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Abstract
During the past several years there has been extensive development and application of
hyperpolarized helium-3 (HP 3He) magnetic resonance imaging (MRI) in clinical respiratory
indications such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, radiation-
induced lung injury and transplantation. This review focuses on the state-of-the-art of
hyperpolarized 3He MRI and its application to clinical pulmonary research. This is not an
overview of the physics of the method, as this topic has been covered previously. We focus here
on the potential of this imaging method and its challenges in demonstrating new types of
information that has the potential to influence clinical research and decision making in pulmonary
medicine. Particular attention is given to functional imaging approaches related to ventilation and
diffusion-weighted imaging with applications in chronic obstructive pulmonary disease, cystic
fibrosis, asthma and radiation-induced lung injury. The strengths and challenges of the application
of 3He MRI in these indications are discussed along with a comparison to established and
emerging imaging techniques.
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INTRODUCTION
Rationale for functional imaging of the lung

Over the past twenty five years, magnetic resonance (MR) imaging has developed as a
critical research and diagnostic tool. This is mainly due to the unique tissue contrast of water
and fat protons (1H) in their local tissue environments provided by MRI, but MRI also
readily provides relatively high 3D spatial and temporal resolution, especially in comparison
to other functional imaging methods such as PET and SPECT (1). However, until recently,
MR imaging of low proton or 1H, density regions of the lungs have been much more
challenging than other body tissues because of the inherently low 1H abundance and
corresponding low 1H signal. Furthermore, the multitude of air-tissue interfaces within the
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lung also create significant magnetic field distortions, or susceptibility artifacts, which
further diminish the lung MR 1H signal. Moreover, respiratory and cardiac motion during
image acquisition can further degrade pulmonary MR image quality. While respiratory
gating and/or rapid breath-hold imaging methods substantially attenuate the effects of
motion, low proton density and susceptibility effects together result in significant
technological roadblocks that have hampered the clinical utility and use of pulmonary MRI.

The development of inhaled hyperpolarized (or magnetized) Helium-3 (3He) and Xenon-129
(129Xe) contrast agents overcomes the low proton density issues related to normal and
diseased lung tissues. Polarization is most commonly achieved using the spin exchange
optical pumping (SEOP) method (2–4) although the metastability exchange process can also
be used to polarize the 3He nucleus (5). Both processes increase nuclear polarization of the
unpaired nuclear proton in these atoms of up to five orders of magnitude compared to the
modest linear increase with field strength using thermal polarization (6–9). This increased
nuclear polarization compensates for the low density of inhaled noble gas nuclei within the
lung (as compared to the abundance of tissue-based protons) and provides ventilation
images of the airways and airspaces of the entire lung. Typically, achievable resolution is 1
mm in plane and 5–10 mm out of plane within a breath-hold interval. Currently 3He MRI is
most commonly used in research even though the global quantities of 3He are very limited
and expensive (10). Volatility in the market cost of 3He (e,g, $600–$1900/Liter in 2009) is
partly due to government and political considerations, but the limited supply of this agent
will likely have highly restricted reimbursable clinical applications for the foreseeable
future. For the other noble gas used in pulmonary imaging, 129Xe, the fractional solubility in
the blood stream (~17% at equilibrium (11)) has additional applications for measuring
parameters related to gas exchange. Nonetheless, the application of HP 129Xe MRI has
lagged behind HP 3He MRI methods largely because 129Xe is more challenging to polarize
(4), has a lower gyromagnetic ratio than 3He (11.8 MHz/T vs 32.4 MHz/T) and as well,
clinical and research protocols for its application are not as fully developed. Consequently,
HP 129Xe MRI in human subjects is only superficially treated in this review, although there
have been recent advances in both polarization physics (12–13) and application in human
studies (14–15) that should encourage further translation of this technique given its more
favorable cost and availability profile for research and clinical applications.

Several excellent reviews focusing on the MR physics and methodology of imaging with
polarized gases are in the literature (13,16–19). The principal aim of this review is to focus on
clinical and research applications of this imaging technology. In practice using the SEOP
method, the 3He gas is polarized over a period of 12–14 (overnight) and inhaled by subjects
from a bag mixed with medical nitrogen for immediate breath-hold imaging (8–16s). The
method is safe, requires no ionizing radiation dose, and can be repeatedly inhaled facilitating
longitudinal (20–21), interventional, (22) and pediatric (23) exams. There is now extensive
experience using 3He MRI in human subjects and most typically no respiratory adverse
events are reported although mild events in less than 10% of subjects (24–25) are not
uncommon. These mild adverse events are primarily related to a temporary feeling of
lightheadedness and are short lived. Importantly, there is no trend towards increased adverse
events in more severe disease, which is significant given that the primary safety concern is
due to the anoxic He-Nitrogen gas mixture that replaces the air in the lungs during this test.
Even extended breath-holds of 10–20 s rarely result in the measured pulse oxymetry
hemoglobin saturation falling below 90% for more than a few seconds (25). There are now a
number of commonly used measurements derived from HP 3He MRI including the static
airway functional measurement of 3He ventilation, the structural measurement of airspaces
using the 3He apparent diffusion coefficient (ADC), and the dynamic measurement of 3He
gas wash-in and wash-out characteristics. Here we review the important and relevant clinical
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research contributions of the 3He MRI measurements of the lung airspaces and airway
structure and function for healthy subjects and in lung disease.

Hyperpolarized 3He MRI of Ventilation
Hyperpolarized 3He MRI provides an opportunity to visualize those areas of the lung that
participate in ventilation and those that do not. This is particularly true for the terminal
respiratory bronchioles and their adjacent alveoli that are only ventilated by diffusion. As
shown in Figure 1, in healthy young adults, a single inhalation of hyperpolarized 3He gas
results in homogeneous signal suggesting that all areas of the lung are participating equally
in ventilation. In contrast, characteristic volumetric “focal” defects are observed in COPD
and asthma, corresponding to areas of the lung that are not ventilated or are poorly
ventilated within the time-course of a typical 8–16s breath-hold scan. Focal defects (26) are
identified as regions with no signal or reduced signal relative to surrounding areas (Figure 1)
that often create a pattern of spatially heterogeneity now recognized as a defining
characteristic of both COPD (27–28) and asthma (29). All 3 major lung imaging platforms
(CT, MRI, and PET) have documented surprising and large sub-segmental and even
segmental ventilation defects in asthmatics (30–32). For asthma specifically, the extent of
heterogeneity revealed by HP 3He MRI is surprising because defects are observed even in
asymptomatic patients and appear to involve the central airways, contradicting some
conventional assumptions about obstructive lung diseases, previously thought to diffusely
involve predominantly small airways with little or no change in the larger airways.

Ventilation defects in healthy normal subjects are relatively common although these defects
are typically small (<3 cm) and confined to the peripheral regions of the lungs (33–34).
Consequently there is substantial overlap between normal volunteers, patients with COPD
and patients with asthma with respect to the number and size of ventilation defects.
Although, on average the lungs of patients with obstructive disease have more numerous and
larger defects that become more pronounced as disease becomes more severe (28,33). While
it remains possible that some of these normal subjects have early-onset disease, (28) further
study of the reproducibility and sensitivity of ventilation defect measures is required before
this can be claimed definitively.

One of the main strengths of MRI using HP noble gases is in their ability to safely evaluate
lung function longitudinally without ionizing radiation. This is of particular importance for
younger individuals where the risk of cancer induced by medical radiation is thought to be
of importance (35). Important new observations about disease progression and persistence in
asthma patients have shown greater than half of defects are persistent over time periods of
several days to over a year, (20) further challenging the common perception of asthma as a
dynamic disease with highly reversible sites of airway obstruction. A more systematic study
found that 75% of defects were reproducible day-to-day and that a similar number did not
change in size (21). Moreover, the persistence of ventilation defects in these studies was
observed to be independent of asthma severity and medication use, suggesting that these
defects were refractory to therapy. The ultimate clinical significance of these fixed
ventilation defects remains unknown and represents an area for further study.

The development of consistent protocols for gas inhalation that control for gas polarization
and lung inflation volume are important for consistent interpretation of the clinical meaning
of ventilation defect severity and pattern and for quantifying ventilation defect measures.
Due to the fact that hyperpolarized noble gases continue to be regulated as unapproved-for-
marketing drug contrast agents by national drug agencies, calibration of polarized nuclei
concentration in human subject studies has been well controlled to within 1–2% using
external low field (~5–10 Gauss) calibration NMR systems. Typical doses are in the 5ml/kg
subject weight range, however, in recent studies, the volume of He/N2 mixture used is
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individually adjusted to the subject’s total lung capacity to normalize the inflation volume
across subjects (30,36) to total lung capacity (TLC). Novel approaches to investigate the
effects of inflation volume, compare results before and after respiratory maneuvers, such as
forced expiration(s) (37) and deep inspiration(s) (22), that can readily be performed safely in
conjunction with bronchodilation or other challenge interventions.

Ultimately, quantitative measures of ventilation and its spatial distribution are critical to the
advance of HP noble gas MRI. The most common metric used in the early literature was the
mean number of ventilation defects per slice (VDS). While this and similar scores are simple
to implement and well suited to consensus evaluation in blinded studies (33), they typically
condense the defect pattern into a single, whole lung metric, that does not capture regional
information about the size and regional distribution of defects. Another approach is to sum
the total defect volume observed in the lungs and normalize to total lung volume. In this
way, focal 3He ventilation defects can be detected and directly quantified as the 3He MRI
ventilation defect volume (VDV) or as a percent ventilation volume (PVV) (38). Van Beek
and co-workers showed that PVV was significantly different between healthy volunteers,
healthy asymptomatic smokers and subjects with COPD, which clearly shows the regional
sensitivity of PVV to disease (39). In stage III COPD, 3He MRI VDV was also shown to be
sensitive to small functional changes over short periods of time (40).

More quantitative regional measurement of defect volume better facilitates cross-modality
comparisons to abnormalities observed using MDCT and bronchoscopy. These quantitative
approaches normalize defect volume to both total lung volume and individual lung lobes, to
account for both defect size and distribution (27,30). In cases of repeated studies, these
measures can be normalized to baseline signal values to calculate fractional ventilated
volume (22) Alternatively, a spatial coefficient of variation, or standard deviation kernel, can
be used to measure signal heterogeneity regionally (22). This heterogeneity measure has
been used effectively to measure persistence of ventilation defects after deep inspiration in
subjects with asthma compared to normal volunteers after methacholine challenge (22).
Importantly, when 3He MR ventilation images of a patient with stage 3 COPD are directly
compared with CT, (Figure 2), there is no anatomical or tissue heterogeneity detected in the
CT images that would be predictive of the functional ventalatory changes clearly revealed
by HP 3He MRI.

3He MRI Diffusion-weighted imaging
3He is a low density gas with a corresponding high free diffusion constant (~2 cm2/s) that is
biologically inert and effectively insoluble in blood and tissues (11,41). Physical diffusion of
the gas atoms due to random Brownian motion (as opposed to transmembrane gas diffusion)
within the open airspaces of the lung parenchyma can be measured using similar diffusion-
weighted imaging (DWI) to that used in DWI of water in conventional MRI (42). DWI
of 3He gas provides a sensitive and rapid approach for evaluating the lung microstructures
generally, including dimensions of the alveoli and acini that define the boundaries of the
fundamental units for gas exchange (43).

Fick’s law predicts that the mean displacement of the gas spins (ℓ) measured over some time
interval, (Δ), is approximated by the standard deviation of a Gaussian function given by

(44) [1]

When 3He gas is restricted by tissue boundaries, the diffusivity, D, is referred to as the
apparent diffusion coefficient, ADC. Typically the diffusion weighting gradients for 3He
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MRI applications are short bipolar pulses for which the timing variable, Δ, represents the
separation between the diffusion encoding gradient pulses is on the order of 1–2 ms. These
short bipolar gradient pulses minimize the TE and breath-hold. For Δ’s of 1–2 milliseconds,
the average displacement of helium atoms is the same order of magnitude as alveolar
diameters (a few hundred micrometers) and this so-called “short range ADC” measure is the
one most widely used in patient studies.

In practice, at least two measurements are generally required; one with diffusion encoding
gradients applied, S, and one without, So. A simple monoexponential model is used to obtain
the ADC, where

[2]

The ADC image can be interrogated on a pixel-by-pixel basis to provide a quantitative ADC
map of surrogate airspace size measurements and accordingly of emphysematous damage
(9,45). Parametric images of regional ADC changes in the lung are consistent with alveolar
changes expected with increases in lung volume, (36) gravity dependence, (36,46) age (47)
and etiology of emphysema, i.e. COPD or alph1-antitrypsin (28,48–49). Previous COPD
studies have shown that ADC correlates with pulmonary function (46,48,50) and histological
measurements of lung surface area (51) and is highly reproducible in COPD (36) and
sensitive to subclinical disease (52) and potentially disease progression (49). Values for 3He
ADC range from 0.8 cm2/s for unrestricted free space (akin to an infinitely large container)
to 0.66 cm2/s for an elderly COPD patient (FEV1 26% predicted) and 0.16 cm2/s for a
young nonsmoker (FEV1 130% predicted) as shown in Figure 3. Although the free diffusion
of 129Xe is much smaller (53) (0.06 vs. 1.8 cm2/s), recent advances in Xe-129 polarization
(12) have encouraged pre-clinical studies (54–56) and several promising pilot studies in
human subjects, including diffusion weighted imaging to obtain measures of short range
ADC in the lungs of healthy normal subjects (Figure 4), support the extension of DWI
with 129Xe.

An important limitation of ADC is that it represents a relative measure that does not directly
represent a quantitative structural dimension that can be related to a measure on histology,
for example. The ADC measured on different platforms with different b-values and timing
characteristics will necessarily yield different absolute values (57). This has motivated
efforts to relate diffusion values to measureable histological features such as mean length
and surface area to volume. In the short diffusion time regime, between 1 and 1.6 ms,
workers (51,58–59) have exploited the known geometry of the pulmonary acinus, as first
described by Weibel and coworkers, (60) to derive geometric parameters such as mean
airspace chord length and surface area to volume ratio and related these to histology
measurements in ex vivo human lungs.

Long Range Diffusion
Novel approaches have also been used to measure diffusion of HP 3He in the long time
regime, where Δ is on the order of 0.5 to several seconds which would normally be difficult
to acquire in the lungs due to the short T2* and limited breath-hold. However, measures of
long range diffusion across multiple acini and airways have been achieved by storing the
polarization along the longitudinal axis for extended times of 1–1.5 seconds followed by
readout of a stimulated echo (61). Another approach for measuring long range diffusion uses
low spatial frequency (wavelengths 2–3 cm) sinusoidal spin tags applied during breath-hold
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and followed by serial images to monitor the tag decay due to depolarization and diffusion
(62).

Long range diffusion has enabled the exploration of communication and collateral
ventilation within healthy and diseased (63–64). Initial results have found that long-range
ADC is more sensitive to changes associated with COPD and asthma (Figure 5) than short-
range ADC, (62,65–66) probably reflecting the fact that airway level changes are more
pronounced in asthma. Much more restricted diffusion across acinar and airway branches
might be expected and, in fact, long range ADC is about 2 orders of magnitude smaller than
short range ADC (e.g. 0.002 cm2/s vs. 0.16 cm2/s in healthy lungs). Simulations in
generalized branching models predict even smaller long range ADC than is measured (63)
leading to speculation that collateral ventilation in the healthy lungs is higher than
previously thought. However, simulations using more complete models have found
predictions more in agreement with measured results (67–68) inspiring ongoing debate in the
literature.69

Dynamic imaging
Breath-hold images are limited to a binary interpretation, i.e. presence or absence, of a
ventilation defect. Fast MRI techniques provide the potential for visualizing gas distribution
over the full respiratory cycle. Fast MRI acquisitions for dynamic imaging typically employ
non-Cartesian k-space trajectories including spiral and radial acquisition with SPGR
sequences (70–71). Early work in COPD made use of interleaved spiral k-space acquisition
to depict delayed flow-in and washout in a single coronal slice followed by extension of this
approach to a multi-slice stack of spirals acquisition (70). More recently, under-sampled
radial MRI methods (37,71–72) and stack of spiral acquisition with parallel reconstruction
along the slice dimension have been introduced that can provide 3D images at ~1 s temporal
resolutions.

Studies of dynamic inhalation and forced exhalation in human subjects have demonstrated
spatial and temporal heterogeneity in the uptake and the washout of the HP 3He in asthma
(Figure 6) (37,72) and CF (73). Dynamic methods can also provide quantitative measures,
such as arrival time, time to peak and washout slope in regions with partial obstruction that
demonstrate diminished but finite gas uptake and/or delayed filling (Figure 7) (39).
Moreover, dynamic imaging of respiratory dynamics with whole lung coverage may be the
only way to assess regional lung function in very sick and pediatric patients.

Mechanical Deformation Studies
Changes in the mechanical properties of the lungs are associated with a variety of restrictive
(74) and obstructive lung diseases (75). Finite element analysis can be used in conjunction
with these dynamic images using proton or hyperpolarized gas MRI to calculate regional
stress and strain in healthy and diseased lungs. Moreover, these images can be acquired
during spirometry maneuvers to further quantify regional lung stiffness and compliance in
the context of whole lung function (76–78). However, mapping of lung elements over the
multiple steps/time frames of the experiment is challenging and represents a serious
limitation of conventional MRI is the relative absence of anatomic markers within the lungs.
Spin tagging of hyperpolarized gases is an alternative for tracking lung compliance (79–81).
Recent development of approaches for faster spin tagging sequences have improved
temporal resolution, allowing more precise regional depiction of lung deformation during
dynamic maneuvers (82). More work in this area is required in order to definitively relate
these MRI-derived mechanical properties of the lung to established markers of airways
disease and interstitial fibrosis. Heretofore, lung compliance has not been measured non-
invasively in vivo. These new measures of lung structure may provide a fertile area for
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further research in the large number of restrictive lung diseases and their progression, or
after therapy.

Emerging Approaches
Oxygen-weighted HP gas MRI was one of the earliest methods proposed and demonstrated
in animal models (83). The gas dose is mixed with pure O2 immediately prior to inhalation to
approximate normoxic concentrations (20% O2). The T1 decay of 3He and Xe-129 in
normoxic mixtures (20% O2) are on the order of 30 s or greater for field strengths from 1.5–
3 T. There is effectively no signal recovery and the T1 signal decay for HP gases is
dominated by Radio Frequency (RF)-saturation and the paramagnetic effects of residual
oxygen in the lungs (83). Consequently, the paramagnetic effects of O2 that effectively
decrease T1 of the polarized gas provide a quantitative estimate of the PO2 (83–85) that can
potentially be used to calculate VA/Q (86). Typically, the same slice is imaged at multiple
phases and at different delay times to separate RF-saturation of signal from signal loss due
to PO2 concentration (86). Recent work has allowed measurement within a single breath-
hold (85,87). The technique has potential application in pulmonary embolism (88) and in
bronchiolitis obliterans after lung transplant (89)

Airway Measurement
All of the aforementioned techniques and most of the previously published techniques focus
on the parenchymal space in the lung rather than the large airways. Quantitative measures of
airway lumen on multidetector CT (MDCT) (90) have shown changes in diseases such as
asthma (91). However, significant ionizing radiation is associated with MDCT imaging of
the lung spaces limiting its use for serial longitudinal and pediatric studies.

Several techniques using 3He MRI have evaluated early-filling time points from dynamic
MRI (92–93) to isolate the large airways for quantitative measurement of the lumen. Direct
measurement of the lumen (92,94) or after region growing segmentation of the airway tree
(93), can be employed. These methods agree well with quantitative CT measures in phantom
studies and in human subjects and may provide an alternative to CT for airway lumen
measurement in longitudinal and pediatric studies.

Image Guided Interventions
The spatial resolution of 3He MR images is an advantage for guiding the assessment or
therapy of heterogeneous diseases of the lungs. For example, bronchoalveolar lavage at
ventilation defect sites on HP 3He MRI show that neutrophil cell counts increase with extent
of ventilation defect in asthma (30). A proposed example of treatment planning using 3He
MRI includes recent use of 3He ventilation images to guide so-called “dose painting” in
radiotherapy treatment planning (95–98). Response to therapy, including radiation-induced
lung injury or inflammation (RILI) (99) can also be monitored. Similar applications of 3He
MRI may increasingly be used to guide interventions as stent placement in COPD (100) and
smooth muscle ablation treatments in asthma (101).

DISCUSSION
It is important to note that 3He MRI is unique among pulmonary imaging methods because
of its high spatial and temporal resolution of respiratory disease morphology (ADC) and
function (ventilation volumetry) and its safe use across a wide variety of vulnerable
pediatric, respiratory compromised and elderly patients (25) to explore mechanisms of
disease pathophysiology. Hence, a number of important respiratory diseases have been
evaluated in some depth and breadth across different research sites including COPD,
asthma, cystic fibrosis and RILI. As with other functional imaging methods that are yet in
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the “imaging physics” and “image processing” domain, there remain significant challenges
to translating 3He MRI to clinical research and clinical care. The unique ability to measure
disease morphological and functional consequences and explore mechanisms of disease
pathophysiology does not necessarily directly translate to improved care unless alternative
therapies exist that can benefit from the information provided by HP He MRI. However, for
the specific cases of asthma and COPD, there is an increasing recognition that different
phenotypes exist (40,102–103) and that these patient groups may have differential response to
therapy. Moreover as therapies become more diverse and patient-specific, imaging with HP
He MRI will likely be one of the only ways to verify response and efficacy for an individual
patient or group of patients. Nonetheless, HP He MRI techniques need to become more
quantitative, sensitive and accessible to justify its current cost and complexity.

As with many functional imaging methods, there remain significant challenges to translating
these methods to the clinic. It is also equally important to point out that currently respiratory
diseases still have significant unmet treatment needs in terms of pharmaceutical and
minimally invasive interventions; and these disorders stand alone among the leading causes
of death and disease. As the world becomes more industrialized and polluted, respiratory
illnesses will continue to increase in prevalence, morbidity and overall mortality. We believe
this is largely the case because up until recently, lung imaging methods have been mainly
restricted to x-ray based methods and the lung is particularly radiation sensitive which
diminishes the numbers and types of imaging sessions that are practical. While pulmonary
function testing is quite reliable and inexpensive there are many diseases that can not be
easily diagnosed by this type of functional lung testing. Imaging is often not used in the
diagnosis of COPD, CF, asthma or RILI in part because unlike many organ systems where
early or sensitive diagnosis has lead to earlier and efficacious treatments, there is no such
virtuous cycle in place for most respiratory diseases. As shown in Table 1, these current and
emerging imaging methods for respiratory disease each have significant strengths and
challenges. It is in this context or clinical reality that we continue to vigorously support the
research and development of 3He MRI methods even in light of the increased costs,
decreased availability and access that are predicted for the near future.
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Figure 1. HP He Magnetic Resonance Imaging Static Ventilation Centre Coronal Slice Images
(a) Healthy volunteer 45y female with FEV1 predicted=118%; (b) Chronic Obstructive
Pulmonary Disease 79y male with FEV1 predicted=54%; (c) Asthma subject at baseline
without provocation 26yr male with FEV1 predicted=77%; (d) Cystic Fibrosis 23y female
with FEV1 predicted=58%.
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Figure 2. Comparison of high resolution Computed tomography and HP He Magnetic
Resonance Imaging in Chronic Obstructive Pulmonary Disease
Female COPD subject 63y with FEV1 predicted=22%; (a) Centre slice coronal plane
reconstruction of high resolution CT; (b) HP He MRI centre coronal slice ventilation image.
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Figure 3. Comparison of HP He Apparent Diffusion Coefficient Maps for Healthy Volunteer and
Subject with Chronic Obstructive Pulmonary Disease
(a) Healthy Volunteer male age 58y FEV1 predicted=108% (i) ventilation (ii) ADC map (iii)
ADC histogram. (b) Chronic Obstructive Pulmonary disease male subject age 52y FEV1
predicted=51% (i) ventilation (ii) ADC map (iii) ADC histogram.
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Figure 4.
Spin density and ADC map using single inhalation of HP Xe-129 MRI. The ADC values are
much lower due to high density of Xe-129, which may be advantageous in certain diseases
for short range diffusion measures. Image courtesy Dr. Bastiaan Driehuys and GE
Healthcare.
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Figure 5.
Comparison of short (top row) and long (bottom row) range diffusion in healthy subject
(left) and asthma (middle) and COPD patients (right). Image courtesy Dr. Chengbo Wang,
University of Virginia.
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Figure 6.
Coronal maximum intensity projections of a 3D dynamic imaging study using HP 3He-MRI
to assess ventilation and gas trapping using a forced exhalation maneuver in asthma. Breath-
hold encompasses the time from 10–13s followed by a forced exhalation maneuver showing
gas trapping in the left lung most clearly visualized at 25 s (arrow). This patient’s FEV1 was
normal, 94% predicted, before and after imaging suggesting significant subclinical
heterogeneity and abnormalities of ventilation exist in this patient population.
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Figure 7.
Results from 3D dynamic MRI in a subclinical finding during inspiration, breath-hold and
forced expiration. MRI results in a,b are compared to follow-up MDCT in the same subject
in c,d showing hyperlucency in the RUL due to air trapping on MDCT (arrows c,d). Plots of
signal time-course for dynamic MRI for the right upper lobe (yellow) compared with left
upper lung (green) in the same case. Hyper-intense signal on HP 3He was found to
correspond to the 2nd segment that was not blocked by by a pulmonary aneurysm (green).
Note delayed filling as evident by the later time-to-peak signal enhancement relative to the
expected trapezoidal shaped enhancement curve in the contra-lateral left lung region.
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