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Abstract
Aim—Atrial natriuretic peptide (ANP) is released from the heart in response to hypoxia and helps
mitigate the development of pulmonary hypertension. However, the mechanism of hypoxia-
induced ANP release is not clear. The cardiac atria are the primary source of ANP secretion under
normal conditions, but right ventricular ANP expression is markedly up-regulated during
adaptation to hypoxia. We sought to better understand mechanisms of cardiac ANP release during
adaptation to hypoxia

Main methods—We measured hypoxia-induced ANP release from isolated perfused rat hearts
obtained from normoxia and hypoxia-adapted rats before and after removal of the atria.

Key findings—In both normoxia- and hypoxia-adapted hearts, ANP levels in the perfusate
increased within 15 minutes of hypoxia. Hypoxia-induced ANP release was greater from hypoxia-
adapted than normoxia-adapted hearts. Baseline and hypoxia-induced ANP release were
considerably greater with the atria intact (213 ± 29 to 454 ± 62 and 281 ± 26 to 618± 87 pg/ml for
normoxia- and hypoxia-adapted hearts respectively, P < 0.001 for both) than with atria removed
(94 ± 17 to 131 ± 32 and 103 ± 26 to 201 ± 55 pg/ml, respectively, P < 0.002 for both). Hypoxia-
induced ANP release was reduced over 80% by removing the atria in both normoxia- and in
hypoxia-adapted hearts. Acute hypoxia caused a transient increase in lactate release and reductions
in pH and left ventricular generated force, but similar changes in lactate and pH did not affect
ANP release under normoxic conditions.

Significance—We conclude that the right ventricle is not a major source of cardiac ANP release
in normoxia or hypoxia-adapted rats.
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Introduction
Atrial natriuretic peptide (ANP) is a cardiac hormone that is synthesized and stored
primarily in the cardiac atria where it is released in response to atrial distension [1],
tachycardia [2] or acute hypoxia [3]. Because of its potent diuretic and vasorelaxant
properties, and its antagonistic effect on the renin-angiotensin system, ANP is thought to
play an important role in intravascular volume homeostasis [4]. ANP is also a potent
inhibitor of pulmonary vasoconstriction and several lines of evidence suggest that it plays an
important role in protecting against the development of hypoxic pulmonary hypertension
[5]. Elevation of circulating ANP levels, either by infusion of exogenous ANP [6] or as the
result of transgenic overexpression of endogenous ANP [7] blunt the development of
pulmonary hypertension, right ventricular hypertrophy and muscularization of pulmonary
arteries during chronic hypoxia. Conversely, monoclonal antibodies against ANP can
exaggerate pulmonary hypertensive responses to subacute and chronic hypoxia [8] and mice
with gene-targeted disruption of ANP or its primary receptor, natriuretic peptide receptor-A
(NPR-A), have increased right ventricular pressure and mass and develop greater pulmonary
hypertensive and right ventricular hypertrophy in response to chronic hypoxia [9]. Finally,
inhibition of phosphodiesterase-5 activity ameliorates hypoxic pulmonary hypertension in
normal mice but not in mice with genetic disruption of NPR-A, suggesting that ANP-NPR-
A signaling is the primary mechanism by which cGMP inhibits the development of hypoxic
pulmonary hypertension [10].

Circulating ANP levels are elevated in response to acute and chronic hypoxia. This, likely
occurs as the result of both reduced pulmonary clearance [11] and increased cardiac
secretion [12]. Decreased pulmonary clearance occurs as the result of a decrease in
expression of pulmonary natriuretic peptide clearance receptor (NPR-C), but the
mechanisms responsible for increase cardiac ANP secretion are unclear. Numerous factors
may contribute to the release of ANP during exposure to acute hypoxia. Hypoxic has a
direct stimulatory effect on ANP release from atrial cardiomyocytes in vitro and hypoxic
pulmonary vasoconstriction increases right ventricular and right atrial stretch by increasing
intra-chamber pressure [3]. Chronic hypoxia is also associated with the release of a variety
of substances that have been shown to stimulate cardiac ANP secretion such as vasopressin
and endothelin [13].

The relative contribution of the cardiac atria and ventricles to ANP secretion during chronic
hypoxia is uncertain. Under baseline conditions, ANP and ANP mRNA levels in the cardiac
atria are 1-2 orders of magnitude greater than in the ventricles. The cardiac atria synthesize
large quantities of ANP that are stored in secretory granules and secreted via a regulatory
pathway, whereas the ventricles secrete ANP via a constitutive pathway and have little pre-
synthesized ANP stores. Thus, under normal conditions the atria are considered the primary
source of ANP release [14]. However, ventricular ANP expression is markedly up-regulated
in cardiac hypertrophy [15], and in some models of congestive heart failure, ANP secretion
from the left ventricle can approximate or exceed that of the atria [16]. In one study of rats
exposed to chronic hypoxia, steady state ANP mRNA levels in the right ventricle increased
160-fold and right ventricular ANP tissue levels increased 9-fold [17]. In comparison, right
atrial ANP mRNA levels did not change significantly and right atrial ANP concentration
decreased [17]. In the present study, we hypothesized that if the right ventricle contributes to
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increased ANP secretion during adaptation to hypoxia, then ventricular ANP release should
be greater in hearts obtained from hypoxia-adapted rats than from those obtained from
normoxia rats. To test this hypothesis, we measured baseline and hypoxia-induced ANP
release from the hearts of normoxia and hypoxia-adapted rats with the atria intact and with
atria removed.

Methods
Environmental Exposures

Male Sprague-Dawley rats (Harlan Sprague Dawley, Inc., Indianapolis, IN) weighing
between 270 and 380 g were placed in hypobaric chambers for 3 weeks. Hypobaric
conditions were achieved by applying a continuous vacuum and adjusting an air intake valve
to maintain intra-chamber pressure at 380 mmHg (0.5 atm). Airflow through the chamber
was kept at 10-15 l/minute to prevent accumulation of CO2 and NH3. Intra-chamber
pressure was monitored via a pressure gauge in the wall of the chamber. Chambers were
opened three times weekly to clean animal cages and to replace food and water. Rats were
fed standard rat chow and were allowed to take food and water ad libitum. Normoxic
controls were kept in identical cages adjacent to the hypoxic chambers. For ease of
identification these rats are referred to as “normoxia-adapted” in the tables, figures and
figure legends.

Isolated Perfused Heart
Rats were heparinized with 2500 IU of sodium heparin, intraperitoneally. After 15 min. they
were anesthetized with 50 mg pentobarbital. A subcostal incision was made, the diaphragm
transected and the ribs incised and spread to expose the heart. The heart was rapidly
removed and placed in ice cold Krebs-Henseleit-Bicarbonate buffer to arrest beating. The
aorta was mounted on an isolated perfusion Langendorff apparatus and the coronary vessels
perfused via retrograde perfusion with Krebs-Henseleit-Bicarbonate buffer at a rate of 10
ml/minute. A balloon-tipped catheter constructed from plastic wrap and polyethylene tubing
PE60 containing Krebs- Henseleit-Bicarbonate buffer was inserted into the left ventricle via
the mitral valve. Left ventricular pressure was monitored with this catheter connected to a
pressure transducer (Gould Instrument Systems, Valley View, OR). Another transducer,
connected to the side arm of the aortic perfusion catheter monitored coronary perfusion
pressure. Volume in the balloon was adjusted to set left ventricular end diastolic pressure at
5 mmHg. The heart was allowed to stabilize for 30 min. From this point onward the volume
in the catheter balloon remained constant. The heart was electronically paced at a rate at 300
bpm using a Grass stimulator (Model SD9J, W. Warwick, RI) at twice the minimum capture
voltage. Heart rate, left ventricular peak systolic pressure (LVPSP), left ventricular end
diastolic pressure (LVEDP) and coronary perfusion pressure (CPP) were monitored
continuously and recorded using a Biopac (Model # MP100A, Santa Barbara, CA) analog to
digital converter interfacing with an IBM compatible computer, using Acknowledge
software (Biopac Systems, Santa Barbara, CA). Left ventricular generated pressure (LVGP
defined as LVPSP-LVEDP) and maximum LV dP/dt (± LV dP/dtmax) were used as indices
of myocardial function.

Experimental Protocol
Hearts were initially perfused with Krebs-Henseleit-Bicarbonate buffer (NaCl 118 mM; KCl
4.7 mM; CaCl2 1.75 mM; NaHC03 21 mM, MgS04 1.2 mM, KH2P04 1.2 mM, EDTA 0.5
mM, and glucose 11 mM). Buffer was prepared fresh daily using deionized water, and was
aerated with 95% O2 and 5% CO2. Normally 95% O2 is used to oxygenate the perfusate in
the Langendorf isolated heart because of the lack of hemoglobin. The pH of the aerated
buffer solution was adjusted to 7.4. Following a 30 minute stabilization period in which
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hearts were perfused with Krebs-Henseleit-Bicarbonate aerated with 95% O2/5% CO2
(normoxia), hearts were exposed to two 15 minute periods of acute hypoxia, interrupted by
30 minutes of normoxia (See Figure 1). For acute hypoxic exposure, hearts were perfused
with Krebs-Henseleit-Bicarbonate buffer aerated with either 5% or 21 % O2, 5% C02,
balance N2 at 37° C for 15 min. The order of hypoxia was randomized such that half of the
hearts were perfused with the 5%O2 perfusate first followed by 30 minutes of normoxia and
then 15 minutes of the 21% O2 perfusate and half of the hearts were exposed to the 21% O2
pefusate for 15 minutes followed by 30 minutes of normoxia and then 15 minutes of the 5%
O2 perfusate (See Figure 1). The results of both protocols were combined in analyzing ANP
concentrations in the effluent in response to acute hypoxia since the magnitude of hypoxia
had no effect on ANP release (See Figure 4). Normoxia and hypoxia-adapted controls hearts
were subjected to the same protocol described above but without exposures to 5% or 21%
O2 (See Figure 1). After the last exposure to hypoxia, the hearts were returned to normoxic
perfusate for 30 min and then the atria were carefully removed and the perfusion cycle was
repeated (See Figure 1). At predetermined intervals (1,3,8,15,30 minutes during normoxia
and 1,3,8,15 minutes during hypoxia) 10 ml of the heart perfusate was collected in tubes
containing 500 KIU aprotinin (Sigma Chemical, St Loius MO) and frozen for later ANP
analysis ( See Figure 1). At the same time, 1.5 ml aliqout of perfusate was collected and
analysed for O2, pH, glucose and electrolytes using a Nova Stat Profile Plus 9 analyzer
(Waltham, MA).

ANP Measurements
Samples were prepared for ANP analysis by concentrating samples with a Sep-Pak C18
column (Waters Corp, Milford MA). Columns were prepared with methanol, washed with
water. Samples were acidified with 4% acetic acid, placed on columns, washed with 4%
acetic acid and eluted with 90% ethanol/ 9.6% water/ 0.4% acetic acid. The eluate was dried
in a Savant Speed-Vac Concentrator (Farmingdale NY). ANP levels were determined by
ELISA (Caymen Chemical, Ann Arbor MI).

Results
Effect of Chronic Hypoxia on Ventricular Mass and Pressures

Three weeks of hypobaric hypoxia increased right ventricular mass normalized to left
ventricle plus septum (RV/LV+S) or body weight (RV/BW) approximately 2-fold,
consistent with the development of marked right ventricular hypertrophy (Table 1). Acute
hypoxia decreased left ventricular systolic pressure (LVSP) and increased left ventricular
diastolic pressure (LVDP) resulting in a marked drop in left ventricular generated pressure
(LVGP) (Figure 2 and Table 2). Chronic hypoxia had no effect on left ventricular mass
(Table 1) and did not affect left ventricular contractility or contractile response to acute
hypoxia. Left ventricular pressures were not statistically different after removal of the
cardiac atria and no differences in LVSP, LVDP, or LVGP were seen between hearts
isolated from normoxic or hypoxia-adapted rats at anytime point measured (Table 2).

Effect of Chronic Hypoxia on Baseline and Hypoxia-Induced ANP Release
Secretion of ANP was assessed by measuring the concentration of ANP in the effluent of
isolated perfused hearts. Baseline ANP secretion was nearly identical in normoxia-adapted
and hypoxia-adapted hearts. There was a trend toward a decrease in ANP perfusate levels
during the first 8 minutes after hearts were hung, followed by a steady state ANP secretion
between 8 and 30 minutes (Figure 3). Acute hypoxia increased ANP release at least 2-fold.
There was no difference in ANP release between 5% and 21% O2. ANP release in response
to acute hypoxia was greater in hypoxia-adapted hearts than in normoxia-adapted hearts,
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although absolute differences in effluent ANP concentration between groups reached
statistical significance only at the 8 minute time point (Figure 3).

Thirty minutes after removal of both cardiac atria, baseline ANP secretion fell from 205 pg/
ml to 94 pg/ml in control hearts and from 249pg/ml to 103pg/ml in the hypoxia-adapted
hearts. This resulted in a 52 and 59% decrease in basal ANP release in normoxic and
hypoxia-adapted hearts, respectively (Figure 3). With atria attached, the mean increase in
ANP concentration after switching to perfusate equilibrated with 21 or 5% oxygen was
291.4 and 313.8 pg/ml, respectively for normoxic hearts and 394.8 and 360.6 pg/ml,
respectively for hypoxia-adapted hearts (Figure 4). With atria removed, the mean increase in
ANP effluent concentration for 21 and 5% oxygen was 44.6 and 42.2 pg/ml in normoxic
hearts and 75.4 and 73.8 pg/ml in hypoxia-adapted hearts (Figure 4). Thus, removal of the
cardiac atria decreased hypoxia-induced ANP release 85-87% in normoxia hearts and
80-81% in hypoxia-adapted hearts. With atria removed, no significant differences were seen
in hypoxia-induced ANP release between normoxia and hypoxia-adapted hearts (Figure 3
and 4).

Effect of Hypoxia on Acid-base Disturbance and Transplasmalemmal Electrolyte Flux
In order to determine if acute hypoxia increased ANP release by causing an acute
intracellular acidosis or changes in intracellular electrolyte concentrations, we measured
changes in lactate, pH, Na+, K+, and Ca++ concentration in the effluent from isolated
perfused hearts. Acute hypoxia caused an immediate and marked increase in lactate
production. Lactate levels in the effluent of normoxic hearts increased nearly 9-fold within
minutes of switching to perfusate equilibrated with 21 or 5% O2 (Figure 5). Hypoxia-
induced lactate release was lower in hypoxia-adapted hearts. Lactate levels in the effluent of
hypoxia-adapted hearts were approximately half those of normoxic hearts during each
hypoxic challenge (Figure 5). Despite the difference in lactate levels, no differences in
effluent pH were seen between normoxia and hypoxia-adapted hearts following exposure to
acute hypoxia (Figure 6). Also, there was no difference in glucose consumption between
normoxia and hypoxia-adapted hearts in response to acute hypoxia (Figure 7). In order to
determine if acute hypoxia resulted in disturbances in electrolyte concentration, we
examined the effect of acute hypoxia on Na+, K+, and Ca++ secretion. Effluent levels of
these cations were the same in normoxia and hypoxia-adapted hearts under normoxic and
acutely hypoxic conditions (data not shown).

Discussion
In the present study we examined hypoxia-induced ANP release in isolated perfused hearts
obtained from normoxic rats and rats adapted to chronic hypoxia. In intact rats, chronic
hypoxia decreases right atrial ANP levels with little affect on atrial ANP mRNA levels
whereas right ventricular ANP content and steady state ANP mRNA levels increase
dramatically [17]. The physiological significance of these changes is unclear. The fall in
right atrial ANP concentration has been attributed to increased ANP secretion without
sufficient increase in synthesis [20]. These changes suggest that atrial ANP release during
hypoxia may be diminished, but this was not the case in our study. In fact, hypoxia-induced
ANP release was greater in hearts obtained from hypoxia adapted rats and the great majority
of the increase in ANP release derived from the atria. These findings suggest that atrial ANP
release is increased during adaptation to hypoxia and that the RV is not an important source
of ANP release under normoxic or hypoxic conditions. In the present study, we measured
ANP in the effluent of isolated perfused hearts and did not examine tissue protein or mRNA
levels. In previous studies [12], we found marked increases in RV ANP mRNA and tissue
levels using the same hypoxic exposures as described here. Our experiments do not preclude
the possibility that increased RV production of ANP occurs in the RV and is not released
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into the pulmonary circulation. They do, however, strongly suggest that the RV is not a
major contributor to the increase in plasma ANP levels that occurs during adaptation to
chronic hypoxia.

The relative contribution of atrial and ventricular ANP release during hypoxia has not been
defined. In a previous study, Arad et al. found that 90% of the increase in ANP release
stimulated by ischemia-reperfusion in isolated perfused rat hearts was of atrial origin [21],
similar to the 80-85% increase in ANP release observed in our study when atria were intact.
The ability of the atria to rapidly release large amounts of ANP is likely due to their ability
to store pre-synthesized ANP in secretory granules [22]. In contrast, studies of cultured
ventricular cardiomyocytes have shown that ANP is secreted by a constitutive pathway and
only about 10% of newly synthesized ANP is stored [23]. Studies in intact animals however,
suggests the presence of ANP granules in hypertrophied ventricular tissue [24] and that an
appropriate stimulus can enhance ANP release from ventricular cells by a regulatory
pathway analogous to that in atria. Previous studies have demonstrated that the amount of
ventricular ANP released into the perfusion fluid increases with ventricular hypertrophy
[15]. Moreover, physical exercise causes release of ANP from the hypertrophic ventricle
with depletion of endocardial left ventricular stores [15]. In the present study, we observed a
small increase in ANP release in response to acute hypoxia after the atria were removed.
This corresponds to previous experiments that showed a non-sustained increase from 30
fmol/ml at baseline to 50 fmol/ml in response to acute hypoxia [25]. Thus, the ventricles are
capable of contributing to ANP release in response to acute hypoxia, but the contribution is
minor compared to that of the atria and does not increase appreciably with the development
of right ventricular hypertrophy during adaptation to chronic hypoxia, despite previous
reports of as much as a 9-fold increase in right ventricular tissue levels [17].

A reduction in cardiac ANP release following removal of the atria may not have occurred
solely as the result of losing the atrial source of ANP. For example LVGP was slightly lower
toward the end of the experiment when the atria were removed and it is possible that the
decline in LVGP decreased ventricular ANP release. However, the decline in LVGP over
the course of the experiment was gradual and the difference in LVGP before and after
removal did not reach statistical significance, whereas the change in basal and hypoxia-
induced ANP release was markedly lower immediately after atrial removal and represented
a statistically significant change. It is also possible that depletion of ventricular ANP stores
could have occurred during the first 2 hypoxic challenges before the atria were removed.
Our experimental design did not allow us to randomize the order in which ANP release was
measured, i.e. once the atria were removed they could not be reattached. Although this
approach resulted in hypoxia-induced ANP release from the ventricles with atria removed
always being measured after ANP release from ventricles with atria intact, it allowed us to
compare serial measurements in the same heart. While we cannot exclude the possibility that
ANP release from the ventricles may have been greater if it was measured at the beginning
of the study, we feel that the abrupt fall in cardiac ANP release immediately following atrial
removal was the result of losing the atrial ANP source and not the result of the gradual loss
of LVGP or ventricular ANP stores.

In intact animals, hypoxia-induced ANP release may occur as the result of right atrial stretch
secondary to hypoxic pulmonary vasoconstriction [20]. However, reduction in oxygen
tension has been shown to increase cardiac ANP release independent of changes in
pulmonary artery pressure and cardiac tissue remodeling [17,26]. For example, acute
hypoxia causes a greater release of ANP than volume loading in rabbits and lambs, in vivo,
and stimulates the release of ANP from isolated rat and rabbit hearts, in vitro, in the absence
of atrial distension or changes in heart rate. In an earlier study, we found that hypoxia also
causes ANP release from primary cultures of cardiac myocytes [3]. Interestingly, this effect
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was seen in atrial, but not in ventricular cardiocytes. Taken together, these findings suggest
that hypoxia may be able to stimulate ANP release directly from the atria, independent of its
effect on right atrial stretch [26].

There are several potential mechanisms by which reduced oxygen tension could stimulate
ANP release from atrial cardiocytes. In the present study, we sought to ensure that ANP
release was not the result of cardiac injury from ischemia or acidosis. ANP release increased
substantially during acute hypoxia, but was similar in (21% O2) and severe (5% O2) hypoxia
and rapidly returned to normal upon re-exposure to normoxia. Hearts demonstrated a slow
decline in LVGP in all experiments including controls. This decline appeared to be a general
weakening of myocardial contractility over time and was not accelerated by exposure to
intermittent acute hypoxia and did not result in a decline in ANP response to acute hypoxia.
Thus, hypoxia induced ANP release could not be readily attributed to myocardial injury.
Acute hypoxia resulted in a significant drop in effluent pH that was associated with a
significant increase in glucose uptake and increased lactate production. The increase in
glucose uptake seen in the cardiac myocytes during hypoxia is well described and is likely
mediated by enhanced function of the facilitative glucose transporters [27]. Interestingly, the
drop in pH and glucose consumption in response to acute hypoxia was similar in both
groups of rats despite the lower lactate levels in the hypoxia-adapted rats. Cardiac myocytes
protect against increases in intracellular hydrogen ion concentration [H+] by exchanging H+

for Na+, and then exchanging Na+ for Ca++ [21]. Influx of extracellular Na+ and Na+-Ca++

exchange modulate ANP secretion induced by hyperosmolar conditions [28] and could play
a similar role in hypoxia-induced ANP secretion [29]. However, the Na+, K+ and Ca++
effluent levels were the same in normoxic and hypoxia-adapted hearts.

Our findings do not reveal a mechanism by which acute hypoxia causes ANP release in the
isolated perfused heart. However, numerous mechanisms by which hypoxia could stimulate
ANP release from atrial myocytes have been proposed, including activation of PKC [32], a
pulmonary neural reflex [33], increases in adrenergic activity [34], and increased circulating
levels of adenosine [35], arginine vasopressin [36], and endothelin-1 [13]. The isolated
perfused heart model eliminates autonomic reflexes and permits control of hemodynamic
factors, but some of the paracrine mechanisms that have been proposed to contribute to
hypoxia-induced ANP release may remain intact in this preparation. Further studies are
needed to elucidate the role of these mechanisms in hypoxia-induced cardiac ANP secretion.

In summary, the cardiac atria appear to be the primary source of ANP released in response
to acute hypoxia both in normoxic rats and in those adapted to chronic hypoxia. Increased
expression of ANP that has been described in the hypertrophic RV of hypoxia-adapted rats
does not appear to contribute substantially to cardiac ANP release. Hypoxia-induced ANP
release appears to result from a direct effect of reduced oxygen tension on cardiac myocytes
rather than cardiac injury or changes in extracellular pH or electrolyte concentration.
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Figure 1.
Schematic diagram outlining experimental protocol.
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Figure 2.
Acute hypoxia causes a significant drop in left ventricular generated pressure compared to
hearts that were exposed to normoxia alone. * P < 0.05 (n= 3 to 12). No significant
difference in hearts from normoxia-adapted rats versus hearts from hypoxia-adapted rats.
Left ventricular generated pressure was not significantly altered by removal of the atria.
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Figure 3.
Acute hypoxia (5/21%) causes a significant increase in ANP levels compared to 95% O2
controls *P < 0.05 (n= 3 to 12). There was a significant reduction in ANP levels in intact
hearts compared to hearts with the atria removed # P < 0.05 (n= 3 to 12). Of note there was
a significant increase in ANP levels in the perfusate effluent at 8 minutes in the first hypoxic
exposure in hypoxiaadapted rats compared to normoxia-adapted rats, but not any other time
points $P < 0.05 (n= 11 to 12) . There is a significant drop in baseline ANP effluent levels
following a 30 minute exposure to 95% O2 after the atria had been removed (see arrowhead)
in both normoxia- and hypoxia-adapted rats compared to baseline ANP effluent levels
following a 30 minute exposure to 95% with atria intact (see arrow) O2 %P < 0.05, &P <
0.05 (n= 3 to 12).
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Figure 4.
Acute hypoxia caused a significant increase in effluent ANP levels in hearts with the atria
attached but not in hearts with the atria removed. * P < 0.05 (n= 3 to 12). This was not
affected by the degree of acute hypoxia as there was no difference in response between 5%
and 21% O2. The increase in ANP levels were calculated by comparing the mean ANP level
after 15 minutes of 5 % and 21% O2 with the mean ANP levels measured at the end of the
two 30 minute exposures of 95% O2
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Figure 5.
Acute hypoxia (5 or 21% O2) increased lactate production in normoxia- and hypoxia-
adapted rats compared to 95% O2 * P < 0.05 (n= 3 to 12). Hypoxia induced increases in
lactate release tended to be less after removal of the atria, but no significant differences were
found. Hypoxia-induced lactate release was significantly greater in normoxia-adapted rats
compared to hypoxia-adapted rats. # P < 0.05 (n= 11 to 12)
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Figure 6.
Effluent pH was lower in hearts obtained from hypoxia-adapted rats than normoxia-adapted
rats * P < 0.05 (n= 11 to 12). Acute hypoxia decreased effluent pH in both groups # P <
0.05 (n= 11 to 12), but there was no difference in the two groups when comparing the drop
in pH that occurred in response to acute hypoxia.
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Figure 7.
There is a significant decrease of glucose concentration in perfusate effluent in response to
acute hypoxia suggesting an increase in glucose uptake compared to 95%O2 (i.e hearts that
were exposed to normoxia alone) * P < 0.05 (n= 3 to 12). There was no difference in
hypoxia-induced fall in glucose between normoxia-adapted and hypoxia-adapted rats.
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