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Raymond J. Carroll, and Andre Bouville

Abstract

With a binary response Y, the dose-response model under consideration is logistic in flavor
with pr(Y=1 | D) = R (1+R)-1, R = λ0 + EAR D, where λ0 is the baseline incidence rate and EAR is
the excess absolute risk per gray. The calculated thyroid dose of a person i is expressed as Di

mes =
fiQi

mes/Mi
mes. Here, Qi

mes is the measured content of radioiodine in the thyroid gland of person i
at time tmes, Mi

mes is the estimate of the thyroid mass, and fi is the normalizing multiplier. The Qi
and Mi are measured with multiplicative errors Vi

Q and Vi
M, so that Qi

mes = Qi
trVi

Q (this is
classical measurement error model) and Mi

tr = Mi
mesVi

M (this is Berkson measurement error
model). Here, Qi

tr is the true content of radioactivity in the thyroid gland, and Mi
tr is the true value

of the thyroid mass. The error in fi is much smaller than the errors in (Qi
mes, Mi

mes) and ignored in
the analysis.

By means of Parametric Full Maximum Likelihood and Regression Calibration (under the
assumption that the data set of true doses has lognormal distribution), Nonparametric Full
Maximum Likelihood, Nonparametric Regression Calibration, and by properly tuned SIMEX
method we study the influence of measurement errors in thyroid dose on the estimates of λ0 and
EAR. The simulation study is presented based on a real sample from the epidemiological studies.
The doses were reconstructed in the framework of the Ukrainian-American project on the
investigation of Post-Chernobyl thyroid cancers in Ukraine, and the underlying subpolulation was
artificially enlarged in order to increase the statistical power. The true risk parameters were given
by the values to earlier epidemiological studies, and then the binary response was simulated
according to the dose-response model.

KEYWORDS: Berkson measurement error, Chornobyl accident, classical measurement error,
estimation of radiation risk, full maximum likelihood estimating procedure, regression calibration,
SIMEX estimator, uncertainties in thyroid dose
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1 Introduction
The current methods of risk estimation (see Health Risks from Exposure to Low
Levels of Ionizing Radiation, 2006; Jacob et al., 2006; Likhtarev et al., 2006a) take
into account uncertainties related to health effects, but assume that the doses are
known with perfect precision and accuracy, something that is not true (Kopecky
et al., 2006; Likhtarev et al., 1993; Likhtarev et al., 2003; Ron and Hoffman, 1999).
Although many attempts have been made to develop mathematical tools which take
into account the dose uncertainty (see Carroll et al., 2006; Hofer, 2008; Kopecky
et al., 2006; Li et al., 2007; Masiuk et al., 2008), the problem has yet to be solved in
a satisfactory manner. It is our opinion that one of the reasons an accurate model is
so hard to create is because the dose estimates are almost inevitably associated with
a mixture of classical and Berkson errors (Reeves et al., 1998; Carroll et al., 2006;
Li et al., 2007), which leads to difficulties in evaluating the influence of the mixed
errors in the estimated dose on risk analysis, which is usually expressed in terms
of relative (ERR) or absolute (EAR) risk (see Health Risks from Exposure to Low
Levels of Ionizing Radiation, 2006). One such example is the analysis of epidemi-
ological investigations of thyroid cancer among children exposed to radioiodines
in fallout from the Chornobyl accident (Jacob et al., 2006; Likhtarev et al., 2006a;
Tronko et al., 2006).

In the Chornobyl accident, not only the absolute and relative frequencies
of thyroid cancer were determined with accuracy, but also the thyroid doses and
their uncertainties of Berkson and classical types were carefully estimated. How-
ever, computationally efficient procedures that account for the mixed nature of the
dosimetric uncertainties in the risk analysis are not available.

In the epidemiologic study of thyroid cancer conducted in Ukraine (Likh-
tarev et al., 2006b), the thyroid dose estimates are based on the measurements of
Iodine-131 (131I) that were performed on all subjects, and the uncertainties in the
thyroid dose estimates are mainly due to those in the measured activities and in the
thyroid mass (Likhtarev et al., 2003).

It is assumed in this paper that the thyroid mass is measured with Berkson
error, which appears as a result of averaging, while uncertainty in the measured ac-
tivity is classical. The presence of errors of both types leads to a mixture of classical
and Berkson errors in the thyroid dose estimates. In this case, the two components
of the uncertainty in the dose are quite distinct and quantifiable, unlike in Reeves
et al. (1998) and Li et al. (2007), where the mixture error model involves, besides
the true dose, additional, unobservable variables in the model of dose measurement.

The model proposed in this paper is a new way of thinking about these
problems. In the Nevada Test Site Study (Apanasovich et al., 2009; Li et al., 2007;
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Lyon et al., 2006; Mallick et al., 2002) it was recognized that there was a mixture
of Berkson and classical errors in the dose estimates, but the available data set did
not have information on their relative sizes, and hence the statistical methods used
here are quite different. Even the SIMEX version in Apanasovich et al. (2009)
is different from the modification developed below because of the different dose
uncertainty model.

Though in the simulations and analysis of the source of uncertainty induced
by Berkson and classical measurement errors we used the dose estimate and its un-
certainty related to the thyroid exposure (Likhtarev et al., 1993; Likhtarev et al.,
2003; Likhtarev et al., 2005), the main goal of the present paper is to study the pos-
sibility to apply in the risk analysis the most popular methods of regression anal-
ysis, e.g., Simulation-Extrapolation (SIMEX), Maximum Likelihood and Regres-
sion Calibration (see Carroll et al., 2006; Kopecky et al., 2006; Masiuk et al., 2008;
Kukush and Schneeweiss, 2005). Those methods take into account the presence
of measurement errors (classical, Berkson and mixed) in regressors. In particular
we study the reliability of radiation risk estimates obtained by each of those meth-
ods, as well as their robustness with respect to the error magnitude and the form
of distribution of the initial data set of dose estimates. Attention will be paid to
development and mathematical justification of modifications of the listed methods
that under certain conditions lead to significant improvement of the estimates.

In order to get the results that are as much as possible independent of the
concrete radio-epidemiological investigations, a cohort was simulated with the fol-
lowing properties:

• The cohort is sufficiently large that there are enough thyroid cancer disease
cases for the existence of a solution to the optimization of the objective log-
likelihood function, for all simulated data sets. Thyroid cancer is rare in a
population, even for the Chornobyl accident.
• The radiation risk parameters used are close to the quantities obtained in

Jacob, et al. (2006), Likhtarev, et al. (2006a) and Tronko, et al. (2006).
• The risk model is the simplest but quite popular generalized linear model

of absolute risk with binary response (see below) that makes it possible to
verify and compare the results with estimates obtained by the well-known
program package EPICURE.

We mention the main novelties of the present paper:

• An efficient version of SIMEX that provides smaller estimation bias com-
pared with ordinary SIMEX.
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• A refined version of SIMEX in equation (A.3) from Appendix that improves
statistical performance.
• A new nonparametric regression calibration procedure.
• A new nonparametric full maximum likelihood estimating procedure.
• A simulation study in a unique context.

2 Error-Free Dose-Response Model and Risk Esti-
mation

In this section, we describe the error-free model and computation methods for fitting
it.

2.1 The Dose-Response Model

With a binary response Y , our dose-response model is

pr(Y = 1|D) =
λ0(1 + βD)

1 + λ0(1 + βD)
(1)

where D denotes the individual thyroid dose for a given person, the event Y = 1
means that the person developed thyroid cancer within a certain time interval (e.g.,
during ten years), λ0 is the baseline incidence rate, and λ0β is the excess absolute
risk per gray (EAR). Of course, λ0 and β are both positive.

2.2 Maximum Likelihood

The parameters in model (1) can be estimated by maximum likelihood, which con-
sists of solving the equations

∑N
i=1Yi{λ0(1 + βDi)}−1 = ∑N

i=1{1 + λ0(1 + βDi)}−1;

∑N
i=1YiDi{λ0(1 + βDi)}−1 = ∑N

i=1Di{1 + λ0(1 + βDi)}−1.

These equations can be obtained by differentiating the loglikelihood function (see
e.g. Masiuk, 2008, page 67).

Remark 1 Of course, standard programs such as EPICURE can be used to com-
pute the maximum likelihood estimators, but when we account for measurement
error, one of the methods we discuss is the SIMEX algorithm, which is computa-
tionally expensive and involves fitting the maximum likelihood method many times.
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If the bootstrap is employed for inference, the maximum likelihood estimator would
have to be computed tens of thousands of times. For this reason, in Section 2.3 we
will suggest another approach.

2.3 A Computationally Efficient Method

In order to obtain a computationally efficient estimator, we first note that E{(1−
Y )(1 + βD)} = E(Y/λ0) and E{(1−Y )} = E[Y/{λ0(1 + βD)}]. Replacing the
expectations by their empirical means, this suggests solving

0 = ∑N
i=1 {(1−Yi)(1 + βDi)−Yi/λ0} ; (2)

0 = ∑N
i=1 [1−Yi−Yi/{λ0(1 + βDi)}] . (3)

From (2), for any β we have

λ̂0Q = λ̂0Q(β ) = ∑N
i=1Yi/{∑N

i=1(1−Yi)(1 + βDi)}.
From (2) and (3), by some algebra, we get the equation for β̂Q as

0 = ∑N
i=1Yi(Di−Dav)/(1 + βDi), β > 0, (4)

where
Dav = ∑N

i=1Di(1−Yi)/{∑N
i=1(1−Yi)}. (5)

The statistical and large sample properties of the solution to (4) are described in
Appendix A.1.

The solution to (4) is readily calculated via any one-dimensional equation
solving method. While not the maximum likelihood estimator, in simulations not
shown here, we have found that it is nearly as efficient, and in any case can be
used as an initial estimate. When we later wish to employ the SIMEX procedure
for measurement error correcting, this computational efficiency becomes important,
see Remark 1.

3 Model for Dose
According to the dosimetric model described by Likhtarev et al. (2005, 2006b), the
calculated thyroid dose of person i is expressed as

Dins
i =

Qmes
i

Mest
i

fi, (6)

where Qmes
i is the measured content of 131I in the thyroid gland of person i at time

tmes, Mest
i is the estimate of the thyroid mass, and fi is a multiplier which takes into
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account the parameter values of an ecology-metabolism model for person i. While
fi is also measured with error, its error is much smaller than the errors in Qmes

i
and in Mest

i (see Likhtarev et al., 2003, 2006b) and will be ignored in this analysis.
In principle, the uncertainty in fi can be included in the evaluation in many ways,
using for example the shared parameter methods of Stram and Kopecky (2003).

The uncertainties in Qmes
i and Mest

i are as follows:

• The measured activity is associated with a multiplicative error, which is
determined by the characteristics of the measuring instrument (Likhtarev,
et al., 1993; Likhtarev, et al., 2003), so that

Qmes
i = Q tr

i V Q
i , (7)

where Q tr
i is the true 131I content in the thyroid gland, and V Q

i is the inde-
pendent multiplicative measurement error. Expression (7) of course defines
a classical multiplicative error model.
• The true values of the thyroid mass Mtr

i are determined according to a Berk-
son measurement error model as

Mtr
i = Mmes

i V M
i , (8)

where Mmes
i is the median of the thyroid mass for a given gender-age group,

and V M
i an independent multiplicative error.

• The measurement errors (V Q
i ,V

M
i ) are assumed to be lognormally dis-

tributed, so that log(V Q
i ) = Normal(0, σ2

Q, i) and log(V M
i ) = Normal(0, σ2

M, i ).
In the Chornobyl data, the parameters σ2

Q, i and σ2
M, i have been reliably es-

timated (see Likhtarev et al., 1993), therefore in this paper those variables
are assumed known.
• We assume that the random vector (Q tr

i ,M
mes
i ) and random variables V Q

i ,
V M

i are jointly independent, and we set Mest
i = Mmes

i . We allow the random
variables Qtr

i and Mmes
i to be correlated.1

The unobservable error-free dose is denoted by D tr
i , and is given as

D tr
i = Q tr

i fi/Mtr
i . (9)

1For the subpopulation from Section 6.1 the sample correlation between log(Q tr) and log(Mmes)
is equal to 0.26. The explanation for positive correlation between the thyroid activity and the thyroid
gland mass is the following: the larger age of a person the larger the mass, and therefore, in general,
the larger the activity.
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Remark 2 The assumption that the measurement errors in the thyroid mass have
lognormal distributions is justified as follows: our research group possesses the
data set of thyroid volume measurements performed by the Sasakawa Foundation
in Ukraine for each age-sex-region group (the quantiles of the corresponding distri-
butions are published in Chernobyl: A Decade, 1997, pp. 393–398). It is clear from
the data set that the distributions are close to lognormal. By physical reasoning the
measured activity is non-negative. Therefore, the multiplicative error in the activity
is modeled by a lognormal law. In future we will study the distribution of this error
in more detail.

4 Regression Calibration

4.1 Parametric Calibration

In practice, regression calibration (see Carroll et al., 2006) is often used to take into
account the errors in measured dose. According to this method, prior to statistical
processing of the epidemiological data, the measured dose is replaced by the con-
ditional expectation of the true dose given measured quantities. In our case, we the
measured dose is replaced by

D∗i = E(D tr
i | Dins

i ), (10)

which is really a short-hand notation for conditioning on the measured quantities
(Mest

i ,Qmes
i , fi). Following this, classical regression analysis of the epidemiological

data is performed, e.g., by the program package EPICURE (Preston et al., 1993),
with inference using a bootstrap.

Consider for example the case that f Q tr/Mmes has a lognormal distribution.
Let log( f Q tr/Mmes) = Normal(µ1,σ2

1 ). Because log(Dins
i ) = log( fiQ tr

i /Mmes
i ) +

logV Q
i and the summands are independent, the conditional distribution of

log( fiQ tr
i /Mmes

i ) given Dins
i is normal,

log
(

fiQ tr
i

Mmes
i

) ∣∣∣∣ Dins
i = Normal

(
σ2

1 logDins
i + σ2

Q,iµ1

σ2
1 + σ2

Q,i
,

σ2
1 σ2

Q,i

σ2
1 + σ2

Q,i

)
,

see the corresponding formula in Anderson (1958, Section 2.5). Then

E
(

fiQ tr
i

Mmes
i

∣∣∣∣ Dins
i

)
= exp

(
σ2

1 logDins
i + σ2

Q,iµ1 + σ2
1 σ2

Q,i/2

σ2
1 + σ2

Q,i

)
.
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Because D tr
i = ( fiQ tr

i /Mmes
i )× (V M

i )−1, and the factors fiQ tr
i /Mmes

i and (V M
i )−1

are independent,

E[D tr
i | Dins

i ] = E[ fiQ tr
i /Mmes

i | Dins
i ]E(V M

i )−1

= exp

{
σ2

1 logDins
i + σ2

Q,iµ1 + σ2
1 σ2

Q,i/2

σ2
1 + σ2

Q,i
+

σ2
M,i

2

}
.

Finally, we have to estimate µ1 and σ2
1 and substitute the estimates:

D∗i = exp

{
σ̂2

1 logDins
i + σ2

Q,iµ̂1 + σ̂2
1 σ2

Q,i/2

σ̂2
1 + σ2

Q,i
+

σ2
M,i

2

}
. (11)

Consistent estimates for µ1 and σ2
1 are the sample mean of log(Dins

i ) and the sample
variance of log(Dins

i ) minus the average value of σ2
Q,i.

Also, the calibration of the dose can be done under the assumption that the
distribution of log( f Q tr/Mmes) is a mixture of normal distributions. But in our
simulations we do not see the advantage of involving the mixture of normals. The
reason for that is the unimodality of the distribution of log( f Q tr/Mmes), see Figures
1 and 2 in Section 6.2.

4.2 Nonparametric Regression Calibration

Now, we suppose that the form of distribution of f Q tr/Mmes is not specified.
One way to handle this problem is via a discrete approximation to this distribu-
tion. Let the range of log( f Q tr/Mmes) be partitioned into K intervals, with mid-
points x1, . . . ,xK . Then construct a discrete approximation to the distribution of
fiQ tr

i /Mmes
i according to the formula

pr{ fiQ tr
i /Mmes

i = exp(xk)}= bk, k = 1, . . . ,K (12)

(in the simulation study we took K = 25). Here the values bk are estimated by
maximum likelihood based on known distribution of the measurement errors V Q

i
and using the convex optimization technique. Next, by Bayes’ formula we construct
the calibrated doses

D∗i =
∑K

k=1 bk`ik exp(xk + σ2
M,i/2)

∑K
k=1 bk`ik

,

where

`ik =
1√

2πσ2
Q,i

exp

(
−(xk− logDmes

i )2

2σ2
Q,i

)

is the conditional density of log(Dmes
i ) given fiQ tr

i /Mmes
i at point xk.
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5 The SIMEX Estimator and Its Computationally
Efficient Modification

The estimator obtained by the SIMEX method is randomized, i.e., it is a random
function of observations. A similar method of risk parameters estimation was used
in Kopecky et al. (2006), but the approach proposed below makes it possible to give
proper weight to the structure of measured doses. Note that the SIMEX method
does not require the knowledge of the probability distribution for the true activ-
ity Q tr

i .
To account for the Berkson error, the thyroid mass Mmes

i is calibrated by
formula:

E{(1/Mtr
i )|Mmes

i }= E(1/V M
i )/Mmes

i = exp(σ2
M,i/2)/Mmes

i . (13)

We intend to substitute E{(1/Mtr
i )|Mmes

i } for 1/Mmes
i . In order to take the classical

error into consideration, the following steps are taken:

1. Select a natural number B ≥ 2. Generally, we select B to be a fairly large
number, e.g., B = 100. Simulate random perturbations of log-activities
U∗b,i = Normal(0,σ2

Q,i) for b = 1, ...,B and i = 1, ...,N.
2. Choose various levels of κ ≥ 0. We use κ = (0.0,0.2,0.4,0.6).
3. For each κ , obtain the perturbed doses

D∗b,i(κ) =
Qmes

i
Mmes

i
fi exp

(
σ2

M,i/2 +
√

κU∗b,i
)
. (14)

4. Compute the ordinary (naı̈ve) estimators λ̂ ∗0,b(κ), β̂ ∗b (κ) for κ =0, 0.2,

0.4, 0.6 and average them across b, defining λ̂ ∗0 (κ) = B−1∑B
b=1λ̂ ∗0,b(κ),

EAR∗(κ) = B−1∑B
b=1λ̂ ∗0,b(κ)β̂ ∗b (κ).

5. Extrapolate numerically the functions λ̂ ∗0 (κ) and EAR∗(κ) to the point
κ =−1 and get the SIMEX estimator for the parameters λ0 and EAR =
λ0β .

We describe in Remark 1 why a computationally efficient version of SIMEX
is desirable in our context. In the computationally efficient modification of the
SIMEX method, other values are used instead of the doses (14), namely

D∗b,i(κ) =





(Qmes
i /Mmes

i ) fi exp
{(

σ2
M,i−σ2

Q,i

)
/2
}
, Yi = 0,

(Qmes
i /Mmes

i ) fi exp
(

σ2
M,i/2 +

√
κU∗b,i

)
, Yi = 1,
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and as a result the system of equations for the modified estimate takes the form

∑N
i=1(1−Yi)

[
1 + β̂ ∗b (κ)

Qmes
i

Mmes
i

fi exp{(1/2)(σ2
M,i−σ2

Q,i)}
]

= ∑N
i=1Yi/λ̂ ∗0,b(κ),

(15)
∑N

i=1(1−Yi) = ∑N
i=1Yi[λ̂ ∗0,b(κ){1 + β̂ ∗b (κ)D∗b,i(κ)}]−1. (16)

Hence the left-hand side of (15) is obtained after taking into account the dose
errors and correction of the expression ∑N

i=1(1−Yi)(1 + βDi), see equation (2)
and Carroll et al. (2006), while the right-hand side of equation (16) is obtained
after perturbation of DMcal

i in the expressions ∑N
i=1Yi/{λ0(1 + βDMcal

i )}, where
DMcal

i = (Qmes
i /Mmes

i ) fi exp(σ2
M,i/2) is the dose calibrated with respect to the er-

rors in the thyroid mass. Equations (15)–(16) can be solved similarly to equations
(2)–(3).

This modification of SIMEX is computationally efficient for the following
reasons:

• Each evaluation of the naı̈ve estimator, that is solving (15)–(16), is efficient.
• Some calculations common to different evaluations of the naı̈ve estimator

have to be performed only once.

A more detailed description of the proposed procedure is presented in Ap-
pendix A.2, while the characteristics of its implementation are given in Appendix
A.3. This modification of the SIMEX estimator is justified in Appendix A.2.2.

6 Simulation

6.1 Simulation Setup

We performed a simulation study based on data from epidemiological investigations
(see Jacob, et al., 2006; Likhtarev, et al., 2005; Likhtarev, et al., 2006a; Likhtarev,
et al., 2006b). For the simulation of doses a real subpopulation of 7077 children
and teenagers up to 18 years was used; these persons resided in settlements of
Zhitomir, Kyiv, and Chernigov Oblasts of Ukraine at the time of the Chornobyl
accident and had direct measurements of thyroid activity in May-June 1986. The
thyroid doses for this subpopulation were reconstructed in the framework of the
Ukrainian-American project on the investigation of Post-Chornobyl thyroid cancers
in Ukraine (Likhtarev, et al., 2006b).

9
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6.2 Two Simulation Scenarios

We simulated under two scenarios, in one of which the distribution of thyroid doses
is well-modeled by a lognormal distribution, while in the other it is not.

• In the first scenario the subpopulation was formed in such a way that the per-
sons with dose f Qtr/Mmes greater than 2 Gray were deleted. In addition, in
order to increase the power of the numerical experiment, this subpopulation
was artificially enlarged to N = 66665 persons. The cutoff was performed
only at the preliminary stage of the simulation. But after the simulation the
doses were not cut off and varied from 3×10−7 to 10.5 Grays (see Figure 1).
• In the second scenario, at the preliminary stage the cutoff was not per-

formed, and the subpopulation was artificially enlarged to N = 70770 per-
sons (see Figure 2).

−16 −14 −12 −10 −8 −6 −4 −2 0 2
0

500

1000

1500

2000

2500

3000

Figure 1: Censored distribution of log( f Q tr/Mmes).

The true parameters of the absolute risk model (1) were given by the values
close to the estimates obtained in the epidemiological studies of the thyroid cancers
in Ukraine (Jacob, et al., 2006; Likhtarev, et al., 2006a). Namely, we set

λ0 = 10−3 cases
persons

; EAR = 5×10−3 cases
Gray ·persons

.

We simulated 100 different data sets. However, unperturbed data fi, Q tr
i

and Mmes
i , i=1, . . . ,N, are based on real data and are the same for all realizations.

In fact,
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−15 −10 −5 0 5
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500

1000

1500

2000

2500

3000

3500

Figure 2: Uncensored distribution of log( f Q tr/Mmes).

• fi is the estimate from the ecological dosimetric model, see Likhtarev et
al. (2006b),
• for Qtr

i we took the thyroid activity measured in 1986, see Likhtarev et
al. (1993),
• and Mmes

i is the median of the thyroid mass distribution for corresponding
age-sex-region group, see Chornobyl: A Decade (1997).

We used different values of the measurement error variances, including the
real ones as obtained in Chernobyl: A Decade (1997), Likhtarev et al. (1993), and
Likhtarev et al. (2003). The values of the geometric standard deviation GSDM of
the uncertainty distribution for the thyroid mass were 1 (no error), 1.33,2 1.5, and
2.0, while the GSDQ of the uncertainty distribution for the measured activity varied
from 1.5 to 5.0.

6.3 Simulation Results and Discussion

6.3.1 Setup and Methods

The simulation results are presented in Tables 1–4.
2Here the estimate of GSDM based on the real data is used in the simulation of V M

i . In this case
the simulated error in the thyroid mass is heteroscedastic, and its average GSD is 1

N ∑N
i=1 exp(σM,i) =

1.33. For all other cases the simulated errors V M
i are homoscedastic. Throughout the simulation, the

errors V Q
i are homoscedastic.
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Table 1: Estimates of baseline incidence rate for the first scenario.
ERROR Estimates of λ0×103 by different methods. True value of λ0×103 = 1.0

Naive Full ML Regression Calibration
No. GSDM GSDQ (EPICURE) Parametric Nonparametric Parametric Nonparametric

Mean 95% DI Mean 95% CI Mean 95% CI Mean 95% DI Mean 95% DI
1 No 1.5 1.15 0.82-1.58 1.11 0.81-1.50 1.01 0.72-1.45 1.06 0.76-1.50 1.00 0.68-1.45

error 2 1.40 1.03-1.85 1.28 0.95-1.68 1.02 0.71-1.45 1.17 0.84-1.62 1.00 0.64-1.47
3 1.83 1.47-2.28 1.29 0.92-1.80 1.02 0.66-1.47 1.32 0.94-1.80 1.00 0.57-1.52
5 2.22 1.83-2.71 1.33 0.89-1.84 1.03 0.53-1.62 1.42 1.00-1.93 1.05 0.50-1.83

2 Real 1.5 1.15 0.79-1.58 1.11 0.79-1.52 1.01 0.64-1.41 1.07 0.76-1.50 1.00 0.68-1.46
esti- 2 1.43 1.01-1.88 1.29 0.96-1.70 1.01 0.64-1.45 1.18 0.85-1.63 0.99 0.62-1.46

mates 3 1.89 1.51-2.36 1.29 0.95-1.77 1.01 0.68-1.47 1.33 0.98-1.82 1.00 0.51-1.52
5 2.32 1.94-2.79 1.35 0.94-1.88 1.04 0.58-1.63 1.45 1.04-1.97 1.04 0.38-1.78

3 1.5 1.5 1.16 0.81-1.56 1.03 0.75-1.47 1.00 0.65-1.37 1.07 0.75-1.47 1.00 0.66-1.43
2 1.45 1.08-1.90 1.30 0.91-1.76 1.02 0.70-1.46 1.19 0.88-1.62 0.99 0.67-1.45
3 1.95 1.58-2.44 1.31 1.04-2.06 1.02 0.61-1.49 1.35 0.99-1.78 0.99 0.53-1.53
5 2.42 2.03-3.00 1.37 0.95-1.74 1.03 0.55-1.60 1.48 1.03-1.96 1.03 0.39-1.78

4 2 1.5 1.20 0.82-1.70 1.03 0.68-1.52 1.00 0.67-1.46 1.08 0.75-1.56 0.99 0.63-1.47
2 1.58 1.21-2.02 1.21 0.85-1.76 1.00 0.62-1.47 1.23 0.85-1.69 0.99 0.56-1.47
3 2.26 1.87-2.71 1.40 1.01-1.85 1.00 0.52-1.52 1.44 1.01-1.90 0.99 0.47-1.52
5 2.92 2.50-3.44 1.49 1.01-2.03 1.03 0.40-1.63 1.62 1.18-2.17 1.04 0.35-1.87
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Table 2: Estimates of excess absolute risk for the first scenario.
ERROR Estimates of EAR×103 by different methods. True value of EAR×103 = 5.0

Naive Full ML Regression Calibration
No. GSDM GSDQ (EPICURE) Parametric Nonparametric Parametric Nonparametric

Mean 95% DI Mean 95% CI Mean 95% CI Mean 95% DI Mean 95% DI
1 No 1.5 4.19 2.83-5.46 4.57 3.30-5.92 5.11 3.80-6.49 4.61 3.52-5.92 5.04 3.47-6.60

error 2 2.91 1.89-3.95 3.88 2.92-5.28 5.11 3.57-6.49 4.00 2.88-5.21 5.04 3.44-6.63
3 1.24 0.72-1.82 3.62 2.32-4.99 5.08 3.63-6.49 3.31 2.16-4.38 5.01 3.28-6.77
5 0.26 0.07-0.47 3.23 1.94-4.50 5.04 3.78-6.70 2.85 1.83-4.02 4.81 2.65-6.91

2 Real 1.5 4.60 3.14-6.22 3.23 1.94-4.50 5.08 3.53-6.11 4.62 3.47-6.21 5.05 3.53-6.75
esti- 2 3.21 2.11-4.55 3.89 2.73-5.47 5.08 3.63-6.39 4.02 3.02-5.59 5.06 3.54-6.80

mates 3 1.38 0.81-2.13 3.63 2.66-5.06 5.05 3.66-6.51 3.33 2.32-4.72 5.03 3.55-6.73
5 0.30 0.10-0.54 3.23 2.18-4.52 4.98 3.73-6.29 2.88 1.85-4.10 4.84 3.12-7.00

3 1.5 1.5 4.98 3.41-6.52 4.80 3.48-6.10 5.05 3.50-6.53 4.62 3.46-5.99 5.05 3.52-6.52
2 3.49 2.28-4.68 3.95 2.62-5.35 5.01 3.50-6.35 4.03 3.05-5.41 5.05 3.52-6.61
3 1.51 0.94-2.20 3.62 2.53-4.99 5.00 3.52-6.35 3.35 2.38-4.57 5.03 3.50-6.52
5 0.33 0.11-0.55 3.23 1.01-4.36 4.94 3.59-6.35 2.90 1.97-3.98 4.86 3.28-6.73

4 2 1.5 6.88 5.22-8.44 4.71 3.61-5.78 5.00 3.85-6.14 4.64 3.53-5.63 5.04 3.87-6.09
2 4.87 3.47-6.26 4.07 3.06-5.23 5.02 3.71-6.17 4.07 2.99-5.05 5.04 3.69-6.22
3 2.14 1.39-2.94 3.65 2.65-4.69 5.01 3.54-6.43 3.40 2.38-4.37 5.02 3.68-6.46
5 0.47 0.22-0.80 3.26 2.28-4.21 4.97 3.44-6.64 2.94 1.95-3.99 4.87 3.30-6.75
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Table 1 (continued). Table 2 (continued).
ERROR Estimates of λ0×103 by

SIMEX
No. GSDM GSDQ Ordinary Efficient

Mean 95% CI Mean 95% CI
1 No 1.5 1.00 0.60-1.40 1.00 0.62-1.39

error 2 0.99 0.56-1.43 1.00 0.61-1.40
3 1.11 0.62-1.61 1.02 0.60-1.44
5 1.59 1.08-2.09 1.07 0.64-1.50

2 Real 1.5 1.00 0.59-1.40 1.00 0.61-1.39
esti- 2 0.98 0.54-1.42 0.99 0.59-1.40

mates 3 1.10 0.59-1.61 1.02 0.60-1.43
5 1.60 1.09-2.11 1.07 0.63-1.51

3 1.5 1.5 0.99 0.59-1.40 1.00 0.60-1.39
2 0.98 0.53-1.42 0.99 0.59-1.39
3 1.09 0.57-1.62 1.01 0.58-1.44
5 1.65 1.12-2.18 1.07 0.62-1.53

4 2 1.5 0.99 0.56-1.42 0.99 0.58-1.40
2 0.95 0.48-1.42 0.99 0.56-1.41
3 1.08 0.50-1.66 1.02 0.57-1.47
5 1.83 1.23-2.44 1.13 0.65-1.61

ERROR Estimates of EAR×103 by
SIMEX

No. GSDM GSDQ Ordinary Efficient
Mean 95% CI Mean 95% CI

1 No 1.5 5.04 3.60-6.49 5.04 3.62-6.46
error 2 4.94 3.44-6.43 5.04 3.60-6.49

3 3.73 2.53-4.94 4.99 3.46-6.52
5 1.39 0.86-1.93 4.83 3.25-6.41

2 Real 1.5 5.06 3.68-6.43 5.06 3.71-6.40
esti- 2 4.97 3.55-6.40 5.07 3.69-6.44

mates 3 3.80 2.64-4.96 5.01 3.58-6.43
5 1.46 0.95-1.97 4.86 3.35-6.36

3 1.5 1.5 5.05 3.74-6.36 5.05 3.77-6.33
2 4.97 3.63-6.32 5.06 3.76-6.37
3 3.83 2.71-4.92 5.01 3.64-6.39
5 1.45 0.96-1.95 4.85 3.40-6.30

4 2 1.5 5.05 3.97-6.13 5.05 4.00-6.10
2 5.00 3.89-6.11 5.06 3.98-6.14
3 3.92 2.97-4.87 4.99 3.87-6.11
5 1.50 1.08-1.92 4.78 3.60-5.97
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Table 3: Estimates of baseline incidence rate for the second scenario.
ERROR Estimates of λ0×103 by different methods. True value of λ0×103 = 1.0

Naive Full ML Regression Calibration
No. GSDM GSDQ (EPICURE) Parametric Nonparametric Parametric Nonparametric

Mean 95% DI Mean 95% CI Mean 95% CI Mean 95% DI Mean 95% DI
1 No 1.5 1.16 0.83-1.49 1.05 0.73-1.36 1.06 0.77-1.33 1.04 0.72-1.35 1.04 0.73-1.35

error 2 1.39 1.06-1.73 1.07 0.75-1.38 1.04 0.71-1.34 1.05 0.73-1.36 1.04 0.75-1.34
3 1.87 1.49-2.21 1.11 0.79-1.43 1.05 0.71-1.34 1.06 0.76-1.39 1.07 0.76-1.41
5 2.56 2.10-2.96 1.16 0.80-1.50 1.03 0.70-1.39 1.13 0.75-1.49 1.06 0.74-1.46

2 Real 1.5 1.21 0.85-1.54 1.10 0.73-1.42 1.06 0.76-1.41 1.04 0.66-1.41 1.09 0.73-1.42
esti- 2 1.45 1.10-1.77 1.12 0.77-1.41 1.05 0.70-1.39 1.05 0.68-1.43 1.09 0.77-1.39

mates 3 1.97 1.59-2.29 1.16 0.82-1.44 1.04 0.75-1.35 1.07 0.71-1.43 1.10 0.81-1.35
5 2.72 2.33-3.07 1.21 0.83-1.46 1.03 0.70-1.28 1.14 0.71-1.56 1.11 0.83-1.35

3 1.5 1.5 1.22 0.82-1.51 1.09 0.71-1.38 1.06 0.69-1.34 1.04 0.65-1.46 1.09 0.71-1.37
2 1.48 1.08-1.79 1.11 0.75-1.42 1.04 0.69-1.33 1.05 0.67-1.47 1.10 0.69-1.40
3 2.02 1.60-2.33 1.16 0.81-1.51 1.04 0.72-1.35 1.06 0.69-1.46 1.09 0.71-1.40
5 2.81 2.43-3.14 1.21 0.87-1.52 1.01 0.63-1.33 1.13 0.70-1.52 1.09 0.75-1.46

4 2 1.5 1.25 0.80-1.60 1.10 0.66-1.43 1.06 0.64-1.37 1.05 0.66-1.43 1.09 0.66-1.42
2 1.59 1.12-1.96 1.13 0.70-1.51 1.04 0.68-1.37 1.06 0.68-1.48 1.11 0.69-1.42
3 2.32 1.87-2.71 1.19 0.75-1.55 1.03 0.65-1.49 1.08 0.73-1.49 1.12 0.75-1.43
5 3.40 3.03-3.87 1.27 0.82-1.70 1.03 0.61-1.50 1.17 0.71-1.72 1.11 0.68-1.59
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Table 4: Estimates of excess absolute risk for the second scenario.
ERROR Estimates of EAR×103 by different methods. True value of EAR×103 = 5.0

Naive Full ML Regression Calibration
No. GSDM GSDQ (EPICURE) Parametric Nonparametric Parametric Nonparametric

Mean 95% DI Mean 95% CI Mean 95% CI Mean 95% DI Mean 95% DI
1 No 1.5 4.33 3.57-5.31 4.82 3.97-5.87 5.08 4.33-6.35 4.88 4.03-5.95 5.00 4.12-6.09

error 2 3.39 2.81-4.21 4.69 3.88-5.72 5.17 4.40-6.44 4.84 4.04-5.96 4.97 4.09-6.10
3 1.92 1.49-2.40 4.49 3.72-5.55 5.14 4.30-6.32 4.78 3.94-5.87 4.88 4.00-6.05
5 0.62 0.44-0.82 4.30 3.56-5.34 5.12 4.16-6.63 4.57 3.73-5.75 4.81 3.91-5.93

2 Real 1.5 4.71 3.92-5.63 4.77 3.96-5.68 5.01 4.18-5.97 4.86 4.11-5.74 4.93 4.07-5.85
esti- 2 3.70 3.03-4.47 4.64 3.84-5.54 5.10 4.20-6.29 4.82 4.09-5.79 4.93 4.08-5.86

mates 3 2.10 1.71-2.57 4.46 3.75-5.31 5.11 4.12-6.17 4.76 3.98-5.74 4.86 4.17-5.79
5 0.70 0.54-0.91 4.28 3.70-5.07 5.09 3.88-6.19 4.55 3.62-5.67 4.79 4.23-5.74

3 1.5 1.5 5.04 4.38-6.01 4.75 4.13-5.63 5.01 4.32-5.90 4.87 4.18-5.70 4.93 4.28-5.87
2 3.96 3.40-4.75 4.63 3.97-5.48 5.09 4.32-6.17 4.80 4.09-5.73 4.90 4.25-5.81
3 2.26 1.86-2.71 4.43 3.74-5.23 5.08 4.27-6.13 4.74 4.02-5.70 4.83 4.10-5.71
5 0.76 0.60-0.98 4.25 3.66-4.98 5.08 4.24-6.38 4.55 3.76-5.57 4.76 4.12-5.64

4 2 1.5 6.87 5.92-7.75 4.70 4.06-5.28 4.95 4.24-5.50 4.80 4.11-5.34 4.87 4.17-5.44
2 5.44 4.66-6.18 4.57 3.97-5.13 5.02 4.30-5.62 4.73 4.07-5.25 4.83 4.20-5.42
3 3.12 2.62-3.62 4.37 3.86-4.91 5.02 4.23-5.62 4.66 4.00-5.22 4.74 4.25-5.26
5 1.05 0.84-1.28 4.17 3.72-4.73 4.98 4.09-5.97 4.47 3.81-5.29 4.70 4.15-5.37
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Table 3 (continued). Table 4 (continued).
ERROR Estimates of λ0×103 by

SIMEX
No. GSDM GSDQ Ordinary Efficient

Mean 95% CI Mean 95% CI
1 No 1.5 1.02 0.66-1.38 1.02 0.67-1.37

error 2 1.01 0.64-1.39 1.02 0.66-1.37
3 0.99 0.58-1.41 1.02 0.64-1.40
5 1.15 0.65-1.64 1.05 0.65-1.46

2 Real 1.5 1.02 0.66-1.38 1.02 0.66-1.38
esti- 2 1.01 0.63-1.39 1.02 0.65-1.38

mates 3 0.98 0.55-1.42 1.02 0.64-1.40
5 1.15 0.65-1.65 1.05 0.63-1.46

3 1.5 1.5 1.02 0.65-1.38 1.02 0.66-1.38
2 1.01 0.62-1.39 1.01 0.65-1.38
3 0.98 0.54-1.41 1.02 0.63-1.40
5 1.15 0.64-1.66 1.06 0.64-1.48

4 2 1.5 1.02 0.63-1.41 1.03 0.64-1.41
2 1.01 0.59-1.42 1.02 0.63-1.41
3 0.94 0.47-1.41 1.02 0.61-1.43
5 1.14 0.57-1.71 1.08 0.63-1.53

ERROR Estimates of EAR×103 by
SIMEX

No. GSDM GSDQ Ordinary Efficient
Mean 95% CI Mean 95% CI

1 No 1.5 4.95 4.09-5.80 4.95 4.09-5.80
error 2 4.91 4.04-5.77 4.95 4.08-5.82

3 4.44 3.67-5.22 4.95 4.04-5.87
5 2.65 2.20-3.11 4.90 3.88-5.92

2 Real 1.5 4.93 4.11-5.74 4.93 4.12-5.74
esti- 2 4.90 4.07-5.72 4.93 4.11-5.76

mates 3 4.44 3.69-5.19 4.94 4.07-5.81
5 2.68 2.24-3.12 4.90 3.93-5.88

3 1.5 1.5 4.92 4.13-5.70 4.91 4.14-5.69
2 4.88 4.09-5.67 4.92 4.13-5.72
3 4.44 3.72-5.15 4.92 4.09-5.76
5 2.68 2.26-3.09 4.87 3.93-5.81

4 2 1.5 4.85 4.19-5.51 4.84 4.19-5.50
2 4.82 4.15-5.50 4.85 4.18-5.52
3 4.42 3.81-5.03 4.85 4.15-5.56
5 2.70 2.33-3.07 4.80 4.00-5.60
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The estimation of the absolute risk parameters was performed by several
methods:

1. Naı̈ve: The ordinary maximum likelihood method in which the dose esti-
mates are taken to be error-free.

2. Parametric Full ML: Full maximum likelihood where the error in the mea-
sured activity was taken into account by means of the integral convolution
over the distribution of true thyroid doses (Carroll et al., 2006; Masiuk et al.,
2008), assuming that f Qtr/Mmes has a lognormal distribution. The error in
the thyroid mass was handled by relation (13).

3. Nonparametric Full ML: The full maximum likelihood method described
above, but without assumption about the distribution of f Qtr/Mmes. The
latter distribution is approximated according to formula (12).

4. Parametric Regression Calibration: Parametric regression calibration as de-
scribed in Section 4.1.

5. Nonparametric Regression Calibration: Nonparametric calibration as de-
scribed in Section 4.2.

6. Ordinary SIMEX: The SIMEX method described in Section 5 with refine-
ment (A.3).

7. Efficient SIMEX: Our computationally efficient modification of the SIMEX
method presented in Section 5.

Each estimate was computed for 100 different realizations of doses and
cases. Then the corresponding estimates were averaged.

For methods 1, 4 and 5, the confidence intervals were not calculated due to
their well-known statistical inconsistency in the presence of dose errors, and hence
we used the deviance interval (DI), calculated based on the 2.5th and the 97.5th
percentiles of the estimates over 100 simulations.

For the estimators 2, 3, 6 and 7 the confidence intervals were constructed
based on the asymptotic covariance matrices. The method applied to construct the
confidence intervals for both SIMEX estimators is given in Appendix A.3.

6.3.2 The Naı̈ve Method

The analysis of the results shows that in cases where the errors are present only in
the measured activities (see the first block in Tables 1-4), the naı̈ve method under-
estimates of the excess absolute risk, while the baseline incidence rate is overesti-
mated. The bias increases as the errors increase. For GSDQ = 5 the value of the
EAR is underestimated by more than a factor of 10.
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If the errors are present both in the measured activity and in the thyroid
mass, then the naı̈ve estimate of the excess absolute risk approaches the true value
only in case where the error variances are approximately equal. This is connected to
the fact that Berkson errors in Mtr

i lead to the overestimation of the EAR, while the
classical errors lead conversely to its underestimation. Thus, the errors compensate
for one another. If one of the errors is larger, then the EAR estimator is biased.

6.3.3 Parametric Regression Calibration and Maximum Likelihood

In Scenario 1, parametric methods are biased (see Tables 1 and 2), because the
distribution of the thyroid doses is not lognormal. In other words, the misspecifica-
tion of the true distribution leads to bias of the estimates which are constructed by
structural methods (Schneeweiss and Cheng, 2006).

In Scenario 2 (see Tables 3 and 4), the dose distribution is uncensored and
can be approximated by the lognormal law. It thus comes as no surprise that the
parametric methods therefore have little bias.

6.3.4 Nonparametric Regression Calibration and Maximum Likelihood

Nonparametric regression calibration and nonparametric full maximum likelihood
methods seem to be more adequate, because they estimate the dose distribution in a
nonparametric way. As a result those methods show quite modest bias even for the
nonsmooth underlying distribution in Scenario 1.

However, in Scenario 2, things might be expected to be different because
of the large right tail of true doses, for which the regression calibration approxi-
mation might break down. Nonparametric full maximum likelihood behaves quite
well in this case, while nonparametric regression calibration has some bias, perhaps
because the nonlinear effects of the underlying logistic type model are revealed.

6.3.5 SIMEX

Though SIMEX is robust with respect to the dose distribution, of course its perfor-
mance gets worse for large errors. In particular ordinary SIMEX shows consider-
able bias for large measurement errors. The reason is as follows: we use a quadratic
extrapolation function, but the naive ordinary likelihood estimator deviates from the
quadratic law as a function of the additional error variance. In the computationally
efficient SIMEX procedure, we use modified naive estimators given by the estimat-
ing equations (15) and (16), and those naive estimators vary almost as a quadratic
function of the additional error variance. As a result the efficient SIMEX has small
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bias even for relatively large errors. In the simulation the level of GSDQ was lim-
ited to 5, but for larger classical errors the behavior of the computationally efficient
SIMEX estimator could be worse.

6.3.6 Numerical Comparisons

For a particular comparison, we consider the case that GSDQ = 3 and GSDM = 1.5.
In Scenario 1, the %-bias in λ0 for Naı̈ve, Parametric ML, Nonparametric

ML, Parametric regression calibration, Nonparametric regression calibration, Ordi-
nary SIMEX and Efficient SIMEX were 95%, 31%, 2%, 35%, 1%, 9% and 1%,
respectively. The corresponding biases for Scenario 2 were 102%, 16%, 4%, 6%,
9%, 2% and 2%, respectively.

In Scenario 1, the %-bias in Excess Absolute Risk for Naı̈ve, Paramet-
ric ML, Nonparametric ML, Parametric regression calibration, Nonparametric re-
gression calibration, Ordinary SIMEX and computationally Efficient SIMEX were
70%, 28%, 0.1%, 13%, 1%, 53% and 0.2%, respectively. The corresponding biases
for Scenario 2 were 50%, 11%, 2%, 5%, 3%, 11% and 2%, respectively.

In terms of variability, we ignore the Naı̈ve estimate because of its severe
bias. We considered the length of the 95% CI as a measure of standard deviation,
and define the variance efficiency of a method compared to the computationally
efficient SIMEX method as the square of the ratio of efficient SIMEX interval length
to the method’s interval length. For the methods the CI were not computed, the
deviance intervals were used.

In Scenario 1, the variance efficiency in λ0 for the Parametric ML, Nonpara-
metric ML, Parametric regression calibration, Nonparametric regression calibration
and Ordinary SIMEX compared to computationally Efficient SIMEX were 100%,
71%, 59%, 118% and 73%, respectively. The corresponding efficiencies for Sce-
nario 2 were 121%, 150%, 100%, 125% and 79%, respectively.

In Scenario 1, the variance efficiency in Excess Absolute Risk for the Para-
metric ML, Nonparametric ML, Parametric regression calibration, Nonparametric
regression calibration and Ordinary SIMEX compared to computationally Efficient
SIMEX were 125%, 94%, 158%, 83% and 155%, respectively. The corresponding
efficiencies for Scenario 2 were 125%, 81%, 99%, 107% and 137%, respectively.

6.3.7 Other Comments

Simulations showed that the level of the classical and Berkson errors has little in-
fluence on the size of confidence intervals for the computationally efficient SIMEX
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and nonparametric full maximum likelihood estimates. Nevertheless for larger clas-
sic errors confidence intervals become wider. Moreover, in some cases larger Berk-
son errors correspond to narrower confidence intervals. The reason for this effect is
that in the presence of a larger Berkson error, the number of disease cases in the sim-
ulated response increases because the mean dose is increasing. This in turn yields
more information and leads to shrinking of confidence intervals for risk estimators.

We considered model (1) in terms of the baseline incidence rate and EAR
because we think it is more natural in the measurement error context. Addition-
ally, EAR is a kind of slope parameter for dose, and the attenuation effect for the
naı̈ve estimator of slope parameter is well known (Carroll et al., 2006). But it is
possible to compute point estimates of ERR as well and construct the correspond-
ing confidence intervals. A rough estimate of ERR equals the ratio of estimates of
EAR and λ0.

7 Conclusions
We studied the influence of mixed dose errors on radiation risk estimation in binary
regression with linear dose dependence. A model of absolute risk was investigated
where the doses are observed with a mixture of classical and Berkson multiplicative
errors. The algorithms were constructed to compute the parameter estimates by full
maximum likelihood, regression calibration and SIMEX method.

For the standard binary model, i.e., under the absence of errors in the dose
estimates, a computationally efficient algorithm to compute the risk estimate was
proposed, which leads to solving a one variable equation. In Appendix A.1 it is
shown that this equation has no more than one root in the region λ0 > 0, β > 0 and
it can be solved efficiently. Simulations show that it is almost as accurate as the
maximum likelihood estimator and can serve as a good initial approximation for
computation of the maximum likelihood estimator. Our simulations suggest that
for the range of doses considered, the efficient SIMEX estimators turned out to be
the most precise of all the estimators we considered.

We studied two scenarios in our simulation, with the following ideas in
mind. Parametric regression calibration and parametric maximum likelihood nec-
essarily make parametric assumptions about the distribution of a latent variable
f Qtr/Mmes. We were interested in what happens when the parametric assumptions
were very wrong (Scenario 1, Tables 1 and 2) or were approximately correct (Sce-
nario 2, Tables 3 and 4). Not surprisingly, when the assumptions were very wrong,
the parametric methods incurred significant bias. This shows that parametric re-
gression calibration and maximum likelihood are excellent procedures as long as
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care is taken in the modeling assumptions. Whether Scenario 1 or Scenario 2 is the
more practical case will depend on the application.

Among the methods that make no assumptions about the distribution of the
latent variable, we generally observed little bias. Although the computationally
efficient SIMEX and nonparametric full maximum likelihood seem to be more ac-
curate, the nonparametric regression calibration is easier to apply. Indeed within
the nonparametric calibration procedure, after estimating the underlying dose dis-
tribution and calibrating the doses, the standard package EPICURE produces the
final risk estimates.

Appendix: Sketch of Technical Arguments

A.1 Consistency of the Computationally Efficient Methods

Introduce a function

FN(β ) =
(

∑N
i=1

Yi

1 + βDi

)−1

∑N
i=1

Yi (Di−Dav)
1 + βDi

, β ≥ 0,

where Dav is defined by equation (5). The relationship (4) is equivalent to the
equation FN(β ) = 0, β > 0. Assume the following:

(i) Among the observations with Yi = 1, not all the values Di coincide.
(ii) ∑N

i=1Yi(Di−Dav)> 0.
(iii) ∑N

i=1Yi(Di−Dav)/Di < 0.

Condition (i) means that not all ill subjects received an identical dose. Con-
dition (ii) is natural as well and means that the mean dose for healthy subjects is
less than the mean dose for ill subjects. It is more difficult to interpret condition
(iii). One can show that for the structural model where the dose distribution does
not degenerate to a single point (i.e. for each D0 ≥ 0, it holds pr(D = D0)< 1), the
condition (iii) holds true with probability 1 for all N starting from a certain random
number.

Lemma 1 1. Assume condition (i). Then the function FN is strictly decreasing, and
therefore, equation (4) has no more than one solution.

2. Assume conditions (i) to (iii). Then there exists a unique solution β > 0
to equation (4).
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The proof of 1. consists in verifying inequality F ′N(β )< 0, β ≥ 0. Next, (ii)
implies that FN(0) > 0, and from (iii) it follows that lim

β→+∞
FN(β ) < 0, and then a

continuous function FN equals zero at certain point β > 0.

Theorem 1 Assume that in the structural model (1) the distribution of dose D is
not concentrated at a single point. Then the computationally efficient estimates
λ̂0Q, β̂Q exist and are unique for all N ≥ N0(ω) almost surely, moreover those
estimates are strictly consistent, i.e. with probability 1 they converge to the true
values lim

N→∞
λ̂0Q = λ0 and lim

N→∞
β̂Q = β , almost surely.

Here is a sketch proof of Theorem 1. Lemma 1 implies the existence of the
estimates for N ≥ N0(ω) , almost surely. The estimating equations for the efficient
estimator can be rewritten as

0 = ∑N
i=1 [1−Yi−Yi/{λ0(1 + βDi)}] , (A.1)

0 = ∑N
i=1Di [1−Yi−Yi/{λ0(1 + βDi)}] (A.2)

(over the domain {λ0 > 0, β > 0} these equations are equivalent to (2)–(3); and to
obtain equation (A.2), one has to subtract (3) from (2) and divide the difference by
β ). Equations (A.1)–(A.2) are unbiased, that is

0 = Eλ0,β [1−Y −Y/{λ0(1 + βD)}] ;
0 = Eλ0,β (D [1−Y −Y/{λ0(1 + βD)}]) .

Here and hereafter Eλ0,β denotes the expectation, provided λ0 and β are true values
of the parameters in the model (1). Moreover, the limit system of equations

0 = Eλ0,β [1−Y −Y/{`0(1 + bD)}] ;
0 = Eλ0,β (D [1−Y −Y/{`0(1 + bD)}]) ; `0,b> 0

has the unique solution `0 = λ0, b = β . This can be proven using the convex func-
tion q(`0,a) = (1−Y )(`0 + aD)−Y ln(`0 + aD). The functions under expectation
are its partial derivatives at point (`0,a) = (`0, `0b). By the theory of estimating
equations (Carroll et al, 2006; Huber, 1967) the last two facts imply the strict con-
sistency of the efficient estimates.

A.2 Computationally Efficient SIMEX

A.2.1 Description of the Estimator

The SIMEX estimator described in Section 5 differs from ordinary SIMEX as fol-
lows.
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1. A model of observations of activities Qi with heteroscedastic errors is con-
sidered, i.e., the variances of the classical errors σ2

Q,i can vary with the trial
number i. At that the variances are assumed known and are not the values
of, e.g., a known function of the unobserved value Q tr

i .
2. The estimator given by equations (2), (3) plays the role of the naı̈ve maxi-

mum likelihood estimator for different values of κ . This simplifies calcula-
tions without essential loss in accuracy of estimation.

3. Perturbations U∗b,i are simulated in such a way that

∑B
b=1U∗b,i = 0, i = 1, ...,N. (A.3)

We now explain why equality (A.3) provides smaller variability and smaller
deviations.

Let θ = (λ0,EAR)T, s(θ ,Y,D) be the elementary estimating function for
the naı̈ve estimate, θ̂ ∗b (κ) and θ̂ ∗(κ) the estimates of the parameter θ used in the
SIMEX method. For ordinary SIMEX estimator which is combined with efficient
estimates, the elementary estimation function can be written in the form, see equa-
tions (A.1)–(A.2),

s(θ ,Y,D) = (1,D)T {1−Y −Y/(λ0 + EAR ·D)} ,

while for the efficient modification of SIMEX

s(θ ,Y,D) =
{

1−Y −Y/(λ0 + EAR ·D), (1−Y )D̂av−Y D/(λ0 + EAR ·D)
}T
,

where D̂av = {∑N
i=1(1−Yi)}−1∑N

i=1(1−Yi)DMcal
i e−

1
2 σ2

Q,i ,

and DMcal
i = (Qmes

i /Mmes
i ) fie

1
2 σ2

M,i .
The random function θ̂ ∗b (κ) is found from the equation

∑N
i=1s(θ̂ ∗b (κ), Yi, DMcal

i exp(
√

κU∗b,i)) = 0.

We find the derivative dθ̂∗b (r2)
dr

∣∣∣∣
r=0

with r =
√

κ . For this purpose we calculate the

partial derivatives s′D and s′θ of the estimating function s(θ ,Y,D):

∂ ∑N
i=1 s(θ , Yi, DMcal

i erU∗b,i)
∂ r

∣∣∣∣∣
r=0

= ∑N
i=1s′D(θ , Yi, DMcal

i )DMcal
i U∗b,i;
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∂ ∑N
i=1 s(θ , Yi, DMcal

i erU∗b,i)
∂θ

∣∣∣∣∣
r=0

= ∑N
i=1s′θ (θ , Yi, DMcal

i )

= ∑N
i=1{Yi/(θ1 + θ2DMcal

i )2}
(

1 DMcal
i

DMcal
i

(
DMcal

i
)2

)
.

Under the condition of existence of the computationally efficient estimate (see Ap-
pendix A.1) the derivative ∑N

i=1 s′θ (θ ,Yi,DMcal
i ) is a nonsingular matrix.

Then by the Implicit Function Theorem

dθ̂ ∗b (r2)
dr

∣∣∣∣∣
r=0

=−
{

∑N
i=1s′θ (θ̂ ∗b (0), Yi, DMcal

i )
}−1

∑N
i=1s′D(θ̂ ∗b (0), Yi, DMcal

i )DMcal
i U∗b,i.

Note that θ̂ ∗b (0) = θ̂ ∗1 (0) does not depend on b and find the derivative of the function
θ̂ ∗(r2) = B−1∑B

b=1θ̂ ∗b (r2) at point 0:

dθ̂ ∗(r2)
dr

∣∣∣∣∣
r=0

=−∑N
i=1 s′D(θ̂ ∗1 (0), Yi, DMcal

i )DMcal
i ∑B

b=1U∗b,i
B∑N

i=1 s′θ (θ̂ ∗1 (0), Yi, DMcal
i )

If ∑B
b=1U∗b,i = 0 then {dθ̂ ∗(r2)/dr}r=0 = 0, and in the expansion

θ̂ ∗(κ) = θ̂ ∗(0)+ coef1
√

κ + coef2κ + coef3

√
κ3 + ... (A.4)

the term coef1
√

κ is vanishing.
Condition (A.3) decreases variability of the estimator. Indeed, under (A.3)

the term coef1
√

κ in the expansion (A.4) is vanishing, and this expansion looks
more like Taylor expansion w.r.t. κ . Therefore, the extrapolated value θ̂ ∗(−1),
which is the SIMEX estimator, will be more numerically stable.

A.2.2 Computationally Efficient SIMEX as a Combination of the SIMEX
Method and the Corrected Score Method

The expression ∑N
i=1(1−Yi)Qmes

i fi exp{(σ2
M,i−σ2

Q,i)/2}/Mmes
i = D̂av ∑N

i=1(1−Yi)
is an unbiased estimator of ∑N

i=1(1−Yi)D tr
i , where D tr

i is defined in (9). Indeed,

E[(1−Yi)Qmes
i fi exp{(σ2

M,i−σ2
Q,i)/2}/Mmes

i | Yi,Q tr
i ,M

mes
i , fi]

= (1−Yi) fi E[Qmes
i exp(−σ2

Q,i/2) | Q tr
i ] exp(σ2

M,i/2)/Mmes
i

= (1−Yi) fiQ tr
i E[V Q

i exp(−σ2
Q,i/2)]E[(V M

i )−1]/Mmes
i

= (1−Yi) fiQ tr
i E[(Mtr

i )−1 |Mmes
i ]

= E[(1−Yi)D tr
i | Yi,Q tr

i ,M
mes
i , fi].
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We derived this equality using the model of observations (7)-(8) and the assumption
on the lognormality of multiplicative errors.

Therefore, equation (15), which can be rewritten as

∑N
i=1(1−Yi)(1 + β D̂av) = ∑N

i=1Yi/λ0,

where the unknown variables are denoted as λ0 and β while in (15) the same vari-
ables are denoted as λ̂ ∗0,b(κ) and β̂ ∗b (κ), is constructed from

∑N
i=1(1−Yi)(1 + βD tr

i ) = ∑N
i=1Yi/λ0,

see equation (2), according to the Corrected Score method (Carroll et al., 2006).
Like the SIMEX method, this method is functional and does not need the knowledge
of the distribution of the latent variable.

A.3 Implementation of the Computationally Efficient SIMEX
Method

Perturbations U∗b,i = Normal(0, σ2
Q, i), b = 1, . . . ,B, B = 10, were simulated in such

a way that for the fixed i, the random variables U∗b,i have joint Gaussian distribution
with the covariance

E(U∗b1,iU
∗
b2,i) =−σ2

Q, i/(B−1), b1 6= b2,

and therefore, ∑B
b=1U∗b,i = 0, i = 1, ...,N. The numerical extrapolation of the func-

tions λ̂ ∗0 (κ) and EAR∗(κ) was performed via approximation by the least-squares
polynomial of the second order at points κ = 0; 0.2; 0.4; 0.6. The explicit formula
for the value of the extrapolating polynomial at point κ =−1 is as follows:

θ̂ ∗(−1) = 12.45 θ̂ ∗(0)−9.35 θ̂ ∗(0.2)−10.65 θ̂ ∗(0.4)+ 8.55 θ̂ ∗(0.6).

Here θ̂ ∗(κ) stands for either λ̂ ∗0 (κ) or EAR∗(κ).
The confidence interval for the SIMEX estimator is constructed based on

the SIMEX Sandwich covariance matrix of this estimator. The covariance ma-
trix is computed according to the recommendation in Carroll et al. (2006, pp. 111
and 393–395). We estimate the variance of the naive estimator θ̂ ∗b (κ) taking Yi
and D∗b,i(κ) as the data using sandwich formula, and denote the variance estimate
as τ̂2

b (κ). Then SIMEX Sandwich variance estimator is the extrapolated value of
1
B ∑B

b=1 τ̂2
b (κ)− 1

B−1 ∑B
b=1(θ̂ ∗b (κ)− θ̂ ∗(κ))2 to the point κ =−1.
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