is not due to stochastic fluctuations, but rather due to gene-

specific differences in regulation. While this is an unlikely possibility, since genes such as 

PRE3 and PUP1 are only weakly correlated despite being regulated through a common 

transcriptional activator Rpn4p, the results thus far do not explicitly rule it out32,33.

Two alleles of the same gene are also weakly correlated

To determine whether two genes dependent on the same transcription factor were any more 

correlated than two unrelated genes, we measured the correlation between transcripts 

produced by each allele of MDN1 in diploid cells. The two endogenous alleles have identical 

promoters and would be affected identically by gene-regulatory signals within the same cell. 

However, stochastic fluctuations in the transcription of each allele are independent and 

would lead to differences in expression between the two alleles. To distinguish between 

transcripts from the two alleles, we inserted RNA hairpins from bacteriophage PP7 in the 3′ 

untranslated region of one of the two MDN1 alleles (Fig. 6a). While MDN1 coding sequence 

probes would hybridize to transcripts from both alleles, the probes for RNA hairpins would 

only hybridize to transcripts from one of the two alleles (Fig. 6b).

The expression of each MDN1 allele in diploid cells was similar to previously reported 

measurements from haploid cells (Supplementary Fig. 5). Each allele expressed between 1 

and 15 mRNAs per cell with a mean around 5 transcripts (Fig. 6c, histograms on top and 

right). In the absence of intrinsic fluctuations, a cell would have equal number of transcripts 

from each allele (r = 1). However, constitutive genes in yeast are subject to stochastic 

fluctuations, leading to uncoordinated transcription initiation at each allele. As a result, we 

found r = 0.33±0.06 between transcripts from two alleles of MDN1 (Fig. 6c, heatmap). In 

summary, mRNAs of unrelated genes, functionally related genes, and even two alleles of the 

same gene with identical promoters are only weakly correlated.

To verify that this observation reflects stochastic fluctuations in the transcriptional activity 

of a gene and not another process (e.g. mRNA decay), we also measured the distribution of 

nascent mRNAs at the transcription site (Supplementary Fig. 6). Indeed, the number of 

nascent mRNAs present at the transcription site for functionally related genes were not 

correlated any more than functionally unrelated genes (Supplementary Fig. 7).

Modeling reveals weak correlations arise from cell division

To understand the source of weak correlations, we modified the mathematical framework 

based on a gene activation and inactivation model to obtain an exact solution for joint 

mRNA distributions34,35. In this model, a gene randomly switches between an active ‘on’ 

state and an inactive ‘off’ state, likely corresponding to chromatin modifications36. Since 

our investigation is limited to genes transcribing ‘constitutively’ (independent initiations 

distributed in time), rather than in bursts (multiple initiations during infrequent on states), 
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we assume that genes are always in the ‘on’ state. We validated this assumption by 

quantifying the number of nascent mRNAs as a direct measure of transcriptional activity for 

all genes considered in this study (Supplementary Fig. 6)24. Accordingly, in our model, 

individual transcripts initiate independently and with a constant probability over time. Two 

variable parameters needed to describe the mRNA distribution of each gene, initiation rate 

(ki) and decay rate (kd), were calculated from experimentally measured mean transcript 

number (μ) and previously reported half-life measurements (t1/2), respectively 

(Supplementary Table 1). In addition, a binomial process was used to divide transcripts from 

the mother cell between two daughters at cell division37.

We used this framework to obtain exact analytical solutions for mRNA distributions and 

pair-wise correlations between different genes in a cell by solving the master equation (see 

Experimental Procedures). As an example, Figure 7a shows that distributions predicted by 

our model (black line) are in excellent agreement with measured distributions for TAF6 and 

TAF12 mRNAs (blue bars). Our model predicted r = 0.1 between TAF6 and TAF12 mRNAs 

within the same cell, consistent with experimentally measured r = 0.18±0.06. Next, we used 

our model to calculate pair-wise correlation coefficients for a wide range of mRNA mean 

and half-life times (Fig. 7b). We found that the correlation between mRNAs of constitutive 

genes increases with mean abundance. Furthermore, longer half-life buffers the mRNA 

abundance in a cell against fluctuations, leading to a higher correlation.

Next, we performed Monte Carlo simulations with a fixed transcript mean but different half-

life times. Figure 7c shows the simulated time traces for two genes (red and blue lines) with 

a mean of 25 transcripts per cell and half-life of 5 minutes. The average of 100 simulated 

time traces (green line) is plotted along with the exact analytical solution (black line) to the 

master equation (see Experimental Procedures). The results show that transcripts with short 

half-lives reach their steady state value (ki/kd) soon after cell division. On the other hand, the 

time constant (1/kd) to reach steady state transcript levels is much longer for two genes with 

longer half-lives (t1/2 = 40 min) (Fig. 7d). As a result, mean transcript levels of both genes 

are moving towards their steady state values during the entire 90-minute cell cycle. To 

verify that mean mRNA abundance increases with time during the cell cycle, we divided the 

cells into three different cell cycle stages based on morphology: G1, S, and G2/M. As 

expected, the mean mRNA abundance increased as cells progressed through the cell cycle 

(Fig. 7e, f, Supplementary Fig. 8).

Since our model suggests that the observed correlations are simply due to the synchronizing 

effects of cell division, we predicted that correlations would decrease in cells with extremely 

long cell cycles. To test this prediction, we measured the correlation coefficient between 

MDN1 and PRP8 in cells with a doubling time of 14 hours (Supplementary Fig. 9). The cells 

were grown in a chemostat in minimal media supplemented with limiting concentrations of 

glucose to achieve the desired doubling time38. As predicted by our model, MDN1 and 

PRP8 mRNAs were uncorrelated (r = 0.05±0.05) in these cells, as opposed to the weak 

correlation (r = 0.26±0.05) observed in cells with a 90-minute cell cycle (Supplementary 

Fig. 9b, Fig. 4b).
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In summary, our model shows that cell division is a global factor that affects transcripts of 

all genes by perturbing them from their steady state levels. After each cell division, 

transcripts of all genes begin to accumulate until their abundance, on average, doubles 

before the next division (Fig. 7c–f, Supplementary Fig. 8). Importantly, weak correlations 

between transcripts of functionally related or unrelated genes arise from the fact that in an 

asynchronous population, some cells at the beginning of the cell cycle have fewer transcripts 

compared to other cells near the end of the cell cycle. Beyond this effect of sampling an 

asynchronous population on the measured correlation, we do not observe any coordination 

in the expression of functionally related or unrelated genes.

DISCUSSION

In this study, we have combined single mRNA counting with mathematical modeling to 

provide fundamental insights into how an individual cell accomplishes what is thought to be 

one of its most crucial tasks— coordinating gene expression.

Our results revealed that cells transcribe temporally induced genes in a highly coordinated 

manner. Although there was a large variation in the magnitude of response to galactose 

between individual cells, the transcript levels of GAL genes within a cell were highly 

correlated (Fig. 2). These results confirm that measurements at the mRNA level are 

consistent with studies that used reporter proteins to show that variation in protein levels of 

induced genes is largely due to cell-to-cell differences in common upstream 

regulators16,17,39. Moreover, the correlation between transcripts of GAL genes within 

individual cells was independent of the galactose concentration used for induction 

(Supplementary Fig. 10). A recent assay for quantifying nucleosome occupancy showed that 

promoter activation upon galactose induction corresponds to the removal of nucleosomes 

flanking the UAS of GAL genes and coincides with recruitment of the transcriptional 

machinery to GAL promoters40. We note that a slightly lower correlation between GAL1 

and GAL7 compared to GAL1 and GAL10, despite common upstream regulation, most likely 

underscores the importance of chromatin remodeling35. If two promoters were activated 

independently, the probability of both promoters being ‘on’ would equal the product of their 

individual probabilities. However, the probability of a cell transcribing both GAL1 and 

GAL10 is higher than the product of their individual probabilities (Fig. 1c). This result is 

consistent with the fact that the rate-limiting step of activating the GAL1 and GAL10 

promoters through nucleosome removal is mediated by a single UAS common to both 

promoters. On the other hand, the probability of GAL1 and GAL7 switching ‘on’ together is 

slightly lower, since their promoters are activated independently through derepression of 

Gal4p at similar, but distinct UAS. In order to decouple the GAL1 and GAL10 promoters, we 

introduced independent rate-limiting steps in the activation of these two genes. In wild type 

cells, histone H2A variant H2A.Z destabilizes the +1 and −1 promoter nucleosomes and is 

thought to promote gene activation by exposing the transcription start site41. We found that 

deletion of HTZ1, the gene encoding H2A.Z, led to decreased expression of GAL1 and 

GAL10 and reduced the correlation between these two genes to a value closer to the 

correlation between GAL1 and GAL7 (Supplementary Fig. 11). These results suggest that 

common upstream regulation through transcription factors as well as chromatin structure 

Gandhi et al. Page 8

Nat Struct Mol Biol. Author manuscript; available in PMC 2011 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



provides a robust way to maintain equal numbers of transcripts for these genes regardless of 

induction conditions.

Unlike induced genes, which are activated synchronously during a well-defined time 

interval by an upstream signal, the transcription of constitutive genes is achieved by 

independent initiation events with a constant probability over time. Surprisingly, even 

transcripts from two endogenous alleles of MDN1, with identical promoters, were 

uncorrelated after accounting for the synchronizing effects of cell division (Fig. 6c). 

Moreover, transcripts of several classes of functionally related and unrelated constitutive 

genes in individual cells were uncorrelated (Fig. 4b–d, Fig. 5). These results show that 

individual cells are unable to coordinate the expression of constitutive genes due to 

inherently stochastic fluctuations in transcription initiation.

A simple model with only two free parameters is sufficient to describe mRNA variation for 

constitutive genes in yeast (Fig. 7a). We note that our model slightly underestimates the 

experimentally measured correlation coefficients. More accurate assessment of transcript 

half-lives would improve these predictions. It is also possible that the discrepancy arises 

from the fact that our model assumes transcription to be a homogenous Poisson process and 

does not account for gene duplication prior to cell division. Nevertheless, our model 

confirms that weak correlations between constitutive genes within a wide range of transcript 

means and half-lives reflect the lower limit of extrinsic variability due to cell growth and 

division (Fig. 7b)17.

How then are cells able to carry out complex functions in a predictable and coordinated 

manner when the transcriptional output of constitutive genes is essentially random? It has 

been suggested than in higher eukaryotes, fluctuations in mRNA levels are filtered out at the 

protein level by long protein half-lives35,42. However, the average protein half-life is only 

twice as long as the average mRNA half-life in yeast43,44. Therefore, protein half-lives only 

partially explain the low variation observed for functionally related proteins8,18,20,21. There 

are several passive and active means to achieve predictable outcomes from a stochastic 

system. It is, in fact, possible to build a multi-protein complex in a predictable amount of 

time even if the abundance of each of its subunits varies substantially. Whereas the duration 

of each binding step might vary due to fluctuations in protein quantities, these fluctuations 

average out when they are added sequentially to produce the full complex. More generally, 

any biological process can be passively rectified against stochastic fluctuations, since the 

central limit theorem predicts that variability in the total duration of a process decreases with 

increasing number of intermediate steps.

There are also active models that could compensate for the lack of coordination in mRNA 

abundance. One possibility is that in order to yield predictable outcomes, cells impose 

checkpoints until all conditions for further progress are satisfied. Assembly of proteasomes, 

for example, is guided by various chaperones that ensure correct incorporation of each 

subunit in a specific order45,46. Chaperones could also act to stabilize the intermediate 

complexes and ensure that they do not dissociate while ‘waiting’ for the next subunit. In this 

way, cells can guarantee a predictable outcome, but not the time it takes to achieve it.
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Post-transcriptional gene regulation might also play an important role in optimizing the 

expression of each subunit for efficient assembly of complexes. Efficient regulation requires 

fast responses to transient variations in protein levels. Therefore, it seems reasonable to 

control protein abundance by tuning the latest possible step of the production process. Post-

transcriptional or even post-translational regulation would provide much quicker responses 

compared to initiating the much longer process of transcription. RNA binding proteins have 

been implicated in coordinated regulation of many post-transcriptional steps in the 

expression of functionally related genes47–49. Indeed, genes that encode subunits of 

stoichiometric complexes are thought to have similar transcript and protein decay rates43,44.

Our perception of transcription has been influenced over the last half century by bacterial 

models where gene activity is regulated by its end product. Since the discovery of the lac 

operon in Escherichia coli, genes have been viewed as finely tuned thermostats that 

constantly sense and counter changes in the environment with a precisely coordinated 

response50. While there are examples of highly regulated gene networks in various 

organisms that support this view, it certainly cannot be generalized to constitutive genes. 

The experimental and modeling results presented here suggest that execution of gene 

expression programs, particularly at the level of mRNA, is not always precisely coordinated. 

Many constitutive genes in yeast are essentially clueless entities that produce transcripts 

with a constant probability over time irrespective of the necessary concentrations of the final 

gene product. Whether genes can sense and regulate their end product or whether they act 

autonomously leads to profoundly divergent modes of transcription, and hence assembly of 

essential complexes. The results presented here suggest a fundamental shift in the way we 

must think about coordination of biological processes within a cell. Cells have evolved very 

simple modes of gene expression that require much less coordination than previously 

thought. Therefore, the regulation of precise stoichiometry must occur post-transcriptionally, 

and likely post-translationally. Determining the level of post-transcriptional control for 

many of these genes will show whether active processes further regulate the expression of 

genes encoding protein complexes or if the downstream processes are just as ‘clueless’ as 

transcription.

METHODS

Cell Culture

Yeast cells (w303 haploid or diploid) were grown in YPD media at 30 °C to an optical 

density at 600 nm (OD600) of 0.5.

For galactose induction, cells were grown in yeast extract, peptone, and 2% (w/v) raffinose 

at 30 °C to OD600 of 0.5. The cells were then induced by adding 20% (w/v) galactose to the 

cell culture to a final concentration of 2% (w/v) for 15 minutes.

PP7 Strain Creation

An array of 24 RNA hairpins from bacteriophage PP7, kanamycin resistance gene for 

selection, and CYC terminator were inserted in the 3′ untranslated region of one of the 

MDN1 alleles in diploid w303 yeast cells by homologous recombination.
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ΔHTZ1 Strain Creation

The 405 bp open reading frame of the HTZ1 gene was replaced with a kanamycin resistance 

gene in haploid w303a yeast cells by homologous recombination.

In Situ Probes

Five or six oligodeoxynucleotide probes for each gene were designed, synthesized, and 

labeled as described previously22. Each probe was 50 to 53 nt long and contained five 

amino-modified nucleotides (amino-allyl T). The free amines were chemically coupled to 

cyanine 3 or cyanine 3.5 fluorescent dyes after synthesis. The sequences for probes used to 

detect the mRNA of genes in this study are provided in Supplementary Information.

Fluorescence in situ Hybridization

Multiplexed FISH was performed according to the procedure outlined previously24. Cells 

were fixed by adding 32% (v/v) paraformaldehyde to the culture to a final concentration of 

4% (v/v) for 45 minutes at room temperature. After washing away the fixative, the cell wall 

was digested with lyticase (Sigma). The cells were then attached to poly L-lysine (Sigma) 

coated coverslips and stored in 70% (v/v) ethanol at −20 °C. Stored coverslips were 

rehydrated and inverted onto 20 μl of hybridization solution containing a mixture of probes 

for two genes, one labeled with cyanine 3 and the other with cyanine 3.5. The cells were 

hybridized overnight at 37 °C and washed. The nuclei were stained with DAPI and the 

coverslips were then mounted with ProLong Gold antifade reagent (Invitrogen).

Image Acquisition

Images were acquired on an Olympus BX61 epi-fluorescence microscope with an UPlanApo 

100×, 1.35 numerical aperture oil immersion objective (Olympus). X-Cite 120 PC (EXFO) 

light source was used for illumination with filter sets 31000 (DAPI), 41001 

(Autofluorescence), SP-102v1 (Cy3), and SP-103v1 (Cy3.5) (Chroma Technology). Vertical 

stacks of 30 images with a Z step size of 0.2 μm were acquired using a CoolSNAP HQ 

camera (Photometrics) with 6.4 μm pixel size CCD. IPLab (BD Biosciences) software 

platform was used for instrument control as well as image acquisition.

Data Analysis

Three-dimensional image stacks were reduced to two-dimensional images by maximum 

intensity projection along the Z-axis. A previous implementation of the Gaussian mask 

algorithm in IDL (ITT Visual Information Solutions) was used to compute the location and 

intensity of diffraction-limited fluorescence signals from individual mRNAs. Cellular 

boundaries were defined by a hand-drawn mask and nuclei were segmented by thresholding 

the DAPI signal in IPLab. Outputs from the Gaussian mask and segmentation algorithms 

were combined with custom made software in IDL to generate single cell expression profiles 

containing the abundance, locations, and signal intensities of mRNAs for each gene in a cell. 

The single cell mRNA distributions were then used to calculate the correlation coefficient 

(rx,y) between gene X and Y:
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where xi and yi are the mRNA abundances of genes X and Y, respectively, in cell i. μ and σ 

represent the means and standard deviations, respectively, of mRNA distributions of genes 

X and Y.

Mathematical Modeling

A Markovian model for gene expression based on random birth-and-death process has been 

described previously34. The model has been used to calculate steady-state mRNA 

distributions in mammalian cells as well as yeast24,35. We modified this model to account 

for binomial partitioning of mRNAs at cell division and obtained mRNA abundances for 

multiple genes in the same cell.

We obtained an exact analytical solution for the time-dependent mRNA distributions in a 

cell by solving the master equation (see Supplementary Information). The mRNA 

abundance at any given time follows a Poisson distribution with a mean that varies over the 

cell cycle (Fig. 7c, d)51. We then obtained a time-averaged distribution of mRNA abundance 

for each gene to describe the experimentally measured mRNA distributions (Fig. 7a). The 

time-averaged mRNA distributions were used to calculate the mean, variance, covariance, 

and correlations for mRNAs of genes with various sets of ki and kd parameters (Fig. 7b).

Simulated time traces for mRNA abundance and pair-wise correlations between different 

genes in a cell were obtained from Monte Carlo simulations performed in Matlab 7.0.1 (The 

Mathworks).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Highly coordinated transcription of genes in the galactose network. (a) Schematic diagram 

of the organization of three GAL genes and their promoters on chromosome II. (b) Nascent 

transcripts at the transcription site (TS) in the nucleus and individual transcripts in the 

cytoplasm detected with single mRNA FISH. GAL7 mRNA (red) and GAL1 mRNA (green) 

were detected in the same cell with cyanine 3 and cyanine 3.5 labeled probes, respectively. 

DAPI (blue) was used to demarcate the nucleus. Differential interference contrast (DIC) 

images are shown in the last column. The scale bars are 1 μm. (c) Fraction of cells exhibiting 

four different modes of transcription shown in (b). Fraction of 196 cells with active 

transcription sites for only GAL7 (red), only GAL1 (green), both genes (yellow), and neither 
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genes (black). (d) The same pair-wise analysis of GAL10 and GAL1 transcription sites in 

309 cells. Error bars indicate s.e.m.
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Figure 2. 
Correlation between cytoplasmic mRNA abundance of GAL genes in individual cells. (a) 

Heat map of number of GAL7 and GAL1 mRNAs in 195 individual cells. The color of each 

point indicates the number of cells observed at that value as specified by the color bar at the 

bottom. The marginal histograms represent the frequency of GAL7 mRNAs per cell (top) 

and GAL1 mRNAs per cell (right) across the entire population. The expression of GAL7 

(top) ranged between 0 and 40 mRNAs per cell with a mean (μGAL7) of 10.6±0.7 and a 

standard deviation (σGAL7) of 9.9 transcripts. The expression of GAL1 (right) ranged 

between 0 and 40 mRNAs per cell with μGAL1 = 9.0±0.7 and σGAL1 = 11.1. The correlation 

(r) between transcripts of these two genes in the same cell was 0.69±0.04. (b) Pair-wise 

correlation between the number of GAL10 and GAL1 transcripts in 325 cells. Marginal 

histograms: μGAL10 = 7.6±0.5, σGAL10 = 8.1 (top); μGAL1 = 9.2±0.5, σGAL1 = 10.4 (right). 

Error bars indicate s.e.m.
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Figure 3. 
Anti-correlation between cytoplasmic mRNA abundance of genes expressed during different 

cell cycle stages. (a) Cartoon of expression profile for NDD1 and its target genes SWI5 and 

CLB2 across different stages of the cell cycle. (b) Experimentally measured average mRNA 

abundance of NDD1, SWI5, and CLB2 across three different stages of the cell cycle. (c) 

Representative FISH images of mRNAs of the transcriptional activator NDD1 (red) and its 

target gene SWI5 (green) in an asynchronous population of cells. The nuclei are marked with 

DAPI (blue). The scale bar in the DIC image of cells is 1 μm. (c) NDD1 and SWI5 

transcripts are anti-correlated in a subset of cells that excludes G1 cells. The distribution of 

mRNAs per cell for each gene across the population is depicted by the marginal histograms: 
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μSWI5 = 2.9±0.3, σSWI5 = 2.9 (top); μNDD1 = 3.6±0.3, σNDD1 = 2.1 (right). (d) SWI5 and 

CLB2 mRNAs, expressed during the same cell cycle stage, are highly correlated in a subset 

that excludes G1 cells. Marginal histograms: μSWI5 = 4.1±0.4, σSWI5 = 3.4 (top); μCLB2 = 

4.7±0.4, σNDD1 = 3.4 (right). Error bars indicate s.e.m.
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Figure 4. 
Correlation between cytoplasmic mRNA abundance of functionally unrelated constitutively 

active genes. (a) Representative FISH images of mRNAs of two functionally unrelated 

genes, PRP8 (green) and MDN1 (red), are shown along with the DIC image of cells. The 

nuclei are marked with DAPI (blue). The scale bar is 1 μm. (b) Heat map of number of 

MDN1 and PRP8 transcripts in 369 cells. The correlation (r) between transcripts of these 

two genes in the same cell was 0.26±0.05. The distribution of mRNAs per cell for each gene 

across the population is depicted by the marginal histograms: μMDN1 = 4.3±0.1, σMDN1 = 2.4 

(top); μPRP8 = 2.5±0.1, σPRP8 = 1.4 (right). (c) Pair-wise correlation between PRP8 and 

KAP104 in 179 cells. Marginal histograms: μPRP8 = 3.1±0.2, σPRP8 = 1.8 (top); μKAP104 = 

3.3±0.2, σKAP104 = 1.5 (right). (d) Correlation between MDN1 and KAP104 in 260 cells. 
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Marginal histograms: μMDN1 = 4.4±0.1, σMDN1 = 2.4 (top); μKAP104 = 3.1±0.1, σKAP104 = 

1.6 (right). Error bars indicate s.e.m.
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Figure 5. 
Correlation between cytoplasmic mRNA abundance of essential genes encoding subunits of 

multi-protein complexes. (a) Mean abundance and pair-wise correlation coefficients for 

transcripts of three genes encoding β-subunits of the proteasome 20S core particle. (b) 

Correlation coefficients for three genes encoding TATA binding protein associated factors 

involved in transcription initiation. (c) Correlation between three genes encoding subunits of 

RNA polymerase II. Errors indicate s.e.m.
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Figure 6. 
Correlation between transcripts from two alleles of a constitutively active gene, MDN1, in 

diploid cells. (a) Schematic diagram of the PP7 array inserted in the 3′ untranslated region of 

one of the two endogenous MDN1 alleles. (b) Transcripts from both alleles were detected 

with cyanine 3 labeled probes hybridizing to the coding region of MDN1 (green). 

Transcripts from Allele 2 (yellow) were distinguished with colocalizing signals from 

cyanine 3.5 labeled probes against 11 binding sites in the 24x PP7 array (red). The scale bar 

in the DIC image is 1 μm. (c) Heat map of number of transcripts from two MDN1 alleles in 

217 diploid cells. The correlation coefficient (r) between transcripts from two alleles in the 

same cell was 0.33±0.04. The distribution of mRNAs per cell for each allele across the 

population is depicted by the marginal histograms: μMDN1 = 6.6±0.3, σMDN1 = 4.0 (top); 

μMDN1-PP7 = 4.8±0.3, σMDN1-PP7 = 2.8 (right). Error bars indicate s.e.m.
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Figure 7. 
Stochastic model predicts correlation coefficients from mean mRNA abundance and half-

life times. (a) TAF6 and TAF12 mRNA distributions determined by FISH (blue bars) and 

analytical theory (black line). (b) Correlation coefficient as a function of mRNA half-life for 

various abundance levels. The analytical solution was obtained by solving the master 

equation. (c–d) Response to perturbation in the number of mRNAs due to cell division 

depends on the mRNA half-life. Gene 1 (red) and Gene 2 (blue) are simulated Monte Carlo 

time traces of transcript abundances for two genes in a single cell over three cell cycles. 

Analytical solution (black) is plotted along with the average of 100 simulations (green). (e–
f) Experimentally measured average mRNA abundance of TAF6 and TAF12 across three 

different stages of the cell cycle. Error bars indicate s.e.m.
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