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Abstract
This article reviews the role of amyloid-β (Aβ) and mitochondria in synaptic damage and
cognitive decline found in patients with Alzheimer’s disease (AD). Recent molecular, cellular,
animal model, and postmortem brain studies have revealed that Aβ and mitochondrial
abnormalities are key factors that cause synaptic damage and cognitive decline in AD. Aβ is
reported to accumulate in subcellular compartments and to impair the normal function of neurons
in AD patients. Further, recent studies using biochemical methods and electron microscopy have
revealed that the accumulation of Aβ at nerve terminals affect synaptic activities, including the
release of neurotransmitters and synaptic vesicles. Recent studies of the relationship between
mitochondria and Aβ in AD patients suggest that in mitochondria, structural changes caused by
Aβ result in increased mitochondrial fragmentation, decreased mitochondrial fusion,
mitochondrial dysfunction, and synaptic damage. This paper discusses the latest research on Aβ,
mitochondria, age-dependent factors of AD in the brain, and synaptic damage in AD. This paper
also briefly discusses potential mitochondrial therapeutics in the treatment of patients with AD.
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INTRODUCTION
Alzheimer’s disease (AD) is a late-onset mental illness that is characterized by the loss of
memory and an impairment of multiple cognitive functions [1–3]. The major pathological
features in the brains of AD patients are the presence of intra-neurofibrillary tangles and
extracellular protein amyloid-β (Aβ) deposits, particularly in the regions related to memory
and cognition [4]. Currently, 5 million Americans suffer from AD [5]. It is estimated that by
the year 2050, 50% of people worldwide (approximately 370 million) who are 85 years of
age or older will be afflicted with AD [4,6]. With such a large, aged population poised to be
afflicted, AD has become a major health concern that must be reckoned with. Despite
tremendous progress that has been made in AD research, we still do not have early
detectable markers, nor agents or drugs that can slow the progression of AD.
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Causal factors for Alzheimer’s disease
Genetic mutations in the amyloid-β protein precursor (AβPP), presenilin 1 (PS1), and PS2
genes cause a small proportion (about 2%) of all AD cases (early-onset or familial AD;
Table 1); however, causal factors are still unknown for a vast majority of AD patients (late-
onset AD). Recent genetic studies have identified several risk factors for late-onset AD,
including genetic variants in the sortilin-related receptor 1 gene; clusterin (a protein
associated with the clearance of cellular debris); the complement component receptor 1; and
apolipoprotein E4 (ApoE ε4) genotype [7–13] (Table 1). In the last decade, tremendous
progress has been made in understanding the role of ApoE ε4 involvement in AD
progression and pathology [14–21]. In addition, several other factors, including epigenetics,
lifestyle, diet, and environmental exposure may contribute to the development of late-onset
AD [3]. Recently, oxidative stress and mitochondrial abnormalities have been implicated in
the development of late-onset AD [22–26], and aging has been identified as the ‘number 1’
risk factor in AD progression and pathology.

Sites of pathology in Alzheimer’s disease
Anatomical and immunohistochemical analyses of AD postmortem brains and the brains
from AD transgenic mice revealed that a neurodegenerative process is initiated in layer 2 of
the entorhinal cortex [4]. This process spreads to the hippocampus, temporal cortex,
frontoparietal cortex, and, finally, to subcortical nuclei. Interestingly, in AD patients, these
regions of the brain are involved in learning, memory, and cognitive functions [4]. Aβ
secretion also occurs mainly in these regions, as do Aβ deposits; however, the reasons for
Aβ secretion and the formation of Aβ deposits in these areas are not fully understood.

Cellular changes
More than two decades of intense research has revealed that AD is a complex,
heterogeneous disease, with multiple cellular changes implicated in its pathogenesis
[1,2,4,8,27,28]. Major cellular changes that have been implicated in AD are: 1) Aβ and
amyloid cascade events; 2) hyperphosphorylation of tau and intracellular neurofibrillary
tangles; 3) synaptic pathology and neuronal loss; 4) mitochondrial structural and functional
abnormalities; and 5) inflammatory responses [22,29–46].

Early events in Alzheimer’s disease progression
Although multiple cellular changes have been reported to be involved in AD pathogenesis,
synaptic pathology and mitochondrial oxidative damage have been identified as early events
in AD progression and pathogenesis [3]. It is generally accepted that an accumulation of Aβ
in synapses and in synaptic mitochondria, particularly in neurons affected by AD, cause
synaptic degeneration and cognitive decline in AD patients [2,3,47–50].

In this article, we first focus on Aβ, its generation, accumulation, and age-related factors of
Aβ; next we focus on mitochondrial structural and functional abnormalities, and synaptic
damage in AD progression and pathology.

AMYLOID-β
In AD, Aβ, the 39–43 amino acid residue protein, is a major component of neuritic plaques
found in brain regions known to be responsible for learning and memory [51]. Aβ is
generated by proteolysis of AβPP by the sequential enzymatic actions of β-site AβPP
cleaving enzyme 1 (BACE 1), β-secretase, and γ secretase. In early-onset AD, genetic
mutations in AβPP, PS1, and PS2 genes activate β- and γ-secretases, and cleave Aβ [3].
AβPP mutations that flank the Aβ domain increase the production of Aβ42 (Fig 1). In late-
onset AD, it has been hypothesized that factors related to oxidative stress may be involved
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in activating β- and γ-secretases, cleaving AβPP, and releasing Aβ [25] (Fig. 1). Recently,
several in vitro and in vivo studies have provided experimental evidence to support to this
hypothesis [51–56] (Fig. 1). In both early onset and late-onset AD, levels of Aβ are steady-
state and are controlled by the production of Aβ, the clearance of Aβ, and the degradation of
Aβ. Decreased clearance of Aβ or the overproduction of Aβ may lead to an accumulation of
Aβ in subcellular compartments and may initiate a cascade of events in the brain, a process
referred to as “Aβ cascade hypothesis” [57]. Interestingly, Aβ can self-aggregate into
multiple forms, ranging from 4 kDa monomers to oligomers and to fibrils. These fibrils
eventually form β-pleated sheets, insoluble fibers, and deposits (Fig. 2). Soluble oligomers
are the most toxic form of Aβ for neurons. Anatomical analyses of AD postmortem brains
and AD transgenic mice revealed that Aβ secretion occurs mainly in the entorhinal cortex,
hippocampus, temporal cortex, and frontoparietal cortex of the brain. These areas are
important for learning, memory, and cognitive functions. The reasons for Aβ secretion and
formation of amyloid deposits in these areas are not fully understood. However, it is
possible that the capability of Aβ clearance is low in these areas or that oxidative stress is
high, in which case oxidatively damaged neurons may produce more Aβ. This loop—
increased production of Aβ and decreased clearance—may lead to an excessive
accumulation of Aβ in brains.

Recent studies have revealed that Aβ is secreted wherever AβPP and the β- and γ-secretases
are present. AβPP, and the β- and γ-secretases, are localized to several cellular
compartments, including the endoplasmic reticulum, plasma membrane, trans-Golgi
network, and multivesicular bodies [2,3]. Because of the presence of AβPP and the β- and γ-
secretases in these subcellular compartments, Aβ is known to be present in these regions. In
addition, several studies reported that Aβ is localized to mitochondrial membranes
[37,38,46].

Age-dependent increase in the production of Aβ
Multiple lines of evidence suggest that aging is a key factor for the increased production of
Aβ and the decrease in Aβ-degrading enzymes in the AD brain. A time-course analysis of
Aβ in AD transgenic mouse lines revealed that Aβ levels and deposits increase in AD-
affected regions of the brain in an age-dependent manner [2,38]. In addition, studies of
postmortem brains from aged humans with mild cognitive impairment (MCI) and patients
with AD found an age-dependent increase of Aβ levels in the aged persons with MCI and in
AD patients [58]. These studies suggest that aging plays a key role in the production and
accumulation of Aβ in the brains of AD patients and in AD transgenic mice.

In the last decade, a large body of research has been devoted to understanding Aβ toxicity,
particularly intracellular Aβ. It is now generally accepted that extracellular Aβ deposits are
the by-products of AD pathology. Recent studies of AD patients and AD transgenic mice
found intracellular Aβ present in AD-affected brain regions [38,58,59–67]. Aβ1-42
participates mainly in fibrillogenesis and the formation of Aβ deposits. It is generally
accepted that intracellular Aβ has been found to precede extracellular Aβ deposits in AD
brains [68]. In addition, several studies of AD transgenic mice reported that intracellular Aβ
accumulates early in AD progression [2,3].

Aging and deceased levels of Aβ-degrading enzymes
Several molecular and cellular studies have revealed that Aβ-degrading enzymes, including
nephrilysin (NEP) and the insulin-degrading enzyme (IDE), decrease as disease progresses
in AD patients [69–72].
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Hellström-Lindahl and colleagues [69] investigated whether decreased NEP levels
contribute to the accumulation of Aβ in AD patients and in aged persons without AD.
Protein levels of NEP were reduced in the temporal and frontal cortex of brains from AD
patients and aged patients without AD. They found an inverse correlation between NEP and
insoluble Aβ levels in both groups, suggesting that NEP is involved in the clearance of Aβ.
The observed, age-dependent decline in NEP may be related to the increased levels of Aβ
found in aged patients without AD, during normal aging. \

Mohajeri et al. [70] measured NEP levels in AD mice. Neuronal upregulation of NEP in
young AD transgenic mice expressing the mutant AβPP led to the reduction of Aβ levels
and the delayed formation of Aβ deposits. In contrast, a comparable increase of NEP levels
in the brains from aged AβPP mice (swe) with pre-existing Aβ deposits did not result in a
significant reduction of plaque pathology. They suggested that the use of NEP for AD
therapy might be most effective early in the course of AD pathophysiology since NEP is
age-dependent.

Apelt and collaborators [71] measured the levels of mRNA and proteins of NEP in AβPP
transgenic mice during postnatal maturation and aging. NEP levels were decreased in the
cerebral cortex of mice 2–22 months old, independent of their transgene status.
Immunocytochemistry revealed few NEP-positive dystrophic neurites around Aβ plaques
and an up-regulation of NEP in plaque-surrounding reactive astrocytes, which suggests a
role for Aβ deposit-mediated astrogliosis in Aβ degradation.

Iwata et al. [72] sought to determine whether spatial changes in NEP correlate with Aβ in
AD-affected regions of brains from AD transgenic mice. When NEP levels in various brain
regions of 10-, 80-, and 132-week-old AD transgenic mice were evaluated by an NEP-
dependent, endopeptidase-activity assay and Western blot quantitative analysis, a clear
change in NEP levels was observed in the hippocampal formation, levels reduced by 20% at
132 weeks, compared to the 10-week group. In addition, quantitative immunohistochemical
analysis confirmed the reduction of NEP levels in the outer molecular layer and in the
polymorphic layer of the dentate gyrus, and in the stratum lucidum of the hippocampus, by
56%, 82%, and 83% respectively in the mice at 132 weeks, compared to the 10-week group.
NEP levels were decreased at the terminal zones in axons of the lateral perforant path and in
mossy fibers. These are also the brain sites that exhibit disease pathology in mutant AβPP
transgenic mice and synaptic loss in AD patients.

Similar to NEP, IDE is also an important enzyme that is involved in Aβ clearance and that
has been found to be decreased in the brains of aged persons without AD [73,74]. The
concentration of IDE and its activity were significantly decreased in the hippocampus in the
brains from aged humans without MCI, compared to humans who were mildly cognitively
impaired and aged persons who were considered at high risk to develop AD [73].
Membrane-bound IDE concentrations and IDE activity in the hippocampus continued to
decrease as the patients progressed from MCI to mild-severe AD. Most interestingly, IDE
activity in thehippocampal membrane negatively correlated with Aβ42 in the brains from
aged persons with MCI and with AD. Findings from the Zhao et al. [73] study suggest that
interventions aimed at promoting membrane-bound IDE activities in the brain of aged
persons with MCI may help to prevent the onset and possibly the progression of AD through
mechanisms involving the clearance of monomeric Aβ from the brain.

Farris and colleagues [74] recently studied the connection between IDE gene and Aβ using a
rat model for IDE. In a well-characterized rat model of type 2 diabetes mellitus, they found
naturally occurring IDE missense mutations, which decreased catalytic efficiency, and they
found a significant deficit (about 15 to 30%) in the degradation of both insulin and Aβ.
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Endogenously secreted Aβ40 and Aβ42 were significantly elevated in primary neuronal
cultures from animals with the IDE mutations. These researchers concluded that naturally
occurring, partial loss-of-function mutations in IDE were sufficient to cause diabetes
mellitus 2 and impaired neuronal regulation of Aβ levels. However, they noted that the brain
apparently compensates for the partial deficit during the life span of the rat [74].

MITOCHONDRIA AND ALZHEIMER’S DISEASE
Mitochondrial dysfunction in AD pathogenesis was described two decades ago, but its
underlying mechanisms were not clear until recently. Mitochondrial dysfunction has been
found and described in postmortem brains from patients with AD [39,75–77], in their
platelets [78], in AD transgenic mice [34,37,38,79–81], and in cell lines that express mutant
AβPP and/or cells treated with Aβ [82–84].

Increasing evidence suggests that mitochondrial abnormalities play a large role in AD
pathogenesis. Decreased mitochondrial enzymes, including cytochrome oxidase activity,
pyruvate dehydrogenase, and α-ketodehydrogenase were found in fibroblasts, lymphoblasts,
and postmortem brains from AD patients and age-matched control subjects [reviewed in 3].
Further, a recent study described abnormal mitochondrial dynamics in fibroblasts from AD
patients, indicating that impaired mitochondrial dynamics are involved in AD pathogenesis
[85]. Several other studies found increased free radical production, lipid peroxidation,
oxidative DNA damage, oxidative protein damage, decreased ATP production, and
decreased cell viability in brains from AD patients compared to those from age-matched
control subjects [39,75–77,86].

In the 1990s, Swerdlow and colleagues [88] studied mitochondrial function using a
cytoplasmic hybrid (cybrid) approach to determine the role of mitochondrial DNA (mtDNA)
in AD pathogenesis [87,88]. They isolated platelets from AD and age-matched control
subjects, and fused those platelets with both human neuroblastoma (SH-SY5Y) cells and
human teratocarcinoma (NT2) cells depleted of their endogenous mtDNA [87,89]. The cells
lacking mtDNA did not exhibit mitochondrial functional activities; that is, only those cells
with mtDNA exhibited intact mitochondrial functional activities. However, cells containing
cybrids of AD and control subjects exhibited mitochondrial respiratory activities, with a
difference between the cybrid cell lines containing AD subject mitochondria and cybrid cell
lines with control subject mitochondria. AD cybrid cell lines exhibited increased Aβ42
production and mitochondrial dysfunction: the cytochrome oxidase activity was lower, free
radical production and oxidative stress markers were elevated, calcium homeostasis was
altered, the mitochondrial membrane potential was reduced, and apoptosis pathways were
altered [88]. Findings from these cybrids studies further support that mitochondria are
involved in AD pathogenesis.

In other studies, increased mitochondrial DNA changes were found in postmortem brain
tissue from AD patients and aged-matched control subjects, compared to DNA changes in
brain tissue from young control subjects without AD [90,91]. These findings suggest that the
accumulation of mitochondrial DNA in AD pathogenesis is age-related.

The Reddy laboratory [34,92] and others [93–95] found that mitochondrial encoded genes
were abnormally expressed in AD postmortem brains and in those from AD transgenic mice.
Recently, we [34] investigated gene expression profiles in brain slices from AβPP transgenic
mice at 3 stages of AD progression: long before (2 months of age), immediately before (5
months), and after (18 months) the appearance of Aβ plaques in the cerebral cortex [34]. We
compared those profiles to those of age-matched wild-type mice. Our analysis revealed that
the genes related to mitochondrial energy metabolism and apoptosis were upregulated in the
2-month-old AβPP transgenic mice and that the same genes were upregulated in these mice
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at 5 and 18 months of age. In another study, we found decreased cytochrome oxidase,
increased free radicals, and increased carbonyl proteins in the 2-month-old AβPP transgenic
mice compared to the age-matched wild-type mice [38]. Taken together, these results
suggest that mitochondrial energy metabolism is impaired by mutant AβPP and/or Aβ, and
that the upregulation of mitochondrial genes may be a compensatory response to this
impairment. Further, we found abnormal mitochondrial gene expression in the 2-month-old
AβPP transgenic mice, suggesting that mitochondrial dysfunction is an early event in AD
progression.

Using quantitative RT-PCR techniques, the Reddy laboratory also analyzed mRNA
expression in 11 mitochondrial-encoded genes from the frontal cortex of 3 subject groups:
patients with early AD, patients with definite AD, and age-matched control subjects [92].
This analysis revealed a down-regulation of mitochondrial genes in complex I of electron
transport chain genes in both early and definite AD brain specimens, but not in the control
subjects. In the brain specimens from both the early and definite AD patients, complex I
showed a down-regulation of mitochondrial genes, but complexes III and IV showed
increased mRNA expressions, suggesting a great demand for energy production in the brains
from AD patients. These results suggest that mitochondrial dysfunction is an early event in
AD progression and continues into later-stage AD progression, and that abnormal
mitochondrial gene expression may be a compensatory response to mutant AβPP- and Aβ-
initiated mitochondrial toxicity.

Further, the Reddy laboratory [38] and others [37,39,41,46,96] found that AβPP and Aβ are
localized to mitochondrial membranes and is responsible for generating free radicals and
initiating mitochondrial dysfunction. Other groups found presequence peptidase, a peptidase
that is known to degrade Aβ species, in the mitochondria of AD neurons [97], further
supporting the association of Aβ with mitochondria and mitochondrial dysfunction in AD. In
addition, recent studies of mitochondrial structure and of neuronal cells expressing mutant
AβPP in brain tissues from AD patients found that Aβ fragments mitochondria and causes
structural changes in neurons [55,98,99].

Overall, findings from these studies suggest that mitochondrial abnormalities occur early in
AD progression.

AβPP, Aβ, AND ABNORMAL MITOCHONDRIAL DYNAMICS IN
ALZHEIMER’S DISEASE

Increasing evidence suggests that mutant AβPP and/or Aβ overexpression cause
mitochondrial fragmentation in neurons affected AD [98–100]. In a recent gene expression
study of AD transgenic mice, the Reddy laboratory [34] found increased expression of
mitochondrial-encoded genes in AD affected regions of the brain that may be due to the
excessive production of mitochondria. This overproduction of mitochondria may be due to
mutant AβPP and Aβ toxicity in neurons affected by AD [34,38,99].

The relationship between the overexpression of mutant AβPP and Aβ, and the increased
production of mitochondria is supported by several studies.

1. AβPP, and monomeric and oligomeric forms of Aβ have been found in
mitochondrial membranes [37–39,46,79,96,101]. In the Lustbader et al. study [79],
they found Aβ normally interacting with the mitochondrial matrix protein ABAD,
leading to mitochondrial dysfunction. Caspersen et al. [37] found an accumulation
of Aβ in the mitochondria from postmortem brain specimens of AD patients and
AβPP transgenic mice. Recently, the Reddy laboratory found Aβ monomers and
oligomers in mitochondria isolated from the cerebral cortex of AβPP transgenic
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mice [38] and from N2a cells expressing AβPP. Our digitonin fractionation
analysis of isolated mitochondria from AβPP transgenic mice revealed Aβ in the
outer and inner membranes and matrix of mitochondria. Our study also found that
mitochondrial Aβ decreases cytochrome oxidase activity and increases free radicals
and carbonyl proteins. Yao et al. [46] found Aβ mitochondrial membranes in
cortical tissues from triple transgenic mice.

2. Using confocal and electron microscopy, and human neuroblastoma (M17) cells
transfected with wild-type or mutant AβPP, Wang and coworkers [98] investigated
the effects of AβPP and Aβ on mitochondrial structural changes. Confocal and
electron microscopic analysis revealed that about 40% of M17 cells overexpressing
wild-type AβPP and more than 80% of M17 cells overexpressing mutant AβPP
displayed alterations in mitochondrial morphology, particularly fragmented
mitochondria. They also found that increased levels of Fis1 are critical for
mitochondrial fission in AβPPwt and AβPPswe M17 cells. The overexpression of
AβPP and/or Aβ-derived diffusible ligand treatment also led to mitochondrial
fragmentation and morphological changes.

3. Using electron and confocal microscopy, gene expression analysis, and
biochemical methods, the Reddy laboratory studied mitochondrial structure and
function, and neurite outgrowth in neurons treated with Aβ [99]. In neurons treated
with only Aβ, we found increased expressions of mitochondrial fission genes (Drp1
and Fis1) and decreased expressions of fusion genes (Mfn1, Mfn2, and Opa1),
indicating abnormal mitochondrial dynamics in AD neurons. mRNA expression of
antioxidant enzyme-encoded genes (peroxiredoxins 1–6) was significantly
decreased in neurons treated with Aβ relative to untreated neurons. Our electron
microscopy of neurons treated with Aβ revealed a significant increase in
mitochondrial fragmentation, further supporting abnormal mitochondrial dynamics.
We also found significantly decreased neurite outgrowth and decreased
mitochondrial function in cells treated with Aβ [99]. These findings suggest that Aβ
fragments mitochondria and causes abnormal mitochondrial dynamics, leading to
mitochondrial dysfunction.

4. Zhao and colleagues [102] studied the effects of wild-type and an arctic form of
Aβ42 using neurons from adult flies. They performed extensive time-course
analyses to determine the function and structure of both axon and presynaptic
terminals of individual neurons. They found Aβ accumulated intracellularly, and
they found a wide range of age-dependent changes, including the depletion of
presynaptic mitochondria, a slow-down of bi-directional transports of axonal
mitochondria, decreased synaptic vesicles, increased large vacuoles, and elevated
synaptic fatigue. These structural and functional synaptic changes correlated with
age-dependent deficits in the motor behavior of the flies. Such changes were
accelerated in flies expressing the arctic form of Aβ. The depletion of presynaptic
mitochondria was the earliest phenotype that they were able to detect in the fly.
Zhao et al. [102] determined this depletion was not caused by the change in axonal
transport of mitochondria. They also found a dramatic reduction in the number of
axonal mitochondria and also a significant increase in their size, in aged Aβ-
expressing flies, suggesting a global depletion of mitochondria in the neuron and an
impairment of mitochondria fission. These results suggest that Aβ accumulation
depletes presynaptic and axonal mitochondria, leading to other presynaptic deficits.

Taken together, these findings suggest Aβ enters mitochondria and causes abnormal
mitochondrial dynamics in neurons that are known to be affected in AD, and that such
abnormal mitochondrial dynamics cause mitochondrial dysfunction and abnormal
mitochondrial trafficking in AD neurons.

Reddy et al. Page 7

J Alzheimers Dis. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Abnormal mitochondrial trafficking in AD
In a process called mitochondrial trafficking, mitochondria travel along the axons and
dendrites to supply energy to nerve terminals for normal neural communication; then they
travel back to the cell body [103]. Mitochondria are transported from the cell body back to
nerve terminals via an anterograde mechanism and from nerve terminals to the cell body via
a retrograde mechanism. In healthy neurons, anterograde and retrograde transport of
mitochondria are equal and active. In AD neurons, both anterograde and retrograde transport
of mitochondria are slow because of the presence of large number of defective and
functionally inactive mitochondria [104–105]. As discussed earlier, AD mitochondria with
an accumulation of Aβ disrupt mitochondrial function and inhibit ATP production. These
Aβ-laden mitochondria are not able to supply sufficient levels of energy to the nerve
terminals, which may impair neurotransmission and may ultimately result in synaptic
damage, neurodegeneration, and cognitive decline in AD patients [103].

Aβ, SYNAPTIC ALTERATIONS, AND MITOCHONDRIAL DAMAGE IN
ALZHEIMER’S DISEASE

Synapses are the sites of high-energy demand [3]. Synaptic damage is considered the earliest
cellular event in AD pathogenesis, and synaptic loss is the best correlate of cognitive
impairment in AD [29–31,106]. Damaged synapses due to insufficient mitochondrial ATP
lead to synaptic degeneration [3]. Synapses and neurites are mostly damaged in the vicinity
of Aβ plaques [107,108].

In healthy subjects, synaptic terminals transmit signals between cells in order to process
information. During aging, the number of synapses and their transmissions of signals
dramatically decrease [109,110]. The decrease in synapses has been documented in different
brain regions of aged persons, supporting the hypothesis that synaptic changes are
ubiquitous features of normal brain aging [3].

Synaptic loss and Alzheimer’s disease
Several studies using electron microscopy and AD postmortem brains revealed a loss of
synapses in the hippocampus of AD patients compared the number of synapses in control
subjects [39,111,112]. This loss correlates with cognitive decline in AD patients. Bretoni-
Freddari et al. [111] studied the number of synapses per neurons in cerebellar and
hippocampal brain tissues from adult and aged control subjects and from AD-affected and
unaffected brain tissues in patients with AD. The synapse-to-neuron ratio varied according
to the brain regions from which the samples were taken and the individual’s health. No
significant differences in the synapse-to-neuron ratio were found in samples taken from the
cerebellum of adult and aged persons without AD and of aged AD patients. However, in the
hippocampal samples, the synapse-to-neuron ratio decreased more than 50% in the adult and
aged persons without AD, compared to the ratio in the aged AD patients.

In several studies investigating the extent that synaptic loss correlates with cognitive decline
in AD patients [31,112] researchers found a 25–30% decrease in synapses in the cortex and
a 15–35% decrease in synapses per cortical neuron, suggesting that synaptic loss in AD
patients may correlate more with cognitive decline than with the number of Aβ plaques,
neurofibrillary tangles, neuronal loss, or the extent of cortical gliosis.

Loss of synaptic proteins and Alzheimer’s disease
Using immunoblotting and immunohistochemical analyses to determine synaptic proteins,
several studies revealed decreased levels of presynaptic (synaptophysin) and postsynaptic
proteins (synaptopodin and PSD95) in AD patients compared to age-matched control
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subjects [113–118], suggesting that presynaptic and postsynaptic proteins are critically
involved in AD progression. Further, immunoblotting analysis of postmortem brain tissues
from the cerebral cortex of AD transgenic mice also revealed decreased levels synaptic in
AD transgenic mice [119], suggesting that the loss of synaptic proteins are confined to brain
regions known to be affected in AD.

Oligomeric Aβ, synaptic damage, and impairments in long-term potentiation
Several recent in vitro and in vivo studies revealed that oligomeric Aβ is responsible for a
decrease in the long-term potentiation (LTP) and disruption of synaptic plasticity [63,120–
125], in addition to Aβ pathology. Intracellular Aβ was detected in 5XFAD mice 1.5 months
of age, and cognitive impairments and LTP abnormalities were found in 5XFAD mice 5–6
months of age [63]. In a triple transgenic mouse model of AD, intracellular Aβ was found in
mice 3 months of age and LTP impairments in mice 6 months of age, indicating that
intracellular Aβ may be critical for synaptic damage and cognitive impairments. In a well-
characterized AD transgenic mouse model (Tg2576), significantly decreased synapse
density was observed in the outer molecular layer of the dentate gyrus in mice 6–9 months
of age and in layers II and III of the cortex in mice 15–18 months of age [106]. These results
suggest that synaptic changes caused by soluble Aβ may contribute to the loss of synapses
and of synaptic proteins and may be responsible for cognitive decline in AD patients.

In addition to synaptic pathology [120–125], mitochondrial alterations were also observed in
several lines of transgenic mice [37,38,46], indicating that both synaptic damage and
mitochondrial abnormalities, particularly the accumulation of Aβ in mitochondria, may have
a role in triggering cognitive deficits in AD transgenic mice. Recent mitochondrial and
synaptic studies revealed that mitochondria are distributed abnormally, suggesting that
abnormal mitochondrial distribution may contribute to synaptic damage in AD [102,126]

Further, using electron microscopy and a rapid Golgi method, Baloyannis and collaborators
[127] investigated synaptic alterations, including synapses and dendritic spines in subjects
with early AD and in control subjects. They found substantial loss of synapases and synaptic
alterations in the medial geniculate bodies in neurons from the AD subjects. In particular,
mitochondrial alterations and fragmentation of Golgi apparatus were seen in the neurons of
the medial geniculate bodies and of the inferior colliculi. These findings suggest that
mitochondrial and synaptic alterations in the medial geniculate bodies and inferior colliculi
are involved in the impairment of neuronal communication and symbolic sound perception
in the early stages of AD progression.

Overall, findings from studies of postmortem brains from AD patients and AD transgenic
mice revealed synaptic damage in neurons affected by AD, and suggest that an accumulation
of oligomeric Aβ at synapses and synaptic mitochondria cause synaptic damage and
cognitive impairments. Therefore, therapeutics targeting Aβ and mitochondria may be
helpful in reducing the progression of AD in AD patients.

MITOCHONDRIAL THERAPEUTICS
Currently, several laboratories are involved in developing therapeutic strategies to delay or
prevent progression and development of AD. Several groups are focused on developing and
testing antioxidants that target mitochondria [128–132] and several others are involved in
developing and testing drugs that target Aβ, such as drugs that involve immunotherapy, and
β-and γ-secretase inhibitors. Both approaches have shown promise at preclinical levels,
meaning they have been successful in AD transgenic mice but essentially unsuccessful in
clinical trials. Since synaptic damage and mitochondrial dysfunction have been reported as
early pathogenic events associated with aging and AD, it may be possible to treat these
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pathogenic events by: 1) developing molecules that treat mitochondria (by targeting ROS);
these molecules would decrease free radical production and oxidative damage, and boost
overall mitochondrial function, which would ultimately increase synaptic branching of
neurons; such increased branching would increase neural communication; and 2)
therapeutically boosting ATP levels in mitochondria, which would ultimately increase
synaptic outgrowth and neuronal connectivity.

Given the significant involvement of mitochondrial dysfunction in aging and AD, it seems
reasonable to delay their progression in patients with neurodegenerative diseases such as
AD, through antioxidant treatment or a diet supplemented diet with antioxidants. However,
recent studies of AD patients’ intake of natural antioxidants gave mixed results. Findings
from some epidemiologic studies point to the increased intake of antioxidant vitamins,
including vitamin E, vitamin C, and beta carotene, to possibly reduce the risk of developing
AD [3]. However, findings from other studies do not. They found that their antioxidant
approaches did not decrease the risk of developing AD in elderly people, which suggests
that antioxidant approaches will not be effective in treating neurodegenerative diseases
because naturally occurring antioxidants, such as vitamins E and C, do not cross the blood-
brain barrier and so cannot reach the relevant sites of free radical generation [3]. To
overcome these problems and to better assess whether antioxidant approaches may be
valuable therapeutic treatments, improved delivery of antioxidants to the brains of AD
patients is needed.

In the last decade, tremendous progress has been made in developing mitochondrially-
targeted antioxidants that are capable of crossing the blood-brain. To increase the delivery of
antioxidants into mitochondria, several antioxidants have been developed:
triphenylphosphonium-based antioxidants (MitoQ, MitoVitE, and MitoPBN);the cell-
permeable, small peptide-based antioxidant SS31; and mitochondrial-permeability transition
pore inhibitors such as Dimebon [128–133]. Several laboratories across the world are
investigating neuroprotective molecules including those that can target antioxidants to
mitochondria, such as SS31, MitoQ, and Dimebon, but the research is at its infant stages and
is currently focused on animal models of AD.

CONCLUSIONS AND FUTURE DIRECTIONS
Increasing evidence suggests that Aβ, mitochondrial dysfunction, and synaptic damage are
critically involved in AD progression and development. The latest research into AD revealed
that Aβ and mitochondrial abnormalities are key factors that cause synaptic damage in AD
neurons. Aβ is reported to accumulate in subcellular compartments and to impair the normal
function of neurons. Further, recent in vitro and in vivo studies of Aβ using biochemical
methods and electron microscopy revealed that the accumulation of Aβ at nerve terminals
damages synaptic activities, including the release of neurotransmitters and synaptic vesicles.
Further, recent discoveries of mitochondria in AD suggest that structural changes in
mitochondria, including increased mitochondrial fragmentation and decreased mitochondrial
fusion, are critical factors associated with mitochondrial dysfunction and synaptic damage in
AD. Despite tremendous progress that has been made in AD research, we still do not have
drugs or other agents to prevent or slow down disease progression. Further, we still do not
know the precise toxic effects that are caused by Aβ and mitochondrial abnormalities at
synapses, particularly in neurons, that are involved in cognitive decline. Further research is
needed to develop drugs capable of crossing the blood-brain barrier and targeting
mitochondria, and to develop the agents to boost mitochondrial function and decrease Aβ
toxicity and improve synaptic branching and cognitive functions in elderly people and
patients with AD.
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Figure 1.
Amyloid-β secretion in AD neurons. In early-onset AD, mutations AβPP, PS1, and PS2
genes activate β- and γ-secretases, cleave Aβ. In late-onset AD, oxidative stress related
factors (O2

•, H2O2, OH), risk factors including ApoE4, sortilin related receptor 1, clusterin,
and complement component either activate secretases or decrease Aβ clearance in AD
neurons. The cleaved Aβ accumulate in subcellular compartments, including mitochondria,
endoplasmic reticulum, Golgi-network, lysosomes, and multivesicular bodies, and disrupt
the functions of these subcellular organelles and damage neuronal function.
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Figure 2.
Formation of amyloid-β species and deposits in AD brain.
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Table 1

Genes and risk factors involved in Alzheimer’s disease pathogenesis

Chromosome Gene Phenotype/Pathology Ref.

Genes in Familial AD

21 Amyloid-β protein precursor Mutations in AβPP are causal factors of FAD and are involved in the
increased production of all Aβ

[7]

14 Presenilin 1 Mutations in PS1 are causal factors of FAD and are involved in gamma
secretase activity and in the increased production of Aβ1-42

[8]

1 Presenilin 2 Mutations in PS2 are causal factors of FAD and are involved in gamma
secretase activity and in the increased production of Aβ1-42

[9]

Genes Involved in AD as a Risk Factor

19 Apolipoprotein E allele 4 E4 polymorphism is a risk factor for late-onset AD and is involved in the
increased production of Aβ

[10]

11 Sortilin related receptor Involved in increased production of Aβ [11]

8 Clusterin Clusterin is expressed abundantly in the brain and involved in clearing of
Aβ from brain to plasma. However, it is also reenter to the brain, and
involved in decreased clearance of Aβ

[12,13]

1 Complement component receptor 1 Involved in clearance of Aβ. However, variants in complement component
receptor 1 interfere with Aβ clearance

[12,13]
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