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Abstract
Until middle of the last decade, few people had heard of the term microRNA (miRNA), a 21-23bp
long conserved RNA. MicroRNAs represent a new paradigm that regulates most physiological
processes and has intense potential for medical advancement. Resveratrol, a red wine-derived
polyphenolic compound, has been shown to have significant effects in various disease models
such as cardioprotection in ischemic heart, diabetes, chemoprevention of cancers, etc. The targets
of resveratrol include various pathways and molecules such as sirtuins, FOXOs, and autophagy.
The successful application of resveratrol lies in understanding its mechanisms of action through
direct and indirect interactions with pathways, including miRNAs. For example, a unique miRNA
footprint is present in the heart treated with resveratrol. Targets of those miRNAs have potential
implication on the physiological and patho-physiological conditions in health and disease.

Keywords
miRNA expression profile; heart; translational repression or activation; stability of microRNA

Introduction
The rapid pace of outstanding findings in the RNA interference (RNAi) research leads to an
expanding array of tools to understand the basic processes of life and disease. After the
completion of Human Genome Project, a relatively small number (~5%) of protein-coding
genes are found relative to genome size [1]. The rest are non-coding genomes which
constitute a variety of small RNAs: miRNA (microRNA, size: 20-22nt), trans-acting
endogenous siRNA (small interfering RNA) and piRNA (piwi interacting RNA, size:16–29-
nt with repeat sequence). Among them, miRNA is the key major group, which includes over
thousands from different species and these are identified by bioinformatics, genetics and
molecular biology approach of cloning and characterization [2-4]. Genes for miRNAs are an
essential component of the genetic program of all species, many of them also being
evolutionarily conserved [5] .

Some RNA has been observed as being part of a complex regulatory system in bacteria for a
long time and it regulates target molecule or pathway in many ways [6]. The first report of
RNA silencing is found in the plant system [7]. The fundamental study on miRNA is in C.
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elegans where a gene loci, lin-4, is a regulator of developmental gene expression. Later, the
conserved 21-nt RNA let-7, a miRNA, from that locus suppress the expression of target
transcript [8].

Resveratrol, a constituent of red wine and many plant roots used for asian medicine, is
known for its role of chemoprevention in cancers [Reviewed in 9,10]. Resveratrol also
protects in many tissues injury models like neuronal damage [11,12]. Overwhelming
evidence in literature suggests its key role in cardio-protection [Reviewed in 13,14].The
molecular mechanism of cardio-protection is still under investigation and the role miRNA
has not been looked so far.

MicroRNA: Mechanism of action
MicroRNAs (miRNA) are the mature form of processed pre-miRNA. Pre-miRNAs are
processed by Drosha from bigger poly-adenylated transcripts, known as p-miRNA, in the
nucleus and are exported to the cytoplasm by Exportin 5 [15]. Further maturation of pre-
miRNA to miRNA occurs in both the nucleus and cytoplasm through Dicer and other
protein complexes (Figure1). miRNAs target their mRNA by complimentary base pairing
sequences located mainly at 3'UTR (un-translated region). miRNAs also target 5'UTR or
coding regions of mRNA [16,17]. In addition to sequence specific targeting of mRNA,
miRNA functions as a ribonucleoprotein complex (miRNPs), also known as miRISCs
(miRNA-induced silencing complex). Key components of miRISCs include AGO
(Argonaute) and GW182 (glycine-tryptophan repeat-containing protein family), which have
conserved domains like PAZ, PIWI and MID. These proteins are found greatly in processing
bodies (commonly known as P or GW bodies) for degradation of mRNA[18].

Although mature miRNAs are generally thought to be stable due to their small size, they are
prone to degradation by both 5` to 3` and 3` to 5` exoribonucleases present in cells such as
XRN2 [19,20]. miRNA stability is also determined by its sequence complexity [21]. The
stability of miRNAs depends on binding to miRISC proteins like Argonaute (Figure1).
miRNAs are well known for their role as inhibitors of protein synthesis. The inhibition
mechanism of protein synthesis has been hypothesized differently as (1) deadenylation of
mRNA followed by degradation (2) blocking of translational initiation (3) blocking at post-
initiation stage of translation either by elongation block, ribosome drop-off or proteolysis of
nascent polypeptide. Details of the regulation have been reviewed previously [22,23] and
summarized in Figure 2. Some specific initial studies are described briefly in the following
paragraphs.

miRNA-mediated deadenylation and degradation of mRNA are initially reported in C.
elegans let-7 miRNA targeting lin-41 mRNA and in Zebrafish miR-430 [24,25]. Various
mechanisms of deadenylation and degrdation of mRNA have been proposed after their
initial discovery as they appeared in different organisms. mRNA degradation is often
mediated by removal of the poly(a) tail by 3'-5' ribonuclease(RNase) and different types that
were present in cells such as (1) PARN (2) CCR4p (3) POP (Pop2p) and (4) PAN (Pan2p)
[26-29]. mRNA stability is often under the control of cis-acting elements within the 3'
untranslated regions(UTR), which recruit enzymes/factors followed by recruitment of
deadenylation enzymes.

Blocking of translational initiation is first observed in HeLa cells using reporter mRNAs
whose 3' UTRs were targeted by endogenous (let-7) miRNA [30]. Similar observations are
reported by inhibiting eukaryotic initiation factors, 4E/cap and poly(A) tail function using
artificial miRNA (CXCR4) [31]. Much evidence supports the idea that miRNAs destabilize
target mRNAs through deadenylation and subsequent decapping followed by
5'to3'exonucleolytic digestion. Lin-4, the original miRNA in C. elegans, is initially shown to
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cause inhibition of translation of lin-14.which is important for postembryonic
development[8]. Either no reduction in mRNA levels or a shift in polysomes are observed
which lead to the conclusion that miRNAs inhibit mRNA translation at the elongation step
[8].

Recently, miRNAs are also shown to activate protein synthesis [17,32,33] . AU-rich
elements (AREs) and microRNA target sites are conserved sequences in 3′UTRs of mRNA.
During the cell cycle arrest, the AREs in tumor necrosis factor–a, mRNA is transformed into
a translation activation signal, recruiting many factors associated with micro-
ribonucleoproteins (miRNPs) (Figure 2). Vasudevan et al have shown that human
microRNA miR369-3 directs the association of these proteins with the AREs to activate
translation.[34].

MicroRNA in cardiovascular research
The development of various cardiovascular disease models is a complex process involving
different cell types including fibroblasts, cardimyocytes, endothelial cells, smooth muscle
cells, and many others. The patterns of miRNA expression are different in those cell types
and thus can be explained based on different models.

Cardiac fibrosis, where cardiac fibroblasts take the lead role in the development of many
diseases like cardiomyopathy, hypertension, myocardial infraction, chronic DOX induced
cardiomyopathy, etc and regulate the cardiac extracellular matrix components [35-37].
Initial studies demonstrates the dysfunction of miRNA metabolism using a conditional
deletion mutant (of dicer) which lead to hypertrophy and ventricular fibrosis [38].In acute
myocardial infarction model, dysregulation of a specific miRNA (miR-29) family is
observed and targeting miR-29 leads to reduced collagen expression in fibroblasts [39].In
addition to miR-29 dysregulation, increased expression of miR-21, miR-214 and miR-224
and reduced expression of miR-29b and miR-149 are found in myocardial infarction based
on microarray analyses followed by Real-time PCR [39]. Similar studies with microarray
and northern blot analyses lead to the discovery of miR-21 over-expression in failing heart
and miR-21 observed to regulate ERK-MAP kinase pathways [40]. Later, miR-21 also
regulate MMP2 in fibroblast in myocardial infraction model [41]. One of the key players in
fibrosis, CTGF was regulated at post-translational level by miR-133 and miR-30 [42].

In Ischemic heart disease, miR-1 has been shown to be upregulated in human studies.
Overexpression studies in rat correlate miR-1 expression with arrhythmogenesis, cardiac
conduction disturbance and membrane potential abnormality [43]. Another miRNA
(miR-133), encoded by the same loci of miR-1, induces myoblast proliferation in vitro and
proliferate skeletal as well as cardiac muscle after overexpression in Xenopus embryos [44].
Thus miRNA can be used in understanding the development of the pathophysiological
condition of heart disease as well as therapeutics.

Recently, comparative profile studies by microarray analyses between healthy patients and
patients with coronary artery disease (CAD) lead to the discovery of many circulating
miRNA in blood[45,46]. Some miRNAs such as miR-126, miR-17, miR-92a, mir155 are
reduced in CAD patients whereas miR-133 and miR-208 are increased in blood [45]. These
studies can be used in the future as development miRNA biomarkers in cardiac disease
models.

Resveratrol and French Paradox
In their seminal article in 1992 about the French paradox, Renaud and de Lorgeril presented
evidence that dietary fat and blood cholesterol may not be the determining factors for
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mortality and morbidity due to heart disease[47]. The mortality due to coronary heart
disease is only 78 per 100,1000 population in Toulouse, France and 105 in Lille, France,
compared to 182 in Stanford, USA, 348 in Belfast, UK, and 380 in Glasgow, UK. Despite
the same saturated fat intake of 15% of the total calories and similar serum cholesterol in
other parts of Europe (Belfast 232, Glasgow 244 compared to Toulouse 230 and Lille 252)
or even lower in USA (Stanford 209), the French had the lowest mortality due to myocardial
infarction [47]. The authors noted that the countries having lowest mortality due to heart
disease had one thing in common, the population of these countries had regular wine
consumption, this suggests that wine provided cardioprotection.They described this
phenomenon as French Paradox. Comparing the population of several countries, the authors
concluded that the wine consumption inhibits platelet aggregation, which in turn lowers
mortality due to ischemic heart disease [48].

It was not until 1991 when the incidence of French Paradox was televised by NBC's 60
minutes. French Paradox was attributed to red wine, which is routinely consumed by the
French with their meals. Subsequent studies determined that wine, especially red wine is
rich in certain flavonoids and antioxidants, which can neutralize the damaging free radicals
that are continuously being generated by human body [49]. Within a short period of time,
one of the polyphenolic compounds, resveratrol, present in red wine showed amazing results
and the cardioprotective property of red wine was attributed to resveratrol [49].

Resveratrol is a trihydroxystilbene present in grape vines and skins. They protect the grapes
from fungal infection [50]. The grape vines produce increasing amounts of resveratrol when
they are subjected to stresses in their environment, such as dehydration, nutrient deprivation,
and attacks by pathogenic organisms. These defensive molecules are called phytoalexins, a
Greek words meaning plant and protector and resveratrol fulfils this definition. Resveratrol
is also present in peanuts and certain berries. The main source of resveratrol is the dried
roots of Polygonum cuspidatum that is used in traditional Japanese and Chinese medicine
Kojo-kon from the time immomemorial to treat fungal diseases of heart, liver and blood
vessels [51]. Resveratrol soon became the central issue of French Paradox, similar to wine.
Resveratrol was found to possess heart health, anti-obesity and anti-aging properties [52-54].
However, whether resveratrol alone fulfils the definition of French Paradox is still under
considerable debate.

Striking similarities exist between the cardioprotective properties of wine and resveratrol.
Both can reduce blood pressure [52], increase HDL cholesterol and decrease LDL
cholesterol [55,56], possess anti-platelet and anti-thrombin activities (aspirin-like effects)
[57,58], exhibit insulin like effects and lower blood sugar [59,60], reduce obesity [61,62],
and activate longevity genes [63,64]. While overwhelming evidence exists supporting the
effects of resveratrol on heart health [33-63,64], the concentration of resveratrol necessary to
achieve the positive effects is under considerable debate. The amount of wine necessary for
maintaining a healthy heart is about two glasses of wine a day [65], which may contain
about 3-6 mg of resveratrol depending on the source of the wine. American red wine only
contains about 2-3 mg of resveratrol while wines from Spain, Italy and Germany may
contain double the amount of resveratrol [66-68]. Several scientists published articles stating
that one needs hundreds of bottles of red wine to obtain the amount of resveratrol necessary
to maintain a healthy heart [69]. In fact, higher amounts of resveratrol could even be
cytotoxic as resveratrol appears to behave like a hormetin [70,71]. Similar to alcohol and
wine, resveratrol also exhibits an inverted U-shaped or a J-shaped curve, indicating that like
high doses of alcohol and wine, resveratrol might also exert harmful effects on the heart
[70,71]. Further research is necessary to resolve the problem of the correct amount of
resveratrol necessary to achieve heart health.
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One of the most important findings in recent years is that resveratrol induces autophagy
[72]. This supports many previous reports that resveratrol combats heart disease by
preconditioning, i.e., adapting the heart to stress [73]. Resveratrol at lower doses (0.1 to 1
μM in H9c2 cardiac myoblast cells and 2.5 mg/kg/day in rats) induces autophagy in the
ischemic mycardium as evidenced by the formation of autophagosomes and its creditable
markers, LC3-II and beclin-1 [74]. Autophagy is attenuated with the higher doses of
resveratrol, which induce apoptotic cell death. The induction of autophagy with low doses of
resveratrol is correlated with enhanced cell survival and decreased apoptosis [72]. The
activation of mammalian target of rapamycin (mTOR) is differentially regulated with low
doses of resveratrol i.e., the phosphorylation of mTOR at serine 2448 is inhibited whereas
the phosphorylation of mTOR at serine 2481 is enhanced, which is attenuated with a higher
dose of resveratrol [72]. Interestingly, even though resveratrol attenuates the activation of
mTOR complex 1, low dose resveratrol significantly induces the expression of Rictor, a
component of mTOR complex 2 leading to the activation of its downstream survival kinase
Akt (Ser 473) [72]. Resveratrol-induced Rictor eventually binds to mTOR and Rictot siRNA
and attenuates resveratrol-induced autophagy. Thus suggesting that at lower dose,
resveratrol-mediated cell survival, at least in part, is mediated through the induction of
autophagy[72].

The fact that resveratrol renders numerous health benefits from chemoprevention to
cardioprotection makes it a suitable target for stem cell therapy. Recent studies have
indicated that resveratrol can prolong stem cell survival by altering the intracellular redox
environment of the heart thus resolving one of the major problems associated with cell
therapy,. Resveratrol was introduced in two ways. The first was by feeding the animals with
resveratrol for up to three weeks, this changed the intracellular redox environment and was
followed by cell therapy [75]. The second was by pre-treating the stem cells with low
concentration of resveratrol before the cell therapy [75]. In both protocols, resveratrol
prolonged the life of the stem cells in the infracted heart as evidenced by active proliferation
and differentiation, this suggests that resveratrol can regenerate the infracted myocardium.

microRNA expression profile in response to resveratrol
Differential expression of over 50 miRNAs was observed in ischemic reperfused (IR)
myocardium, some of them were previously implicated in cardiac remodeling. The target
genes for the differentially expressed miRNA include genes of various molecular functions
such as metal ion modulation, transcription factors, which may play key role in reducing
ischemic reperfusion I/R injury (Mukhopadhyay and Das, unpublished data). IR samples
pretreated with resveratrol or its commercial formulation longevinex both reversed the up or
down regulation in IR samples in the opposite direction in more than 50% of differentially
expressed miRNAs. Resveratrol modulation of miRNAs in IR includes miR-21, miR-20b,
mir-27a, miR-9 and many more (Mukhopadhyay and Das, unpublished data). miR-21 was
shown to regulate the ERK-MAP kinase signalling pathway in cardiac fibroblasts regulating
cardiac structure and function [40]. VEGF was reported to be modulated by mir20b through
HIF1α whereas FOXO1 is regulated by mir-27a in cancer cells [76,77]. SIRT1 were
observed to be regulated by miR-9 in stem cells [78]. Thus, the resveratrol treatment leads to
a unique signature of miRNA expression. Some of the miRNA were demonstrated
previously in various cardiac remodeling like fibrosis. Few differentially expressed miRNA
target key transcription factors like FOXO1, SIRT1 based on bioinformatics analyses and
observations found in different cell types (Figure 3). Future studies will be based on the
mechanistic action and stability of miRNA as described before. Further detailed in vivo and
in vitro studies like targeting those miRNA followed by loss/gain of function will able to
explore the complex mechanism underlying the cardioprotection of resveratrol. Targeting
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miRNA responsible for cardiac damage may lead to exploration of new therapeutic
potential.
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Figure 1. MicroRNA biogenesis and stability
After synthesis by RNA Polymerase II (RNA POL II), primary transcript of miRNA (pri
miRNA) are recognized by Drosha and Pasha which excise the hairpin generating precursor
miRNA (pre miRNA). These are transported to cytoplasm by Exportin 5 and further
processed by Dicer to mature ~23nt miRNA. Mature miRNA associated with Argonaute and
other factors leads to the targeted translational regulation. Release from Argonaute or
absence of protection machinery leaves miRNA prone to degradation by exoribonuclease
such as XRN-2 or SDN.
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Figure 2. Translational regulation by miRNA
miRNA modulate translation either by repression or activation although the mechanism is
different. miRNA repressed translation has three mechanisms as described in different steps
of translational process.
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Figure 3. Role of miRNA in cardioprotection
Preconditioning of heart is mediated by resveratrol as significant miRNAs are up or down
when treated with resveratrol for 3 weeks in rats. Few miRNAs were shown as key
regulators in cardioprotection by various pathways.
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