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A Recurrent Deletion of DPY19L2 Causes
Infertility in Man by Blocking Sperm Head
Elongation and Acrosome Formation
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An increasing number of couples requiremedical assistance to achieve a pregnancy, andmore than 2% of the births inWestern countries

now result from assisted reproductive technologies. To identify genetic variants responsible for male infertility, we performed a whole-

genome SNP scan on patients presenting with total globozoospermia, a primary infertility phenotype characterized by the presence of

100% round acrosomeless spermatozoa in the ejaculate. This strategy allowed us to identify in most patients (15/20) a 200 kb homozy-

gous deletion encompassing onlyDPY19L2, which is highly expressed in the testis. Although there was no known function forDPY19L2

in humans, previous work indicated that its ortholog in C. elegans is involved in cell polarity. In man, the DPY19L2 region has been

described as a copy-number variant (CNV) found to be duplicated and heterozygously deleted in healthy individuals. We show here

that the breakpoints of the deletions are located on a highly homologous 28 kb low copy repeat (LCR) sequence present on each side

ofDPY19L2, indicating that the identified deletions were probably produced by nonallelic homologous recombination (NAHR) between

these two regions. We demonstrate that patients with globozoospermia have a homozygous deletion of DPY19L2, thus indicating that

DPY19L2 is necessary in men for sperm head elongation and acrosome formation. A molecular diagnosis can now be proposed to

affected men; the presence of the deletion confirms the diagnosis of globozoospermia and assigns a poor prognosis for the success of

in vitro fertilization.
The increasing incidence of infertile couples, potentially

caused by a general deterioration of sperm parameters, is

becoming a major concern worldwide.1 Although environ-

mental or infectious causes play an important role in infer-

tility, genetic defects are also believed to be frequently

involved in the pathological process.2 Several hundred

genes are believed to be involved in spermatogenesis, yet

very few have so far been directly connected with male

infertility in human. A better understanding of gameto-

genesis through the identification of genes involved in

infertility can help to decrease this worrying trend. We

investigated patients with globozoospermia (MIM

102530) to identify genes involved in this infertility

syndrome. Globozoospermia is a rare phenotype of

primary male infertility characterized by the production

of a majority of round-headed spermatozoa without acro-

some (Figure 1, for review see 3). The phenotype was

described over 30 years ago, and familial cases pointed to

a genetic component for this defect.4–7 Three brothers

affected with total globozoospermia were recently
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analyzed and found to carry a homozygous mutation of

SPATA16 (MIM 609856).8 The testicular expression of

SPATA16 and its intracellular localization in the acro-

some-building Golgi vesicles in the spermatids correlated

well with the observed phenotype.9,10 However, no

SPATA16 mutations were detected in 29 other affected

men, thus suggesting that SPATA16was not the main locus

associated with globozoospermia.8 We recently demon-

strated that the strategy of using whole-genome homozy-

gosity mapping applied to infertile patients from the

same ethno-geographical background presenting with

a specific morphologic anomaly of the sperm could lead

to the localization and identification of genes involved in

spermatogenesis.11 We demonstrated that AURKC (MIM

603495) deficiency led to male infertility due to the

production of large-headed, multiflagellar, polyploid sper-

matozoa (MIM 24306).12,13 Here, we applied the same

genetic strategy to a cohort of mainly Tunisian patients

presenting with total globozoospermia, and we were able

to demonstrate that 15 of the 20 patients that we analyzed
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Figure 1. Sperm Head Is Round and the Acrosome Is Absent or Atrophied and Misplaced in Globozoocephalic Spermatozoa
Panels (A–C) show control spermatozoa, (D–F) show globozoocephalic spermatozoa with no acrosome, and (G–I) show globozooce-
phalic spermatozoa with atrophied and misplaced acrosome.
(A, D, G) Confocal microscopy. Sperm were double stained with TopRo3 (blue), for evidencing the nucleus, and with lectins from Pisum
sativum conjugated to fluorescein isothiocyanate (PSA-FITC, Sigma Aldrich, France) (green), for evidencing the acrosome. In control
sperm, the acrosome is displayed as a bell surrounding the tip of the sperm head (A). In globozoocephalic sperm, the acrosome is absent
(D) or atrophied and misplaced (G). Lectin from PSA-FITC was used to label the acrosomal matrix, and TopRo3 was used to label the
nucleus. Slide cells were washed in PBS and fixed in 4% PFA for 30 min on ice. Fixed spermatozoa were washed in PBS for 3–5 min
and incubated with PSA-FITC (10 mg/ml in PBS). Slides were analyzed on a Leica TCS-SP2 (Mannheim, France) confocal laser scanning
microscope.
(B, E, H) Electronic microscopy. The different organites, acrosome (A), and nucleus (N) of control sperm are clearly identified (B). In
globozoocephalic sperm, the acrosome is absent and the plasma membrane (PM) surrounds the nucleus (E). In some cells, redundant
nuclear membrane (N Mb) is clearly evidenced (H). Sperm cells were fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer of
pH 7.4 for 2 hr at room temperature. Cells were washed with buffer and postfixed with 1% osmium tetroxyde in the same buffer for
1 hr at 4�C. Ultrathin sections of the cell pellet were cut with an ultramicrotome (Leica, Nanterre, France) after dehydration and
epon inclusion. Sections were poststained with 4% uranile acetate and 1% lead citrate before being observed in a 80 kV electron micro-
scope (JEOL 1200EX).
(C, F, I) Scanning microscopy. The surface of control sperm appears smooth (C), whereas that of globozoocephalic spermatozoa appears
wrinkled (F) and with a probable remnant of atrophic acrosome (I). Transmission electron microscopy was performed as detailed
previously.12
had a homozygous deletion encompassing only DPY19L2,

therefore indicating that its absence induces the investi-

gated phenotype. This work was previously presented

orally,14 and a patent describing processes for the diagnosis
352 The American Journal of Human Genetics 88, 351–361, March 1
of globozoospermia and the use of DPY19L2 inhibitors to

achieve male contraception has been filed.15

A total of 20 globozoospermic patients were recruited.

All sperm analyses were performed at least twice, in
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Table 1. Patient Information According to Genetic Status

Patients Region of Homoz.

Sperm Parameters

Country of
Origin Parents’ Relation

Affected
Siblings DPY19l2

Volume
(ml)

Conc.
(M/ml) % Globo

Cells
(M/ml) Motility MAI

P1 13,344–62,370 4 100 100 3,8 35 2,56 Tunisia first cousins 0/1 deleted

P2 53,622–77,064 7 95 100 2 30 2,58 Tunisia first cousins 3/6 deleted

P3 51,030–67,271 4,5 89 100 16 40 NA Tunisia first cousins 0/4 deleted

P4 57,021–63,398 3,5 52 100 6 23 NA Tunisia third cousins 0/0 deleted

P5 60,521–68,314 4,5 0,02 100 0,1 1 NA Algeria third cousins 3/3 deleted

P6 60,521–62,637 2,7 154 100 3 25 2,46 Tunisia none 2/4 deleted

P6b NA 7,5 126 100 3 25 NA Tunisia none 2/4 deleted

P9 none 3,2 64 100 4 30 2,62 Tunisia first cousins 0/2 deleted

P10 NA 2,3 32 98 NA 40 2,06 Morocco NA NA deleted

P11 NA 3,5 36,5 100 0,6 20 3 Tunisia none 0/3 deleted

P12 NA 1,7 0,6 100 1,7 3 3 Tunisia none 0/2 deleted

P13 NA 1,4 108 100 1,2 23 3 Tunisia first cousins 0/2 deleted

P14 NA 2.9 18 100 NA 38 NA Morocco NA NA deleted

P15 NA 2,7 25,2 94 NA 30 NA Tunisia NA NA deleted

P16 NA 2 41 100 NA 20 NA Tunisia NA NA deleted

average 3,6 62,8 99,5 3,8 25,5 2,7

P7 61,770–62,815 6 1,4 99 1,5 5 2,91 Turkey first cousins 1/1 nondel.

P8 none 3 0,04 100 0,5 1 NA Tunisia first cousins 1/2 nondel.

P17 NA 3 14 100 0,4 50 3,1 Tunisia NA NA nondel.

P18 NA 2,7 25,2 86 NA 30 1,88 Tunisia NA NA nondel.

P19 NA 4,7 8 64 NA 20 2,31 Slovenia NA NA nondel.

average 3,9 9,7 89,8 0,8 21,2 2,6

MAI, multiple anomalies index. Genetic status: DPY19L2 deleted (n¼ 15) or not deleted (nondel.; n¼ 5). Region of Homoz. indicates, for the patients analyzed by
microarray (P1–P9), the extent of the region of homozygosity around DPY19L2 on chromosome 12 (NCBI36/hg18). Vol. indicates the volume of the ejaculate;
Conc. indicates the number of spermatozoa in million per ml (M/ml); % Globo indicates the percentage of globozoosperm in the ejaculate; Cells indicates the
concentration of nonsperm cells in the ejaculate (leukocytes or nondifferentiated germ cells); Motility is the percentage of motile spermatozoa with rapid (a) or
slow (b) progression, 1 hr after ejaculation. Affected Siblings indicates the number of affected brothers (excluding the patient investigated) out of the total number
of brothers. NA indicated values that were not availaible.
accordance with the World Health Organization recom-

mendations.16 All subjects showed typical globozoosper-

mia (Figure 1, Table 1) with close to 100% globozoospermic

cells. The studywas approved by local ethics committee, all

patients gave written informed consent, and national laws

and regulations were respected. All subjects had a normal

somatic karyotype. None of the patients were related apart

from patient 6 (P6) and P6b, who were brothers. Most

patients originated from Tunisia, and only two patients

did not originate from North Africa (Table 1). The parents

of nine patients were related; most of them were first

cousins. The homogeneity of the origin of the patients

and their frequent consanguinity increased the chances

of success of this homozygosity mapping study. Whole-

genome analysis was carried out on nine patients (P1–P9)

with the use of Affymetrix 250K StyI SNP arrays. Common

regions of homozygosity were searched for with the ho-
The Ameri
moSNP software. Seven patients shared a homozygous

region ranging from 49 Mb to 1 Mb, centered on

12q14.2 (Figure 2A). The other regions of shared homozy-

gosity identified elsewhere in the genome involved smaller

genomic regions and concerned a maximum of four

patients. We thus focused on the 12q14.2 region and

analyzed the smallest common region of homozygosity

defined by patient 7 (Figure 2A and Table 1). Four genes

were localized in this region (Figure 2B), of which only

one, DPY19L2, was described to be highly expressed in

the testes. Furthermore, although there was no known

function for DPY19L2 in human, previous work indicated

that DPY-19, its ortholog in C. elegans, was involved in the

establishment of cell polarity in the worm,17 a function

coherent with the failure to achieve sperm head elonga-

tion that was observed in our patients. PCR amplification

of three DPY19L2 exons was carried out for nine
can Journal of Human Genetics 88, 351–361, March 11, 2011 353



Figure 2. Identification of the Best Candidate Gene by Homozygosity Mapping
(A) Schematic representation of regions of homozygosity on chromosome 12 for globozoospermic patients P1–P9. Data were obtained
with a GeneChip Mapping 250K StyI SNP Array from Affymetrix (Santa Clara, CA) in accordance with the manufacturer’s recommen-
dations. The analyses were carried out at the IGBMC (Strasbourg) Microarray and Sequencing Platform. The graphic representation is
a view from homoSNP, developed by F. Plewniak of IGBMC, Strasbourg (software available on request from plewniak@igbmc.
u-strasbg.fr). Regions of homozygosity greater than 45 SNPs are shown in blue. The entire chromosome 12 is represented, with the phys-
ical localization indicated at the bottom (NCBI36/hg18). Seven of nine patients have a region of homozygosity > 1 million bp centered
around 62 Mb on chromosome 12.
(B) Identification of all the genes localized in the smallest common region of homozygosity of P7, between 61.8Mb and 62.8Mb . Repre-
sentation from the NCBI Nucleotide database.
(C) Expression profile of the four genes present in the candidate region as obtained from the geneHub-GEPIS database, showing that
DPY19L2 is expressed preferentially in the testis and that testis expression is marginal in the three other genes.
genotyped patients plus P6b, P6’s affected brother who

had not been genotyped. The results showed that all

patients except P7 and P8 had a homozygous deletion of

DPY19L2 (Figure 3A). PCR primers and the specific anneal-

ing temperatures used to amplify the different exons and

loci are listed in Table S1 (available online). Ironically, P7,

who presented the smallest region of homozygosity used

to localize (and identify) the gene defect, was without

the deletion and might present a ‘‘by chance’’ region of

homozygosity centered on DPY19L2. Ten additional

patients were analyzed, and seven of them also showed

a homozygous deletion (Table 1). Subsequent amplifica-
354 The American Journal of Human Genetics 88, 351–361, March 1
tions on each side of the gene allowed us to pinpoint the

two breakpoint zones to a 15 kb region included in two

28 kb low copy repeat (LCR) sequences with 97% identity,

located on each side of DPY19L2 (Figure 3B). The deletion

encompasses approximately 200 kb, harboring only

DPY19L2. The same breakpoint localization could be

observed for all 15 patients with the deletion. Agilent

180K comparative genomic hybridization (CGH) was

carried out on P1. The analysis confirmed the presence of

the homozygous deletion including DPY19L2 (Figure 4).

The minimal deleted region spanned 22.3 kb, correspond-

ing to a breakpoint ranging from 62,342,196 to 62,364,496
1, 2011
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Figure 3. Characterization of a Large Homozygous Deletion Encompassing Only DPY19L2 in Eight of Ten Patients
(A) Seven loci (a–g) localized on and around DPY19L2 were amplified from ten patients with globozoospermia (P1–P9, including P6b)
and four fertile controls (C1–C4). All of the tested loci yielded good PCR amplification from fertile individuals, whereas in eight of the ten
globozoospermic patients there was no amplification of any of the intragenic loci (exons 1, 11, and 22) or of extragenic loci (b and f).
Genomic DNAwas extracted either from peripheral blood leucocytes with the use of a guanidium chloride extraction procedure or from
saliva via an Oragene DNA Self-Collection Kit (DNAgenotech, Ottawa, Canada). PCR primers with their specific annealing temperatures
and exact genomic localization are listed in Table S1. Thirty-five cycles of PCR amplification were carried out with the use of Taq DNA
polymerase (QIAGEN, Courtaboeuf, France).
(B) Schematic representation of the analyzed region with the position of the amplified loci (in kb). (a and b) Loci are localized approx-
imately 25 kb and 9 kb 30 of DPY19L2, respectively; (c), (d), and (e) show the position of DPY19L2 exons 22, 11, and 1, respectively; and
(f) and (g) loci are localized approximately 62 and 77 kb 50 of DPY19L2. LCRs 1 and 2 (red arrows) represent two 28 kb duplicated
sequences showing 97% sequence identities located on each side ofDPY19L2. PCR results in (A) indicate that the centromeric breakpoint
is located between loci (a) and (b) (16 kb) within LCR 1 and the telomeric breakpoint between loci (f) and (g) (15 kb) within LCR 2. The
deleted region encompasses a maximum of 210 kb, containing only one gene: DPY19L2.
(NCBI36/hg18). Analyzing copy-number variant (CNV)

databases, we saw that the DPY19L2 region was referenced

as a CNVand that duplications and heterozygous deletions

had been detected in all tested ethnic groups (Table 2 and

Figure S1). Surprisingly, Affymetrix array genotyping

results were obtained for all patients from most of the

SNPs localized in the deleted region. Only rs11175121

gave three no-calls and three aberrant heterozygous calls

(Figure 5). Performing a BLASTN search of these five

SNPs, we see that all have a very homologous sequence

present on chromosome 7 and that rs11175121 is the

only one with a chromosome 12–specific nucleotide
The Ameri
directly adjacent to the polymorphic nucleotide (Table

S2). This illustrates that some genotypes provided by SNP

arrays should be considered with caution, especially those

located in CNVs or LCRs. The use of higher-coverage arrays

such as the Affymetrix 6.0 in combination with a quantita-

tive analysis of the results would have likely overcome the

problem and might have enabled us to directly visualize

the deletion. In fact, the deletion could be detected by

CGH array despite a low number of probes (3) localized

in the sequence of interest (Figure 4). Also, a quantitative

analysis of the locus was achieved with the use of the Illu-

mina Infinium II HumanHap 550 BeadChip SNP arrays in
can Journal of Human Genetics 88, 351–361, March 11, 2011 355



Figure 4. Confirmation of the Presence of a Homozygous Deletion in P1
Oligonucleotide array CGH was performed with the Agilent 180K Human Genome CGHMicroarray (Agilent Technologies, Santa Clara,
CA, USA) (Hospices Civils de Lyon, CGH Plateform). Graphical overview and analysis of the data were obtained with the Agilent DNA
Analytics software version 4.0.81 (statistical algorithm: Z-score, sensitivity threshold: 2.5, window: 0.5). A graphical overview and anal-
ysis of the data were obtained by using the Agilent DNAAnalytics software. The value of zero represents equal fluorescence intensity ratio
between sample and reference DNA. Copy-number losses shift the ratio to the left (< �1), and copy-number gains shift it to the right
(> 0.58).Three adjacent probes located on the telomeric side of DPY19L2 are homozygously deleted in the analyzed patient.
the CHOP project, which allowed the identification of the

deleted region.18

Because of the presence of duplicated DPY-19 sequences

and, in particular, ofDPY19L2P1 on chromosome 7, which

has > 95% sequence identity with DPY19L2, it has been

extremely difficult and tedious to identify primers and

amplification conditions specific to DPY19L2 and we

have not yet succeeded in sequencing the gene in totality.

Five of our patients do not have a homozygous deletion,

and we cannot exclude the possibility that some of these

patients may harbor either two point mutations or

a heterozygous deletion and a smaller mutation (in partic-

ular patient 7, who presents with the 1Mb homozygous

region). LCRs 1 and 2 are also very homologous (> 97%),
Table 2. Frequency of Individuals Presenting with a Duplication or a
Prevalence of Individuals with Homozygous Deletion

Number of
Subjects

Number
of Dup.

Frequency
of Dup. (%)

Africans 693 23 3.3

Europeans 1321 14 1.1

Asians 12 0 0

TOTAL 2026 37 1.8

Abbreviations are as follows: Dup., duplication; Het. Del., heterozygous deletion;
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and this also prevented us from developing a long-range

PCR across the deletion. This would prove useful for detect-

ing heterozygotes and would characterize more precisely

the deletion breakpoints. In the absence of this test, we

carried out PCR amplification of two exons (1 and 11) on

200 fertile North African men and 100 fertile European

men. All patient exons amplified, indicating that none

were homozygous for the DPY19L2 deletion. For better

ascertainment of the frequency of the deletion, additional

data could be analyzed from the Copy Number Variation

project at the Children’s Hospital of Philadelphia (CHOP

project), which presents Illumina HumanHap 550 Bead-

Chip data obtained from 2026 disease-free individuals.18

Interrogation of the CHOP web server indicated that the
Heterozygous Deletion at the DPY19L2 Locus and the Expected

Number
of Het. Del.

Frequency
of Het. Del. (%)

Expected Frequency
of Hom. Del.

2 0.3 1/ 481 636

13 1.0 1/ 41 616

1 8.3 1/ 576

16 0.8 1/ 64 516

Hom. Del., homozygous deletion. Data are from the CNV CHOP database.
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Figure 5. Haplotype of Seven Patients with the Deletion
Genotype of seven patients with the deletion centered around DPY19L2, as indicated by the microarray analysis. P2 and P4 share the
longest identical haplotype, of approximately 9 Mb, ranging from rs10877107 to rs7969759. P1 and P6 have an identical haplotype
of 2MB, and P5 and P3 have a haplotype of 0.4Mb.Markers in gray are located in the deleted region. The genotypes indicated for deleted
markers very likely come from hybridization of homozygous sequences from chromosome 7 (see Table S2).
overall frequency of DPY19L2 heterozygous deletion was 1

in 127 (Table 2), implying an estimated disease incidence

of 1 in 64,516, which would be concordant with the rarity

of the phenotype. A very high carrier prevalence was de-

tected in the Asian cohort, but only 12 individuals were

tested, and this result is probably due to the small size of

the population tested. Data from the CHOP project

strongly suggests that male globozoospermia due to

a homozygous DPY19L2 deletion can be expected in all

ethnic groups. The frequency of the deletion has not

been determined in the North African population, which

might be different from the African population—mainly

African American—used in the CHOP study (Table 2).

The higher incidence of globozoospermia observed in
The Ameri
Maghrebian men is, however, not necessarily correlated

with an increased allelic frequency. It is probably due to

the high rate of consanguineous marriages specific to this

population (as was the case for almost half of the patients

tested here), which strongly favors the emergence of reces-

sive traits. This was confirmed by our microarray data,

which show that six of seven patients with the deletion

were homozygous for a large region (ranging from 2–

49 Mb) encompassing the deleted region (Table 1). The

analysis of the SNP microarray data suggests the presence

of three distinct haplotypes (Figure 5). This concurs with

data from the CNV database and confirms that this dele-

tion is not a due to a unique founder effect, even in our

(rather homogeneous) population. Altogether, theses
can Journal of Human Genetics 88, 351–361, March 11, 2011 357



Figure 6. Immunoblots Showing the Presence of DPY19L2
in Testis and Its Absence in Sperm
Left; a unique band in the expected area of the gel is marked with
human anti-DPY19L2 antibody with human testis extract but not
with ejaculated sperm extract. A similar result is obtained with
mouse anti-Dpy19l2 antibody, in which a band is marked with
mouse testis extract but not with epididymal sperm extract .
Protein loadings in each lane were similar and were checked by
the Bradford protein assay.
Proteins were separated on 8% polyacrylamide denaturing gels
and electrotransferred for 120 min at 350 mA to Immobilon P
transfermembrane (Millipore). Themembranes were then blocked
for 60 min with 5% nonfat dry milk (Biorad) in PBS Tween 0.1%.
The primary antibody was added and incubated overnight at 4�C.
After washing in PBS Tween 0.1%, the secondary antibody (anti-
rabbit, Jackson Laboratory) was added at a dilution of 1:10,000
for 1 hr at room temperature. The membrane was washed and
incubated for 1 min in HRP substrate (Western Lightning, Perkin
Elmer Life Science). The reactive proteins were detected with G-
Box chemi XL (Syngene, England). Polyclonal antibodies against
peptides from the N terminus of DPY19L2 (RSKLREGSSDRPQSSC
for mouse Dpy19l2 and RSQSKGRRGASLAREPEC for human
DPY19L2) were raised in rabbit. Antibodies were not purified,
and serums were used at a dilution of 1:1000. All animal proce-
dures were run according to the French guidelines on the use of
living animals in scientific investigations with the approval of
the local ethical review committee of Grenoble Neurosciences
Institute. Sperm were obtained from 16-week-old Oncins France
1 strain (OF1) mice (obtained from Charles River, Macon, France)
by manual trituration of caudae epididymis. Human testis tissue
(from an 80-year-old donor) was obtained by surgery. Sperm
were obtained by ejaculation (from a 30-year-old donor). Human
tissues were obtained after approval by the local ethical committee
and informed consent from the patients.
elements strongly suggest that DPY19L2 CNV is caused by

nonallelic homologous recombination (NAHR) between

LCRs 1 and 2. We could not identify any remnant of the

LCR 1,2 sequences near the other DPY19L paralogs or

pseudogenes, suggesting that the duplications that led to

the creation of the DPY19L family might have been driven

by a different mechanism.

Nucleotide changes have long been believed to be the

major force in genomic evolution. It is now estimated

that LCRs account for approximately 5% of the human

genome19 and that the average rate of gene duplication

is similar to the mutation rate per nucleotide site.20

Mutations in duplicated genes can cause (1) pseudogeniza-

tion (function loss), (2) subfunctionalization, a process

whereby both genes are required to perform the ancestral

functions, or (3) acquisition of a new function.21,22

DPY19L2 is a member of the DPY19L family, which

comprises four transmembrane proteins of unknown
358 The American Journal of Human Genetics 88, 351–361, March 1
function: DPY19L1–DPY19L4. Genes encoding DPY19L

proteins have undergone multiple duplications through

evolution, leading to the recent creation of a family with

LCR comprising DPY19L1 and six pseudogenized copies

on chromosome 7 and DPY19L2 on chromosome 12.23

We can safely postulate that the duplication of DPY-19

eventually led to the acquisition of a new specialized func-

tion in spermiogenesis, inwhat could be seen as a paradigm

for neofunctionalization through gene duplication.

DPY19L1 was shown to be expressed in rat neural stem

cell prior to their differentiation intoGABAergic neurons,24

and DPY19L3, which is expressed mainly in the brain and

the peripheral nervous system, was very recently described

to be have a strong association with bipolar disorder.25 We

can postulate that the presence of mutations in DPY19L1

or DPY19L3—potentially large deletions—could have

severe pathological consequences caused by an abnormal

neurological development. DPY19L2 is, however, the

only of the four paralogs or of the other pseudogenes to

have been described as a CNV and found to be duplicated

or deleted, and we have not detected the 28 kb LCR near

any of its paralogs or pseudogenes through extensive

BLASTN search. Data from the CHOP database indicates

that the breakpoints of a vast majority of the described

CNV (101/108) are localized in LCRs 1 and 2 (Figure S1).

This indicates that the observed deletion, like the described

gain/loss CNV at the DPY19L2 locus, is indeed very likely

caused by NAHR occurring between LCRs 1 and 2. NAHR

usually takes place during meiosis between highly homol-

ogous sequences, usually LCRs, located (1) on the same

chromatid, (2) on sister chromatids, or 3) on chromatids

from paired bivalent chromosomes. Interchromosomal

and interchromadid NAHR (2 and 3) between LCRs in

direct orientation result in the production of two recom-

bined chromosomes: one duplicated and one deleted,

whereas intrachromatid NAHR (1) produces a deleted chro-

mosome and a small, nontransmissible (thus lost), circular-

ized chromatid portion (for review see 26). NAHRs are thus

expected to produce a higher proportion of deletions

than duplications. This was indeed confirmed through

measuring the de novo meiotic deletions and duplications

at four NAHR hotspots on sperm DNA.27 Surprisingly, the

frequency of duplications at the DPY19L2 locus (1.8%) is

more than twice that of deletions (0.8%) (Table 2). This

could result from the negative selection against the deleted

alleles leading to infertility in homozygous males, as

demonstrated here. Alternatively, this could result from

a positive selection of the duplicated alleles. At the

moment, we have no data concerning the potential effect

of the deletion in females. However, considering the

sperm-specific function of DPY19L2, we do not anticipate

any phenotype in females.

Antibodies were raised against human and mouse

DPY19L2. We could demonstrate that the proteins are

present in human and mouse testis but absent from ejacu-

lated human sperm or epididymal mouse sperm (Figure 6).

These results are concordant with a role of DPY19L2
1, 2011



during spermiogenesis. We performed flow cytometry

analysis on spermatozoa from P1’s spermatozoa (data not

shown) and observed a single haploid peak. Others have

carried out fluorescence in situ hybridization (FISH) anal-

yses on sperm from globozoospermic patients and have

also observed that the tested spermatozoa were euploid,

albeit with a slight increase in aneuploidy rate.28–30 Alto-

gether, these data demonstrate that globozoospermatozoa

have undertaken both meiotic divisions and have reached

the round spermatid stage but that the spermiogenesis is

altered beyond this stage. One of the major complexes

involved in acrosome formation and head elongation is

the acroplaxome, a subacrosomal cytoskeletal plate toward

which Golgi-derived vesicles fuse.31 Very little is known

about DPY19L2 function. In the human, the only data

come from the analysis of cDNA libraries, and they indi-

cate that DPY19L2 transcripts are expressed mainly in

the testes (Figure 2C). Our protein work confirmed that

both human and mouse DPY19L2 are indeed present in

the testis but that they are absent from mature sperm

(Figure 6). We also observed in the mouse that the protein

is predominantly expressed in the testis compared to

muscle, spleen, kidney, or liver (data not shown). These

results are concordant with a function of the protein

during spermiogenesis. At the moment, the only key to

its function comes from the study of DPY-19, the ancestor

of DPY19L2 in C. elegans. Both genes encode multipass

membrane proteins likely to contain 6–11 transmembrane

domains. DPY-19 was shown to be necessary for the correct

polarization of C. elegans neuroblasts and their subsequent

migration along the anterior-posterior axis.17 We saw in

our patients that without DPY19L2, head elongation and

acrosome formation are not possible. We can postulate

that DPY19L2 might be necessary to indicate the anterior

pole of spermatozoa and might be involved in the acrop-

laxome positioning and fixation. The dpy19l2 mice

knockout has just been produced in a recent effort to

produce animal models for transmembrane proteins.32

The described phenotype concurs perfectly with what is

observed in the human and was briefly described as ‘‘infer-

tility, failure of the spermatid nuclei to elongate’’32. We

have no doubt that the utilization of this animal model

will contribute to the elucidation of the function and

mode of action of DPY19L2.

None of the patients with the deletion declared any

medical impairment apart from their primary infertility.

DPY19L2 inhibition could therefore provide an interesting

target to achieve male contraception and a patent was filed

to that effect.15 Many have attempted intracytoplasmic

sperm injection (ICSI) with globozoospermic spermatozoa.

Overall fertilization and pregnancy rate is low but success-

ful pregnancies have been reported.3,33–35 In most of these

reports, the distinction between type I (total globozoosper-

mia) and type II (partial globozoospermia) patients is not

clear. It is also very likely that not all of the more homoge-

neous type I patients have the same molecular etiology.

Twenty ICSI cycles were carried out on five brothers with
The Ameri
typical type I globozoospermia, resulting in a single

birth.36 In the past 5 years, at the Clinique des Jasmin in

Tunis, we have attempted seven ICSI cycles for six of the

patients with DPY19L2 deletion who are described here.

Normal fertilization rate was very low (13%), but one preg-

nancy could be obtained, illustrating the fact that a preg-

nancy could be obtained for type I globozoospermia

caused by DPY19L2 deletion. Recent work suggests that

the low fertilization rate observed with globozoospermato-

zoa is at least partially caused by a decrease or a defect in

PLCz, a protein involved in the induction of calcium oscil-

lations triggering oocyte activation.37,38 Our report

suggests that defects in PLCz signaling would be secondary

to the defect in head maturation caused by the absence of

DPY19L2. It is now important to genotype a larger series of

patients, including some with a positive ICSI outcome, to

establish whether the globozoospermic patients without

DPY19L2 deletion have a better prognosis. If this were

the case, the realization of a molecular diagnosis for globo-

zoospermic men would permit providers to adopt the best

course of treatment for these patients.
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Supplemental Data contain two tables and one figure and can be

found with this article online at http://www.cell.com/AJHG.
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