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Abstract
Timely detection of clusters of localized influenza activity in excess of background seasonal levels
could improve situational awareness for public health officials and health systems. However, no
single data type may capture influenza activity with optimal sensitivity, specificity, and timeliness,
and it is unknown which data types could be most useful for surveillance. We compared the
performance of ten types of electronic clinical data for timely detection of influenza clusters
throughout the 2007/08 influenza season in northern California. Kaiser Permanente Northern
California generated zip code-specific daily episode counts for: influenza-like illness (ILI)
diagnoses in ambulatory care (AC) and emergency departments (ED), both with and without
regard to fever; hospital admissions and discharges for pneumonia and influenza; antiviral drugs
dispensed (Rx); influenza laboratory tests ordered (Tests); and tests positive for influenza type A
(FluA) and type B (FluB). Four credible events of localized excess illness were identified.
Prospective surveillance was mimicked within each data stream using a space-time permutation
scan statistic, analyzing only data available as of each day, to evaluate the ability and timeliness to
detect the credible events. AC without fever and Tests signaled during all four events and, along
with Rx, had the most timely signals. FluA had less timely signals. ED, hospitalizations, and FluB
did not signal reliably. When fever was included in the ILI definition, signals were either delayed
or missed. Although limited to one health plan, location, and year, these results can inform the
choice of data streams for public health surveillance of influenza.
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1. Introduction
Although influenza is strongly seasonal, infection does not occur uniformly across all
locations at the same time [1]. If public health officials and health systems can conduct near
real-time surveillance to quickly identify clusters of localized excess activity above
background seasonal levels, they could improve their situational awareness. During an
influenza pandemic, it can be particularly important to identify localized “hot spots” of
elevated incidence, which can occur before, during, or after a pandemic’s national peak [2].
Another potential benefit of routine near real-time surveillance is the early detection of
serious respiratory illnesses other than influenza, such as severe acute respiratory syndrome
(SARS). Apparent clusters could be evaluated for their potential public health importance,
considering data quality, magnitude of effect, and distribution of cases by person, place, and
time [3]. Officials might decide to consult with health care providers in affected areas,
initiate a traditional public health investigation, reallocate healthcare resources, or target
interventions (e.g., vaccination) to reduce disease spread.

Traditional influenza surveillance is purely temporal, and strategies include tracking on a
weekly basis the percentage of specimens positive for each influenza virus subtype, visits to
sentinel providers for influenza-like illness (ILI), and deaths attributed to pneumonia and
influenza (P&I) [4]. In an integrated health care system with a well-developed electronic
health record, there are several other data streams generated in the course of treating patients
or billing for services that could potentially be exploited for ILI surveillance. These data
typically become available for analysis within about one day. In addition, data can be
received from all locations within a catchment area, not just sentinel sites, improving
coverage, sample size, and geographical precision. Using automated electronic data can be
less labor-intensive than using sentinel provider reports. Syndromic surveillance for ILI has
been implemented previously using routinely collected data, most commonly in the
emergency department setting [5–8], but also using data sources as varied as Internet
searches [9,10], telephone triage service calls [11], medication sales [12,13], ambulatory
care visits [14], ambulance dispatch data [15], general practitioner house calls [16], hospital
admissions [17], and mortality records [18]. It is unknown which of these or other data types
could be most useful for identifying localized excess clusters of influenza (in contrast with
non-localized seasonal increases).

No single data stream may appropriately be considered a gold standard for identifying
morbidity attributable to influenza in the community. For instance, reverse transcription-
polymerase chain reaction (RT-PCR) tests positive for influenza are specific for influenza
illness, but tests are ordered according to clinician discretion and may be disproportionately
ordered at the beginning of a season (to establish the presence of influenza virus in the
community) or for individuals at high risk for complications (to guide their treatment)
(http://www.cdc.gov/flu/about/qa/testing.htm, accessed July 21, 2009).

The relative advantages of other potential data streams vary in terms of sensitivity and
specificity for influenza, representativeness, and timeliness. Requiring fever in a syndromic
definition for ILI can reduce sensitivity while increasing specificity for influenza [19,20].
Patients with ILI symptoms visit their doctor primarily to rule out serious illness [21]; the
representativeness of care seeking may be affected by local media or other influences.
Antiviral medications may be dispensed for either treatment or prophylaxis, and while
amantadine may be dispensed to treat influenza, it is also used to treat Parkinson’s disease.
Compared with hospital discharge diagnoses, hospital admissions may be a more timely but
less specific indicator of severe influenza-associated illness; however, there are fewer
hospitalizations than ambulatory care and emergency department visits for ILI, and the

Greene et al. Page 2

Stat Med. Author manuscript; available in PMC 2012 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cdc.gov/flu/about/qa/testing.htm


smaller sample size may make it more difficult to detect a localized elevation in influenza
activity.

A comparison of the performance of these data streams could be useful to identify which are
potentially worth developing and using for surveillance, since not all data types are readily
available in all areas. To inform the selection of data streams for future prospective
surveillance [22], our objective was to identify which of ten types of electronic health
system data could be monitored prospectively to most accurately and quickly detect
localized excess activity at any point during the 2007/08 influenza season in northern
California.

2. Methods
2.1. Study population

Kaiser Permanente Northern California (KPNC) is an integrated delivery system providing
comprehensive medical services to 3.3 million members
(http://xnet.kp.org/newscenter/aboutkp/fastfacts.html, accessed February 17, 2009), about
1% of the US population. KPNC members are ethnically diverse and mostly similar to the
general population in the area, although members may be more educated and have better
self-reported health [23]. In 2004, KPNC began transitioning from paper records to
HealthConnect™, an electronic health record system [24]. HealthConnect™ captures patient
temperature, a potentially important feature for syndromic surveillance of ILI [19,20].

The surveillance area for this study covered 538 zip codes and approximately 1.96 million
KPNC members. KPNC has eighteen medical centers, twelve of which completed the
transition to HealthConnect™ by the start of the study’s baseline period. The study
population included all active KPNC members residing in zip codes where a majority of
outpatient visits in 2008 occurred at these twelve medical centers. The institutional review
boards at the Kaiser Foundation Research Institute and at Harvard Pilgrim Health Care
approved the study.

2.2 Data streams
Ten data streams relevant to ILI surveillance were collected from KPNC electronic records
for the 2007/08 season (Table 1). Each data stream is generally available for analysis within
about a day of the patient encounter. The data streams included ILI diagnoses in ambulatory
care (“AC”) and emergency department settings (“ED”), both with (“+F”) and without
(“−F”) a requirement of fever; pneumonia and influenza (P&I) inpatient admissions and
discharges (“Admissions”, “Discharges”); influenza antiviral drugs dispensed (“Rx”);
influenza RT-PCR tests ordered (“Tests”); and RT-PCR tests positive for influenza virus
type A (“FluA”) or B (“FluB”).

The syndromic definition for ILI was developed for the National Bioterrorism Syndromic
Surveillance Demonstration Program [25]. An encounter for ILI in AC or ED was defined as
having at least one of the following respiratory symptoms, identified using International
Classification of Diseases, Ninth Revision (ICD-9) [26] codes and their subcodes: viral
infection (079.3, 079.89, and 079.99), acute pharyngitis (460 and 462), acute laryngitis and
tracheitis (464.0, 464.1, 464.2, and 465), acute bronchitis and bronchiolitis (466.0, 466.19),
other diseases of the upper respiratory tract (478.9), pneumonia (480.8, 480.9, 481, 482.40,
482.41, 482.49, 484.8, 485, and 486), influenza (487), throat pain (784.1), and cough
(786.2). Fever (+F) was defined as a measured fever of ≥100° Fahrenheit in the temperature
field of the database or (only if there was no valid measured temperature of any magnitude)
the ICD-9 code for fever (780.6). P&I Admissions were identified using an algorithm to
search for text strings of “pneumonia,” “influenza,” or “flu” in daily hospital admission
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census records, while excluding words containing “flu” that were unrelated to influenza,
e.g., “reflux” and “fluoroscopy.” Admissions for pregnancy, labor and delivery, birth, and
same-day ambulatory surgeries were excluded. P&I Discharges were identified using the
primary discharge diagnosis (ICD-9 codes 480–487); to exclude nosocomial cases, these
discharges were a subset of those with a P&I admission diagnosis. Rx consisted of
dispensings for amantadine and oseltamivir. Rimantadine and zanamivir were rarely
dispensed in this population during the study period.

Within each data stream, an “episode” was defined as the first patient encounter after at least
42 days with no encounter [27]. A patient could have multiple episodes during the
surveillance period and could appear in more than one data stream. The percentage of
individuals in each data stream who also appeared in each of the other data streams was
determined. Each episode was assigned a location corresponding to the latitude and
longitude of the centroid of the patient’s home zip code; thus, the data streams consisted of
zip code-specific daily episode counts.

2.3. Space-time permutation scan statistic
SaTScan™ [28] was used to conduct univariate cylindrical space-time permutation scan
statistic analyses [29] of each data stream in order to detect clusters of localized excess
activity. In brief, a variable-sized cylinder, where the circular base represents space and the
height represents time, scans across the study setting and period. The observed number of
cases within the cylinders is compared with what would be expected if the spatial and
temporal locations of all cases were independent of each other so that there is no space-time
interaction. A likelihood ratio statistic identifies the most unusual cylinder. The space-time
permutation scan statistic is a non-parametric method that adjusts for purely spatial and
purely temporal variation. Of note, the adjustment for purely temporal variation ensures that
global (non-localized) seasonal increases, which are emblematic of influenza transmission,
are not identified as clusters. Analyses using this scan statistic can be run retrospectively
(once, using all data available at the end of the study) or prospectively (e.g., daily, using
only data that would have been available as of each surveillance day). The space-time
permutation scan statistic has been applied previously to describe the geographical origin
and diffusion of calls related to fever as a proxy for influenza in school-age children in the
United Kingdom [30] and sentinel data on ILI in Japan [31].

2.4. Retrospective identification of localized excess illness clusters
An evaluation of data streams in prospective surveillance would ideally compare their
performance against a gold standard of true influenza activity, but no gold standard is
available. We instead compared the ability of each data stream to prospectively detect
credible events identified using retrospective analyses, which represent the most unusual
excess activity as determined from all data available by the end of the study period.

For the retrospective space-time permutation scan statistic analysis, the maximum cluster
duration was set at 28 days, the maximum cluster size was set at 50% of the observations,
the day of the week was included as a covariate (with holidays treated as Sundays and the
day after holidays treated as Mondays), and 9,999 Monte Carlo simulations [32] were
performed to determine statistical significance. All clusters non-overlapping in space and
time were identified. Zip codes near each other tended to have their most significant cluster
around the same time, and the cluster with the highest test statistic was selected to represent
all such related clusters. Any significant clusters (p < 0.05) in each data stream were
mapped. “Events” representing localized excess illness were designated as all areas and
dates when significant clusters with spatial and temporal overlap occurred across data
streams. Non-significant clusters (p ≥ 0.05) with excess activity (observed/expected > 1.2)
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overlapping with these events were also identified; had the p-values for each data stream not
been adjusted for multiple testing, some of these clusters may have achieved statistical
significance.

2.5. Prospective surveillance for timely detection of localized excess illness clusters
Prospective surveillance was mimicked by running the space-time permutation scan statistic
analysis prospectively. Only data that would have been available as of each day during
surveillance were analyzed, and the most unusual cylinder was identified where the temporal
extent of the cylinder ended on that day. The parameter settings were the same as for
retrospective analyses, except the maximum cluster duration was shortened from 28 to seven
days to focus on clusters that recently began [29]. The 231-day surveillance period ran from
September 30, 2007 to May 17, 2008. A 133-day rolling control period was used to establish
local baselines for each zip code, so that no clusters could be attributable to underlying
purely spatial heterogeneity. This baseline period began with May 20-September 29, 2007,
i.e., the inter-season period when the influenza surveillance program of the California
Department of Public Health was inactive.

The recurrence interval (RI) for each cluster represents the length of follow-up required to
expect one cluster as unusual as the observed cluster by chance [33]. For instance, during a
one-year period, on average one cluster would be expected at RI = 365 days or greater. The
higher the RI, the less likely the observed clustering is due to chance alone. RIs were
statistically adjusted for the multiple analyses performed within but not across data streams.
Clusters from prospective analyses with RI ≥ 365 days (i.e., “signals”) were identified;
clusters within a data stream overlapping in space and on consecutive days were considered
one signal. Among these, stronger signals with RI ≥2 years, ≥5 years, ≥10 years, and ≥25
years were also identified. Although RI ≥ 365 days was selected as a cut-off, weaker signals
may accurately reflect excess illness without achieving a high RI due to limited sample size.
To corroborate an excess illness event when a signal with RI ≥ 365 days was detected in a
data stream, signals 100 days ≤ RI < 365 days overlapping in space and time were also
identified.

A data stream was considered potentially useful for prospective surveillance if signals in that
stream occurred at the beginning of events; signals with higher RIs above 365 days were
considered more useful in focusing attention on an event. Data streams were considered less
useful if signals did not occur during events, did not occur until many days after an event
began, or were weak (100 days ≤ RI < 365 days).

3. Results
3.1 Temporal trends and overlap across data streams

All ten data streams reflected the typical seasonal increase in influenza to varying degrees
(Fig. 1), and all had their temporal peak between the weeks of February 3 and February 17,
2008 (Table 1). AC−F was by far the data stream with the largest number of episodes during
the surveillance period, and FluB had the fewest (Table 1). The percentage of individuals
appearing in more than one data stream was generally low, except each data stream had
>40% overlap with AC−F (Table 2). For instance, of the 3,271 individuals with Rx, 61%
also appeared in the AC−F data stream. Of individuals with FluA or FluB, a much higher
percentage had an AC−F than an AC+F visit (FluA: 84% vs. 39%, Table 2). Most
individuals with Discharges had an ED−F visit (82%), while a smaller proportion had an ED
+F visit (15%, Table 2).
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3.2 Identification of credible clusters
Across the ten data streams, twenty significant clusters were observed using retrospective
space-time analyses. A substantial proportion of the population covered by each cluster for a
data stream was also covered by one or more clusters for other data streams (results not
shown), indicating a high degree of overlap across data streams. All clusters coalesced into
six geographically and temporally overlapping events (Table 3). Four of these events
seemed credible for true excess influenza illness activity, having the following three
characteristics: (1) occurrence during a period when >5% of collected specimens statewide
tested positive for influenza, according to the California Influenza Surveillance Project [34],
(2) detection at p ≤ 0.003 by at least three data streams (consistent evidence across data
streams can support the accurate inference of a disease event [22]), and (3) excess risk of
cases in at least six data streams. Two other non-credible events occurred at the beginning
and end of the surveillance period (when influenza was not widely circulating) and were
detected at higher p-values by fewer data streams. The first credible event of localized
excess activity was in the general Bay Area (event #1), followed by Fresno (event #2). Event
#3 in Sacramento began while event #2 was ongoing. Finally the Bay Area had a second
event (#4). The observed/expected value for the significant clusters within these events were
mostly in the range of 1.2–1.5. Three of the ten data streams had no or minimal involvement
in these events: FluB, Admissions, and Discharges.

3.3 Prospective surveillance for credible clusters
Table 4 summarizes the performance of each data stream in the prospective detection of the
four credible events of localized excess activity, and Figure 2 displays the first signals in
each data stream for each event. The radii for some detected clusters were large (Fig. 2),
encompassing national parks or other areas with low population density. This may happen
when the true cluster shape is, for instance, a half moon; in order to expand to include an
area in one direction with excess activity, the circle must also extend equally in the other
direction.

During event #1 in the Bay Area, only two of the data streams (Tests and AC−F) had a
signal (RI ≥ 365 days); the first signal in each data stream for this event occurred on the
same day. Subsequent signals for this event in AC−F had very high RIs. During event #2 in
Fresno, three data streams had a signal: first was Rx, followed by a strong signal in Tests
four days later and a strong signal in AC−F 24 days after that. During event #3 in
Sacramento, seven data streams had a signal, and five had a very strong signal (RI ≥ 25
years). The signal in AC−F was most timely, followed two days later by a signal in AC+F,
and four days after that by a signal in Tests. Less timely signals were then detected in ED
−F, FluA, Rx, and ED+F. During event #4 in the Bay Area, four data streams had a signal:
first was Tests, followed soon after by a signal in FluA and much later by signals in AC−F
and ED−F. During all credible events, at least one data stream signaled consistently on at
least three consecutive days.

To summarize, the sensitivity of each data stream to detect the four credible events with RI
≥ 365 days was: AC−F: 4/4; Tests: 4/4; FluA: 2/4; Rx: 2/4; ED−F: 2/4; AC+F: 1/4; and ED
+F: 1/4. Across the events, the most timely data streams were AC−F (twice), Tests (twice),
and Rx (once); the first signals for one event occurred on the same day for Tests and AC−F.

4. Discussion
The selection of data streams for ILI surveillance has often been driven by what is readily
available, not necessarily what could most accurately detect influenza activity in a timely
manner. Improved understanding of how multiple data streams perform in prospective
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surveillance can be useful in prioritizing investment of public health resources for
developing data types for seasonal and pandemic influenza surveillance. To this end, we
compared the performance of ten data streams from one health system in the prospective
detection of localized excess activity in part of one state during one year and found that by
using only three (AC−F, Tests, and Rx) of the available data streams, timely prospective
detection for all four credible events of localized excess influenza activity would have been
feasible.

The most timely data streams for prospective surveillance in this study were: AC−F, Tests,
Rx, and FluA. AC+F and ED−F only detected one event (#3) in a timely manner, while ED
+F, FluB, and both inpatient data streams did not detect any. Previous studies have explored
whether AC or ED data may be more useful for syndromic surveillance [35]; in our setting,
AC data appeared to be more useful, since the AC data streams yielded signals during
credible events while the ED data streams did not or had delayed signals. Tests had the same
high sensitivity for all four events as did AC−F, even though the frequency of episodes was
much lower for Tests. When fever was included in the ILI syndromic surveillance definition
for AC and ED, events were not detected prospectively at all (events #1, 2, and 4) or had a
delay to detection (event #3). Other health systems may have the capacity to track ICD-9
codes but not patient temperatures recorded during visits; this study shows that recording
temperature may not be necessary for localized excess illness detection. FluB may have
been less useful because influenza virus type B was less prevalent or caused less severe
illness than type A. ED+F, ED−F, and both inpatient data streams may have been less useful
because the relative magnitude of the excess illness event was smaller in these data streams,
or healthcare-seeking behavior during times of excess illness events had a smaller effect on
these streams.

The signals across the data streams were consistent, detecting excess activity in the same
time and place. Although frequent false alarms are a common problem in syndromic
surveillance [36], the signals in this study from simultaneous univariate space-time analyses
generally corresponded to discrete localized excess illness events and the overall number of
unique signals was relatively low. All signals occurring repeatedly on consecutive days were
associated with credible excess illness events.

Signals represented localized excess illness above and beyond background seasonal levels.
Although highly significant, the observed/expected value for each of the retrospective
clusters was of modest magnitude. There may be no appropriate public health response to
the modest observed increases in risk, although situational awareness is enhanced. Since
small increases in risk were successfully detected, these methods could be expected to detect
larger (e.g., two-fold) increases in risk, if they were to exist. Besides events with a greater
observed/expected value, other events that could potentially warrant more concern would be
excess illness outside of the typical influenza season or credible clusters of severe illness,
e.g., hospitalizations [3].

Monitoring a subset of all available data streams can be useful for the timely detection of
localized excess illness events, particularly when signals occur on consecutive days in the
same location across multiple data streams. In contrast with monitoring any single data
stream or multiple data streams aggregated together, simultaneously monitoring multiple
distinct data streams with different timeliness and specificity for influenza has the potential
to improve detection of clusters of localized excess illness [37]. Simultaneous univariate
analyses of multiple data streams can be more practical, simpler, and less computationally
intensive than multivariate analyses [22]. However, multivariate methods may be able to
detect evidence of a signal too faint to be detectable within any single data stream [38,39].
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This study had two principal limitations. First, no external gold standard by which to judge
the performance of these data streams is available. Some events may be spurious or reflect
illness with a different etiology, and other true events may have eluded detection. Secondly,
this study setting was in one health care system in part of one state during one influenza
season. The sample size was effectively only four credible events against which the
prospective performance of signal detection in each data stream could be evaluated, and the
results could be due to chance. Additional studies during other influenza seasons and in
other settings will be needed to determine the generalizability of our results.

Additional work is needed to clarify which data streams are most promising for use in
prospective surveillance across a variety of settings. Future work could (1) explore the
performance of AC−F, Tests, Rx and the other data streams in the 2008/09 season, a period
corresponding to the adoption of HealthConnect™ at additional KPNC medical centers
(allowing an expanded study area), as well as the emergence of a pandemic of a novel
influenza A (H1N1) virus of swine influenza origin [40], (2) stratify by age, since the
timeliness of interactions with the health care system for ILI is age-dependent [41], (3)
aggregate addresses to different spatial resolutions, since analyses using zip codes may yield
different results compared with analyses using, for example, counties or Census tracts, (4)
incorporate data streams from outside the health system for the same population, e.g.,
Internet searches [9,10], (5) more finely pinpoint areas of high excess illness, e.g., by using
non-circular scan windows, such as ellipses [42] or irregular shapes [43,44], and (6)
combine the more promising data streams in pooled or multivariate analyses.

Abbreviations

AC ambulatory care

ED emergency department

FluA RT-PCR tests positive for influenza virus type A

FluB RT-PCR tests positive for influenza virus type B

ICD-9 International Classification of Diseases, Ninth Revision

ILI influenza-like illness

KPNC Kaiser Permanente Northern California

P&I pneumonia and influenza

RI recurrence interval

Rx amantadine and oseltamivir dispensings

RT-PCR reverse transcription-polymerase chain reaction
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Figure 1.
Weekly number of episodes from influenza-associated data streams in Kaiser Permanente
Northern California, May 20, 2007–May 17, 2008.
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Figure 2.
Spatial extent of the first signal for each data stream with recurrence interval (RI) >=365
days for each of four credible events of localized excess influenza activity; if no signals for a
data stream had RI >=365 days, first signal with RI >=100 days is shown.
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