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Abstract
Coronary heart disease (CHD) is the leading single cause of death in the United States and most
Western countries, killing more than 400,000 Americans per year. Although CHD often manifests
suddenly as a fatal myocardial infarction, the atherosclerosis that gives rise to the infarction
develops gradually and can be markedly slowed or even reversed through pharmacological and
lifestyle interventions. These same atherosclerotic processes also drive related vascular diseases
such as stroke and peripheral artery disease, and individuals surviving occlusive events often
develop additional complications including ischemic cardiomyopathy and heart failure. Therefore,
better detection of subclinical atherosclerosis, along with more effective treatments, could
significantly reduce the rate of death from CHD and related vascular diseases in the United States.
In recent years, oxidation of polyunsaturated fatty acids (PUFA) in plasma lipoproteins has been
postulate to be a critical step in the development atherosclerosis. If so, then monitoring lipid
peroxidation should be a useful indicator of disease risk and progression. This review will focus
on the evidence that specific PUFA peroxidation products, the F2-isoprostanes, are useful
biomarkers that could potentially be utilized as indicators of CHD.
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Introduction
For many years, screening and treatment of atherosclerosis focused on cholesterol levels in
lipoproteins rather than reducing the peroxidation of the polyunsaturated fatty acid (PUFA)
in these lipoproteins. The focus on cholesterol reduction was based on the two seminal
discoveries by Brown and Goldstein: the first, in 1974, was that persons with familial
hypercholesterolemia lacked the cell surface receptor for low density lipoprotein (LDL) [1]
and therefore failed to regulate cholesterol synthesis and the second, in 1979, was that
macrophages possessed scavenger receptors that bound and internalized acetylated LDL,
producing massive cholesterol deposition similar to those found in the foam cells of
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atherosclerotic fatty streak lesions [2]. The notion that oxidation of PUFA in lipoproteins
might be important to atherosclerosis arose in 1987, when Parthasarathy et al showed that
LDL exposed to oxidants (oxidized LDL) was also taken up by macrophage scavenger
receptors [3,4]. Recognition of oxidized LDL by scavenger receptors was postulated to
result from modification of the apoB-100 protein in LDL in a similar manner as with
acetylation, except that modification was due to lipid aldehydes such as malondialdehyde
that were generated during PUFA oxidation. Oxidized LDL was suggested to form in vivo
by penetration of LDL into the subintimal space of the vascular wall where it was oxidized
by redox metals. Evidence that LDL oxidized in vitro could induce many proatherogenic
effects in cultured cells led to the incorporation of oxidized LDL into some models of
atherogenesis [5]. Some of these proatherogenic effects of oxidized LDL could also be
induced by organic phase extracts of the oxidized LDL, suggesting that oxidized lipid
themselves were proatherogenic, in addition to oxidatively modified ApoB. Therefore, even
lipid peroxidation products in the vasculature that did not arise directly from LDL could
contribute to atherogenesis. The current oxidative injury model of atherosclerosis posits that
various risk factors for atherosclerosis promote the oxidation of LDL and other lipoproteins
which creates proinflammatory lipid mediators that drive a chronic inflammatory state. In
time, this chronic inflammatory state leads to complex plaque formation, rupture, and vessel
occlusion. This model predicts: that risk factors for CHD should increase lipid peroxidation,
that high concentrations of lipid peroxidation products are risk indicators for onset and
severity of disease, and that interventions that lower lipid peroxidation should also modulate
disease.

Measuring lipid peroxidation in vivo
In order to assess the extent to which clinical studies in humans support the hypothesis that
lipid peroxidation mediates atherogenesis and that oxidized PUFA products can be used as
indices of CHD, we must first identify appropriate in vivo biomarkers of lipid peroxidation.
Peroxidation of the various PUFA esterified in the phospholipids, triglycerides, and
cholesterols of lipoproteins generate literally hundreds of compounds including hydroxy-,
hydroperoxy-, and epoxy- fatty acids, hydroxyalkenals, various dicarbonyl products,
oxysterols, and fragmented phospholipids. Many of these oxidation products have biological
activities that could contribute to atherogenesis. Ideally, clinic studies should measure the
lipoxidation products deemed most likely to mediate inflammation and atherogenesis.
However, no current consensus exists on which lipoxidation products are most important in
terms of mediating disease. Therefore, most clinical trials simply measure one or two
established indicators of lipid peroxidation in vivo, with the assumption that their levels
reflect other lipid peroxidation products as well. Over the past few years, the measurement
of F2-isoprostanes (IsoPs) have emerged as one of the most sensitive and reliable biomarkers
of lipid peroxidation in vivo [6,7]. For this reason, the measurement of IsoPs has been
incorporated into a wide number of clinical trials. The results of these trials provide
significant insights into the role of lipid peroxidation in disease.

To appropriately interpret the results of these clinical studies, several key features of the
biochemistry of IsoPs and their measurements should be kept in mind. The vast majority of
arachidonic acid is esterified in tissue phospholipids. Accordingly, IsoPs are predominantly
formed initially esterified in phospholipids and are then subsequently hydrolyzed to their
free acid form by platelet-activating factor acetylhydrolase [8]and possibly other
phospholipases. The free IsoPs are released from tissue into the circulation, where they
undergo partial metabolism, predominantly in the liver. Therefore, both unmetabolized IsoPs
and IsoP metabolites are excreted into the urine [9-11]. Total body IsoP production can be
assessed by quantifying unmetabolized free IsoPs in plasma or unmetabolized free IsoPs and
IsoP metabolites in urine. Individual organ IsoP production is assessed by quantifying
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esterified IsoPs. Caution must be applied when interpreting changes in unmetabolized IsoPs
from urine as evidence for overall systemic increases in lipid peroxidation. This is because
the IsoPs formed in the kidney are directly excreted into the urine without metabolism, so
that if renal disease associated with oxidative damage is present, then the total levels of
unmetabolized IsoPs in the urine could increase disproportionately to the total body change
in lipid peroxidation. In this case, urinary levels of IsoP metabolites should better reflect
actual changes in total body lipid peroxidation.

Valid clinical studies utilizing IsoPs require appropriate collection and storage procedures.
Hemolysis of blood samples can release free iron and hemoglobin, both of which can
catalyze artifactual oxidation of lipids during storage. To minimize this, a large bore needle
should be used and blood manually collected using very gentle suction to ensure that no
frothing and hemolysis occurs. Collected blood should be immediately transferred to tubes
containing anticoagulants such as EDTA or citrate (but not heparin) and kept chilled until
centrifugation which should be performed as soon as possible. Plasma should be aliquoted
and stored at −80°C. Tissue samples should be flash frozen immediately after collection and
also stored at −80°C. Long-term storage of plasma and tissue samples at −20°C or repeated
freezing and thawing of samples will artifactually generate IsoPs via auto-oxidation of
arachidonate. Because urine contains relatively little arachidonate, urine samples can be
stored at −20°C. In general, even though IsoPs are chemically quite stable, long term storage
of biological samples should still be avoided if possible.

The most reliable method for measurement of IsoPs is stable isotope dilution mass
spectrometry. Several features of this assay make it more reliable than immunoassays.
Directly adding the stable isotope internal standard to sample at the beginning of the assay
greatly increases the reliability of these assays by preventing analytical error due to sample
to sample variation in the efficiency o f extraction, derivitization, or ionization. Appropriate
solid phase extraction of the IsoP at the beginning of the work-up removes potentially
interfering substances from the sample, particularly arachidonate that could lead to
artifactual formation of IsoP by autooxidation during the work-up procedure. Finally,
coupling appropriate chromatography to selectively monitoring only the specific mass of the
IsoP (and its internal standard) ensures that closely related arachidonate metabolites
including prostaglandins do not interfere with quantitation. As plasma levels of free IsoPs in
healthy humans are quite low (in the range of 30-40 pg/ml for healthy humans), mass
spectrometry coupled to gas chromatography (GC/MS) rather than liquid chromatography
(LC/MS) is generally employed because of its greater sensitivity. The urinary levels of
unmetabolized IsoPs and metabolites of IsoPs are much higher (~ngs/ml), so that both GC/
MS and LC/MS have been widely utilized for these measurements.

Because of the equipment costs associated with mass spectrometry assays, immunoassays
have also been developed for measuring IsoPs. However, great care must be used in
interpreting the results of IsoP immunoassays without adequate validation. Because IsoPs
have limited antigenic structures, their immunoassays are carried out by competitive
displacement of a labeled conjugate of IsoP from surface bound antibody, rather than by the
more selective method of sandwich ELISA. Thus, compounds in the sample that non-
specifically interfere with antigen-antibody binding will lead to aberrantly high values. Of
particular concern are the fatty acids that are present at more than 10,000-fold greater
concentration than IsoPs, and that can be released from albumin by standard partial
purification strategies employed during immunoassay such as protein precipitation [12].
Other interfering contaminants may be released from solid phase cartridges or from plastics
used in the assay [12]. Studies comparing the values obtained by immunoassay and GC/MS
measurements have shown very different results depending on the antibodies used, the
extent of sample purification, and the fluid measured, with some studies finding excellent
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correlation [10,13,14] and other finding either modest [15] or very poor correlation [16-18].
Because of the poorer precision of immunoassays, larger numbers of subjects may be
required to detect significant differences between populations when using immunoassays
than when using mass spectrometric assays and validation by mass spectrometry of the
results obtained by immunoassay, at least in a subset of samples, improves confidence in the
overall conclusions.

As will be discussed in detail below, clinical studies that have measured IsoP levels by a
variety of methods provide a significant body of evidence that many risk factors for CHD
increase overall lipid peroxidation, that higher IsoP levels correlate with greater extent of
CHD, that IsoP levels predict disease outcomes, and that IsoP levels can be used to assess
the effectiveness of various therapies aimed at reducing the level of lipid peroxidation.

Risk factors for CHD increase lipid peroxidation
Well-established risk factors for CHD include older age, male gender, high LDL cholesterol
levels, low HDL cholesterol levels, obesity, diabetes, smoking, and hypertension. Other risk
factors include elevated levels of high sensitivity C-reactive protein (hs-CRP) and
homocysteine. Although each of these risk factors may contribute to cardiovascular disease
by mechanisms independent of their effects on lipid peroxidation, there is significant
evidence that many of these risk factors also increase lipid peroxidation (Table 1). For
instance, smoking is associated with 2 to 3-fold higher IsoP levels in numerous studies
[19-23]. Many studies have also shown that adult subjects with high levels of the
proatherogenic LDL cholesterol have about two-fold higher levels of IsoPs compared to
aged matched controls [24-28]. Similar two-fold elevations in IsoP levels were seen in
persons with low levels of the protective lipoprotein HDL [29]. Both type 1 and type 2
diabetes are associated with a 2 to 3-fold increases in IsoP levels [30-34], and obesity
correlates with increased IsoP levels even when adjusting for blood glucose levels [35-38].

Other risk factors have more subtle effects on IsoP levels and may therefore make lesser
contributions to the overall extent of lipid peroxidation in disease. Several studies looking at
IsoP levels in normotensive versus hypertensive persons have found somewhat higher IsoP
levels with hypertension [39-42]. IsoP levels also positively correlate with CRP levels
[43,44] and with homocysteine levels [45]. Although IsoP levels are generally not increased
in healthy older individuals under resting conditions [35,46], even apparently healthy older
adults have significantly increased IsoP levels compared to young adults when subjected to
short bouts of ischemia/reperfusion [47]. IsoP levels are generally similar or slightly higher
in healthy women than men [35,48], so that the gender differences in risk for CHD are most
likely to be due to factors other than lipid peroxidation.

Overall, the finding that many risk factors for the CHD associate with increased IsoP levels
in various clinical studies supports the notion that lipid peroxidation is an important
contributor to the process of atherogenesis. The additive effect of various risk factors for
CHD can also be explained by this mechanism, because of their additive effect on the extent
of lipid peroxidation.

Lipid peroxidation as an independent risk factor for CHD
If lipid peroxidation contributes to atherogenesis, then identifying patients with high lipid
peroxidation levels should tell us who is at risk for CHD and who would therefore benefit
from therapeutic intervention (Table 2). To determine if IsoP values were an independent
predictor of CHD, Schwedhelm et al performed a case-control studies with 93 subjects with
verified CHD and 93 age- and sex-matched healthy controls [49]. They measured IsoPs
along with more traditional markers such as hypercholesterolemia, low HDL, body mass
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index, diabetes, systolic blood pressure, hs-CRP, and smoking status. Patients with a greater
number of risk factors had higher IsoP values. Each biomarker was associated with a higher
odd ratio for CHD in univariate analysis, but only two biomarkers (IsoPs and hs-CRP) were
associated with higher odd ratios for CHD when multivariate analysis was applied in a
stepwise regression model. This finding established IsoP values as a potential independent
risk factor for CHD.

A subsequent study further established IsoPs values as an independent risk factor for CHD
[50]. In this study, nine different lipid peroxidation products (IsoPs and eight different
hydroxy fatty acids) were each measured by mass spectrometry in the plasma of consecutive
patients who underwent diagnostic coronary angiography. Two of the nine lipoxidation
products (IsoPs and 9-HETE) were significantly higher in those diagnosed with CHD
compared to those without. The other lipoxidation products did not reach statistical
significance. When all patients were stratified by IsoP quartile, the odds ratio for patients in
the highest IsoP quartile to have angiographic evidence of CHD was 9.7 compared to
subjects in the lowest IsoP quartile. Adding IsoP (or 9-HETE) values to the standard
Framingham global risk score significantly improved the ability to predict angiographic
CHD compared to using the Framingham risk score alone, demonstrating the potential
clinical utility of these measurements.

The potential utility of IsoP values as an independent risk indicator for CHD found in these
small pilot studies have been subsequently confirmed in larger populations. For instance,
Gross et al compared IsoP values and the extent of coronary artery calcification (CAC) in a
biracial cohort of 2850 young healthy men and women [48]. Approximately 23% of the men
in the highest IsoP quartile manifested calcification compared to only about 12% of the men
in the lowest IsoP quartile. Although prevalence of calcification was much lower in women
overall, they still found that a greater percentage of women in the highest IsoP quartile
manifested calcification than those in the lowest IsoP quartile. Another case control study
with 799 patients with angiographically confirmed CHD and 925 healthy controls found
similar two-fold increases in odds ratios for the highest IsoP quartile compared to the lowest
quartile [51].

Although almost all studies to date indicate a correlation between IsoP values and CHD, we
are aware of two studies that have failed to find such a relationship. Ruef et al reported (but
did not show data) that IsoP levels were not significantly higher in 162 patients with stable
angina or acute coronary syndromes compared to 46 control patient [52] . These
measurements were performed by immunoassay, which may have meant the study was
simply underpowered. No differences were also found in a nested case-control study that
included 647 patients even though a GC/MS assay method was used measure IsoP levels
[53]; however, IsoP values in the matched control patients ranged from 0.3 nM to 65 nM.
From our extensive experience measuring IsoP levels in humans, this 200-fold variation is
highly unusual for normal healthy patients and therefore suggests that a significant portion
of the matched control subjects may in fact have had subclinical disease at the time of the
study. Thus, in our opinion, the results of these two studies do not significantly alter the
conclusion that high IsoP values are an independent risk factor for CHD.

Isoprostanes as an indicator of disease severity and outcome
In addition to signifying an increased risk for disease, high IsoP values may also provide
information about the severity of disease. Vassalle et al compared plasma IsoP levels in 38
patients with angiographically measured CHD and 30 healthy control subjects[54]. They not
only found that plasma levels of IsoP increased with the number of risk factors, but also that
subjects with greater number of diseased vessels had higher plasma IsoP levels. This finding
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was confirmed by a larger study comparing IsoP levels and severity of coronary artery
stenosis in 241 consecutive patients undergoing coronary angiography for suspected
coronary artery disease [55]. Once again, IsoP levels correlated with the number of risk
factors and the number of affected vessels.

If there is a relationship between IsoP values and severity of coronary disease, then do IsoP
values predict clinical outcome of patients diagnosed with CHD? One of the first studies to
address this question measured IsoP and other biomarkers in 108 patients admitted to the
emergency room with chest pain and subsequently diagnosed with acute coronary syndrome
(ACS) based on changes in their echocardiogram or elevated troponin levels [56]. IsoP
levels at admission were more than 3-fold higher in patients diagnosed with ACS than the
101 age- and gendered-matched patients who did not have ACS. The ACS patients were
then tracked over the next 30 days for four primary endpoints (nonfatal myocardial
infarction, heart failure, revascularization or death). 42% of patients in the highest IsoP
tertile at admission had reached one or more of these endpoints by 30 days, compare to only
14% and 17% of patients in the lowest and middle IsoP tertiles, respectively. Using this data
to create receiver operating characteristic curves, the optimal cutoff point for IsoP levels was
124.5 pg/ml (74% sensitive, 81% specific in predicting cardiac events ; 57% positive
predictive value, 90% negative predictive value.) Interestingly, IsoP values had greater
predictive power than hs-CRP values. Thus, high IsoP values appear to be a useful indicator
that a patient is at high risk and that greater vigilance and intervention are needed.

The relationship between CHD and IsoP levels suggests that atherosclerotic tissue is a
significant source of the increased IsoPs found in circulation and in urine. Evidence that
formation of IsoPs occurs in atherosclerotic vascular tissue to a greater extent than in normal
vascular tissues comes from a study that used directional coronary atherectomy [57]. Mean
IsoP levels in lesion specimens from patients with unstable angina pectoris or recent
myocardial infarction were approximately 16-fold higher than in specimens from apparently
normal peripheral artery. Lesions from patients with stable angina were 7-fold higher than
the control tissue. Therefore, the increased circulating or urinary IsoP levels for in CHD
seems to directly reflect increased lipid peroxidation that occurs in blood vessels undergoing
atherogenesis.

Isoprostanes as an endpoint in interventional trials
If increased IsoP values directly reflect lipid peroxidation in vessel walls that is driving
atherogenesis, then a reduction in IsoP values should indicate successful intervention and
modulation of disease progression (Table 3). Can IsoP values be used as a surrogate
endpoint in interventional studies? Several clinical studies for therapeutic agents that are
effective at ameliorating disease and that may target lipid peroxidation indirectly have
shown reduction in IsoP values after intervention. For instance, statins, which lower LDL
levels by inhibition cholesterol synthesis, have been consistently shown to reduce IsoP
levels in hypercholesterolemic patients [27,28,58-60]. Smoking cessation also rapidly
reduces IsoP levels [21,61,62]. AT1 receptor blockers, used to treat hypertension, also
significantly reduce IsoP levels in hyperholesterolemic patients [63]. Weight loss in obese
subjects also profoundly lowers IsoP levels [64-69]. These results strongly suggest that
effective interventions for CHD will either directly or indirectly lower IsoP values, so that
measurement of IsoP values should be a highly useful surrogate endpoint in clinical trials.

The lack of such surrogate endpoint clouds the interpretation of an entire group of
therapeutic trials involving vitamin E supplementation that have been used as evidence that
lipid peroxidation does not mediate CHD. These trials were initiated based on
epidemiological studies that suggested an inverse relationship between intake of the dietary
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antioxidant vitamin E and CHD [70,71] and on animal studies showing a reduction of
atherosclerosis with vitamin E supplementation[72-77]. However, in a large number of
placebo controlled clinical trials, vitamin E supplementation failed to reduce CHD [78-85].
One key, but untested, assumption of these trials was that the doses of vitamin E used were
sufficient to reduce lipid peroxidation in hypercholesterolemic subjects. A recent
pharmacokinetic /pharmacodynamic studies for vitamin E using hypercholesterolemic
subjects with elevated plasma IsoP values suggest this key assumption was not correct [86].
Sixteen weeks of vitamin E supplementation at 1600 IU/day or greater were required to
significantly reduced plasma IsoP levels. The typical dose of vitamin E used in clinical trials
has been 400 IU/day or less, so that the doses of vitamin E used in almost every clinical trial
for CHD to date appear to have been too low to significantly alter lipid peroxidation.
Therefore, while these trials provide clear evidence that low dose vitamin E is not an
effective treatment for CHD, they do not provide evidence about the effectiveness of
lowering lipid peroxidation as a treatment for CHD.

Limitations of current knowledge and future studies needed
Clinical studies in the past decade have greatly strengthened the evidence that lipid
peroxidation plays a key role in atherogenesis. While the consistent findings that high IsoP
values are independent risk factors for CHD and correlate with severity of disease suggest
the potential clinical utility of measuring IsoP levels, this remains to be demonstrated with
appropriate clinical studies. For instance, there clearly need to be more studies to determine
whether IsoP levels at admittance to the emergency room for chest pain or acute coronary
syndrome are a useful predictor of short and long-term outcomes and if applying more
aggressive treatments based on high IsoP levels actually improves outcomes. In a similar
manner, there need to be large scale clinical studies to determine if initiating or escalating
preventative treatments (e.g. statins or antihypertensives) based on IsoP levels in patients
with otherwise borderline indicators significantly reduces the incidence of CHD. A key
aspect of these trials should be the establishment of what specific IsoP values should trigger
intervention, along with identifying what level of reduction is required for efficacy. We
believe that the use of mass spectrometry based methods rather than immunoassay to
quantify IsoP levels in these studies is critical to establishing appropriate treatment
guidelines. Although this may slightly add to the cost of conducting large scale trials, this
seems to be the only reasonable way to ensure that measurements conducted at multiple
testing centers can be reliably compared to one another, be free of artifacts, and be
subsequently standardized for widespread use.

The results of the past decade also demonstrate that many pharmacological interventions
that reduce risk factors of CHD (e.g. elevated cholesterol levels, diabetes, etc…)
concomitantly reduce lipid peroxidation. It remains to be established whether lowering lipid
peroxidation is by itself clinically relevant and how significant of reductions in lipid
peroxidation levels are required to provide maximum clinical benefit. An important aspect
of such studies would be to determine if mechanistically unrelated interventional strategies
that achieve similar reductions in IsoP levels provide similar benefits in terms of outcome. It
must also be determined whether reduction of lipid peroxidation must be achieved very early
in atherogenesis to be beneficial, or whether reduction in later stages of disease is also
beneficial. In addition to high dose vitamin E, there are a number of novel dietary
antioxidants (e.g. pomegranate juice [87-89]) and synthetic antioxidant interventions that
have been proposed to reduce lipid peroxidation and that might merit use in clinical trials.
However, defining the clinical pharmacology and the doses needed to suppress lipid
peroxidation by these agents is needed prior to initiating trials. To appropriately test the
efficacy of such antioxidant strategies in the prevention of CHD, we suggest that a minimum
IsoP value of more than 2 SD above the normal mean (i.e. plasma IsoP >47 pg/ml as
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measured by GC/MS assay) be used as the inclusion criteria for subjects [86] and that
treatment doses be titrated to reduce IsoP values to within 1SD of the normal range (i.e.
plasma IsoPs <41 pg/ml). Such studies should provide a clear test of the hypothesis that
reducing lipid peroxidation is an effective strategy in the treatment of CHD and if
successful, would establish appropriate target levels for physicians to use in treating their
patients, in the same manner that target cholesterol and blood pressure levels are currently
used.

In addition to more clinical trials, the results of the past decades also provide the rationale
for continuing animal and cell culture studies to fully elucidate how lipoxidation products
contribute to atherosclerosis. Although IsoPs clearly serve as excellent markers of lipid
peroxidation, this should not distract from efforts to identify the lipoxidation products that
are the most important contributors to atherosclerosis and to perform clinical studies to test
their usefulness as biomarkers. With such studies in hand, the questions of whether lipid
peroxidation is a critical component of CHD and if lipid peroxidation is a suitable target for
intervention in CHD should finally be satisfactorily answered.
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Table 1

Studies Assessing the Effect of Risk Factors on IsoP Levels

Study Design and Population Major Finding IsoP Assay Ref

Smoking

 •Smokers (n=10) vs age/sex-matched non-smokers (n=10) 2.4-fold ↑ plasma IsoP levels in smokers GC/MS [19]

 •Smokers (n=6) vs age-matched non-smokers (n=6) 2.3-fold ↑ urine IsoP levels in smokers GC/MS [20]

 •Heavy (n=5) vs moderate (n=5) vs non-smokers (n=8) 3.2-fold (heavy) and 1.7-fold (moderate) ↑urine IsoP GC/MS [21]

 •COPD current smoker (n=15) vs COPD ex-smoker (n
=25) vs healthy smokers (n=12) vs healthy non-smokers
(n=10).

4.1-fold (COPD smoker), 3.6-fold (COPD ex), 2.2-fold ↑
breath
condensate IsoP

ELISA [23]

Elevated LDL

 •HC patients (n=40) vs age/sex matched controls 2.2-fold ↑ urine IsoP levels in HC patients ELISA [24]

 •Familial HC patients (n=38) vs controls (n=38) and
moderate HC patients (n=24) vs controls (n=24)

1.5-fold (familial HC) and 1.4 (moderate HC) ↑ urine
IsoP

GC/MS [25]

 •HC patients (n=25) vs controls (n=12) 3.2-fold ↑ plasma IsoP levels in HC patients ELISA [26]

 •HC patients (n=67) vs controls (n=32) 1.4-fold ↑plasma IsoP levels in HC patients ELISA [28]

Reduced HDL

 •Low HDL (n=8) vs normolipidemic (n=15) 2.1-fold ↑plasma IsoP levels in low HDL subjects ELISA [29]

Diabetes

 •Type 2 diabetics (n=39) vs healthy controls (n=15) 3.3-fold ↑total plasma IsoP levels in T2DM patients GC/MS [30]

 •Type 2 diabetics (n=62) vs age/sex-matched controls
(n=62) and Type 1 diabetics (n=23) vs matched controls
(n=23)

2.0-fold ↑urine IsoP levels in both T2DM and T1DM
patients

RIA [31]

 •Type 2 diabetics (n=40) vs age/sex-matched controls
(n=25)

5.9-fold ↑plasma IsoP levels in T2DM patients ELISA [32]

 •Type 1 diabetics (n=14) vs age/BMI-matched controls
(n=14)

2.3-fold ↑ urine IsoP levels in T1DM patients LC/MS/MS [33]

 •Type 2 diabetics (n=26) vs age-matched controls (n=52) 2.7-fold ↑urine IsoP levels in T2DM patients ELISA [34]

Obesity

 •Framingham Study participants (n=2828) Log urine IsoP correlates with BMI (0.087 per 5kg/m2) ELISA [35]

 •Obese men (n=14) vs non-obese men (n=17) 4.2-fold ↑ plasma IsoP levels ELISA [36]

 •Met. Syndrome patients (n=10) vs matched controls
(n=11)

3.7-fold ↑ plasma IsoP levels ELISA [37]

 •Obese children (n=44) vs age-matched non-obese (n=28) 3.2-fold ↑ plasma IsoP levels ELISA [38]

Hypertension

 •Framingham Study participants (n=2828) Log urine IsoP correlates with systolic BP (0.029 per 20
mm Hg)

ELISA [35]

 •Renovascular disease patients vs essential hypertension
patients vs healthy subjects.

2.5-fold (renovascular) and 1.5-fold (essential
hypertension) ↑urine
IsoP levels

RIA [39]

 •Hypertensive patients vs normotensive controls 2.0-fold ↑ plasma IsoP levels ELISA [40]

 •Pulmonary Hypertensives (n=25) vs age/sex-matched
controls (n= 25)

2.3-fold ↑ urine IsoP levels GC/MS [42]

CRP

 •Japanese workers undergoing yearly exam (n=551) Urine IsoP/creatinine vs CRP (r = 0.139) ELISA [44]

 •TRAIN study participants (n=60) Log urine IsoP vs log hsCRP (r = 0.31) GC/MS [43]

Homocysteine
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Study Design and Population Major Finding IsoP Assay Ref

 •Subset of ASAP study participants (n=100) 1.5-fold ↑ plasma IsoP in high vs low homocysteine
quintile (r=0.33)

GC/MS [45]

Age

 •Framingham Study participants (n=2828) Log urine IsoP inversely correlates with age (−0.037 per
10 years age)

ELISA [35]

 •Subset of Louisiana Healthy Aging Study >90 years old
(n= 74) vs 60-74 years old (n =49) vs 20-34 years old (n=
47)

Urine IsoP metabolite 26% lower in the >90 year old
group

LC/MS/MS [46]

 •Older (>60 years old, n=20) vs young (20-33 years old,
n=20)

Plasma IsoP in age groups not different at rest, but area
under response
the curve 7.8–fold ↑ in older group after ischemia/
reperfusion

GC/MS [47]

Gender

 •Framingham Study participants (n=2828) Log urine IsoP inversely correlates with being male
(0.157 for female)

ELISA [35]

 •CARDIA study participants Male (n=1302 ) vs Female
(n= 1548 )

Plasma IsoP 25% lower in males GC/MS [48]

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRP, high sensitivity C-reactive protein; ELISA, enzyme
linked immunoassay; GC/MS, gas chromatography mass spectrometry; HC, hypercholesterolemia; LC/MS/MS, HPLC tandem mass spectrometry;
RIA; radioimmunoassay; BP, blood pressure
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Table 2

Studies Assessing Relationship Between IsoP Levels and Presence or Extent of CHD

Study Design and Population Major Findings Ref

Studies That Found IsoP Levels to be Independent Risk Factors for CHD

Verified CHD cases (n=93) vs controls (n=93) Measured
IsoP, BMI, BP, TC, HDL, LDL, TG, hsCRP, oxLDL and
presence of DM, smoking, and medications.

• Urine IsoP 1.8-fold↑ in CHD patients (GC/MS).

• IsoP correlate with #CHD risk factors.

• 27.3 Odds Ratio (OR) for CHD in highest IsoP tertile.

[49]

Consecutive patients undergoing diagnostic coronary
angiography. CHD (≥50% stenoses, n=54) vs control
(<30% stenoses, n=50).

• Plasma IsoP 1.5-fold↑ in CHD patients (LC/MS/MS).

• 9.7 OR (adjusted) for CHD in highest IsoP quartile.

• 9-HETE also predicted CHD

[50]

CARDIA study participants (age ≤ 30 at entrance) were
analyzed for coronary artery calcification (CAC) at 15 year
follow-up (n=2850).

• 1.24 OR (adjusted) for CAC per 33 pg/mL plasma IsoP (GC/
MS).

[48]

Verified CHD patients (n=799) vs controls (n=925). • Urine IsoP 1.2-fold↑ in CHD subjects (ELISA)

• 2.55 OR (adjusted) for CHD in highest IsoP quartile

• PAF-AH activity also predicted CHD

[51]

Studies that Found IsoP Levels to Correlate with Extent of Disease

CHD cases (n=38) vs healthy controls (n=30). CHD
patients underwent angiography to determine # vessels
involved.

• Plasma IsoP ↑ with #CHD risk factors (ELISA).

• IsoP 1.5-fold↑with 1-vessel disease and 2.0-fold↑with multi-
vessel disease.

[54]

Consecutive patients undergoing diagnostic coronary
angiography. #vessel with ≥50% stenoses determined.
Controls (0 vessel n=72, 1-vessel CHD n=65, 2-vessel
CHD n=61, 3-vessel CHD n=43.

• Plasma IsoP ↑ with #CHD risk factors (ELISA).

• OR 2.47 (adjusted) per 100 pg/ml increase in IsoP.

• IsoP 1.2-fold↑ 1-vessel CHD, 1.3-fold↑ 2-vessel CHD, 1.4-
fold↑3-vessel CHD.

[55]

Studies that Found IsoP Levels May Predict Outcome of CHD

Patients admitted to ER with chest pain and diagnosed with
ACS (n=108.) ACS patients followed for 30 days for
composite end-point of MI, CHF, revascularization, or
death.

• Serum IsoP 4.8-fold↑ in ACS at admission vs controls
(ELISA).

• 42% pts in highest IsoP tertile reach endpoint vs 14% for
lowest tertile.

[56]

Studies That Failed to Find Significant Correlation Between IsoP Levels and CHD

CHD patients with ACS (n=54), CHD with stable angina
(n=108) vs. control (n=46). Measured 17 plasma
biomarkers including IsoP.

• Stated did not find an increase in plasma IsoP levels (ELISA)
for patients with CHD, (no data shown.)

[52]

Nested case control from Fletcher Challenge Cohort study.
CHD cases (n=227) vs controls (n=417).

• Found similar plasma IsoP levels (GC/MS) for case vs.
control.

• There was an extremely unusual range of IsoP levels in
control subjects ..

[53]

Abbreviations: ACS, acute coronary syndrome; CHF, congestive heart failure; CRP, high sensitivity C-reactive protein; ELISA, enzyme linked
immunoassay; GC/MS, gas chromatography mass spectrometry; HC, hypercholesterolemia; LC/MS/MS, HPLC tandem mass spectrometry.
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Table 3

Interventions That Significantly Reduce IsoP Levels in Human Clinical Studies

Population Duration of Treatment Major Findings Ref

Statins

 •HC patients (n=34) 1 month simvastatin q.s. ↓TC >20% Urine IsoP (RIA) ↓34% and giving 600 mg/d
vitamin E had no added effect.

[58]

 •HC patients (n=25) 6 months pravastatin 10 or 20 mg/d Plasma IsoP (ELISA) ↓47% and also ↓LV mass . [27]

 •HC patients (n=34) 6 months simvastatin 40 mg ±Vit. E Plasma IsoP (ELISA) ↓~90 pg/ml (no Vit E) and
↓~140 pg/ml (with 400 IU/dVit E).

[28]

 •CHD patients (n=64) 2 months atorvastatin 40 mg/d Plasma IsoP (ELISA) ↓52% overall. Also ↓LDL
C and hsCRP.

[59]

 •Dialysis pts (n=28) 4 months simvastatin 5mg/d or10mg/
d

Plasma IsoP (ELISA) ↓52% (LDL <200) and
↓40% (LDL>200). Also ↓oxLDL and
↑%FMD.

[60]

Smoking Cessation

 •Smokers (n=8) 2 weeks cessation Plasma IsoP (GC/MS) ↓38% [19]

 •Smokers (n=6) 3 weeks cessation Urine IsoP (GC/MS) ↓33% [21]

 •Smokers (n=36) 3 weeks cessation Urine IsoP (ELISA) ↓~32% overall*. Also
↓plasma and serum IsoP.

[61,62]

AT 1 Receptor Antagonists

 •HC patients (n=17) 6 weeks candesartan 16 mg/d Serum IsoP (ELISA) ↓13%. Also ↓MCP-1,
sICAM-1, hsCRP.

[63]

Caloric Restriction/Weight Loss

 •Obese women (n=11) 12 weeks calorie intake 1200 kcal/d Urine IsoP (RIA) ↓32% . Included only if weight
↓≥5 kg. Also ↓hsCRP and 11-d-TxB2.

[64]

 •Obese men (n=11) 3 weeks high fiber diet and exercise Serum IsoP (ELISA) ↓~30% * Body weight
↓3.7%. Also ↓BP and TC

[65]

 •Obese women (n=71) 6 months hypocaloric diet± orlistat Plasma IsoP (ELISA) ↓72% (no orlistat) and
↓79% (with orlistat). Also ↓hsCRP, LDL, TG

[66]

 •Overweight asthmatic patients
(n=10)

8 weeks alternating day 80% CR Serum IsoP↓79%. Body weight ↓8%. Also
↓protein carbonyl and nitrotyrosine.

[67]

 •Obese pts (n=30) 8 weeks 30% CR Urine IsoP (ELISA)↓ 35%. Body weight ↓7%.
Also ↓MDA, TC, Urate.

[68]

 •NAFLD pts (n=7) subtotal gastrectomy Serum IsoP (GC/MS) ↓~38% *. Also BMI ↓21%
and changes in PUFAs.

[69]

Vitamin E

 •HC pts (n=5/dose) 16 weeks vitamin E (0- 3200 IU/d) Plasma IsoP (GC/MS) ↓35% (1600 IU/d) and
↓49% (3200 IU/d). Trend for ↓IsoP at 800
IU/d. No change at 100-400 IU/d Vitamin E.

[86]

Abbreviations: BMI, body mass index; BP, blood pressure; CR, caloric restriction; FMD, Flow Mediated Dilation; HC, hypercholesterolemia;
TC, total cholesterol; NAFLD, non-alcoholic fatty liver disease.

*
estimated from graph in figure.
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