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GATES: A Rapid and Powerful Gene-Based
Association Test Using Extended Simes Procedure

Miao-Xin Li,1,2,3 Hong-Sheng Gui,1 Johnny S.H. Kwan,1 and Pak C. Sham1,2,3,*

The gene has been proposed as an attractive unit of analysis for association studies, but a simple yet valid, powerful, and sufficiently fast

method of evaluating the statistical significance of all genes in large, genome-wide datasets has been lacking. Here we propose the use of

an extended Simes test that integrates functional information and association evidence to combine the p values of the single nucleotide

polymorphisms within a gene to obtain an overall p value for the association of the entire gene. Our computer simulations demonstrate

that this test is more powerful than the SNP-based test, offers effective control of the type 1 error rate regardless of gene size and linkage-

disequilibrium pattern among markers, and does not need permutation or simulation to evaluate empirical significance. Its statistical

power in simulated data is at least comparable, and often superior, to that of several alternative gene-based tests. When applied to

real genome-wide association study (GWAS) datasets on Crohn disease, the test detected more significant genes than SNP-based tests

and alternative gene-based tests. The proposed test, implemented in an open-source package, has the potential to identify additional

novel disease-susceptibility genes for complex diseases from large GWAS datasets.
Introduction

Genome-wide association studies (GWASs) are being

used for identification of susceptibility loci for complex

diseases.1 These studies typically use the single nucleotide

polymorphism (SNP) as the basic unit of analysis, which is

a convenient strategy and has led to the discovery of many

important genetic loci for human diseases.2 However, the

statistically significant variants detected so far explain

only a modest proportion of the total variance in liability

to disease, and inadequate statistical power is likely to

have contributed to the failure to detect true effects.3,4

The problem of statistical power is exacerbated by the

necessity of adopting stringent p value thresholds for

significance (typically 5 3 10�8) in order to control false-

positive association from the large number of SNPs tested.

In addition, many significant SNPs are likely to represent

surrogate markers in linkage disequilibrium (LD) with the

variants causing diseases, and differences in LD patterns

across populations can lead to nonreplication of the

same SNP in another population but significant associa-

tion for some other surrogate SNPs.5

Shifting from SNP-based association analysis to gene-

based analysis is one possible way to improve the power

of GWASs. In a gene-based analysis, one jointly analyzes

all variants within a putative gene to obtain a single p value

representing the significance of association of the entire

gene. Analysis using the gene as the basic unit has several

attractive features. First, the gene is the functional unit of

the human genome. Unlike genetic variants that have

different allele frequencies, LD structure, and heteroge-

neity across diverse human populations, the gene itself is

highly consistent across populations.6 Gene-based analysis
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might therefore lead to more consistent results and allevi-

ates difficulties in replication. Second, gene-based analysis

reduces the multiple-testing burden substantially; it

requires correction for approximately 20,000–30,000

genes rather than potentially millions of SNPs. Finally,

with the gene as the unit of analysis, extension of the find-

ings to further functional analyses, such as protein-protein

interactions (PPIs) and biological pathways, is more

straightforward. The integration of association evidence

and functional informationmight facilitate the unraveling

of the pathogenic mechanisms of complex diseases.

A number of gene-based association tests have been

proposed. Linear regression (for quantitative traits) and

logistic regression (for binary traits) are straightforward

methods of evaluating the overall association between

a gene and a trait. In these tests, all the SNPs or haplotypes

in the gene are entered as predictor variables simulta-

neously, except for redundant SNPs,whose inclusionwould

result in collinearity.6However, a simple regression analysis

might suffer from low statistical power if many SNPs or

haplotypes are included, resulting in a test with many

degrees. Many methods reduce the dimensionality of the

test by compressing the information in the multiple corre-

lated SNPs, for example by Fourier transformation,7 prin-

cipal-components analysis,8,9 the use of fixed SNP weights

based on the LD pattern across the gene,10 and cluster anal-

ysis.11 All these regression-basedmethods require the avail-

ability of the raw, individual phenotype and genotype data.

Methods involving the combination of the SNP-based

test statistics or p values have also been proposed. The

largest test statistic from all the SNP-based tests in a gene

has been proposed as a gene-based test statistic.12 However,

the value of this statistic is expected to be positively
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correlated with the number of SNPs in the gene, and

although adjustment for gene size by a permutation proce-

dure is possible, this is time consuming for large datasets.12

Another possible method is to combine the p values of the

SNPs in a gene by Fisher’s combination test.13 However,

this method assumes that the constituent p values should

be based on independent tests, which is unlikely to be true

for SNPs in the same gene. Violation of this assumption is

likely to inflate the type I error rate, unless use of a permu-

tation procedure provides empirical statistical significance.

A variant of the Fisher’s method is the truncated-product

p value method,14 which was originally developed to

deal with ‘‘publication bias’’ in meta-analysis.15 However,

like the Fisher’s combinationmethod, this test is also sensi-

tive to LD among the SNPs in a gene and therefore requires

a permutation procedure if an empirical p value is to be ob-

tained. Instead of permutation, which requires raw geno-

type data, a recent variation of the Fisher’s combination

test uses a simulation approach based on normal variables

with correlations that are assigned values according to the

LD structure between SNPs.16 The p values of this method

are highly correlated with those obtained from a permuta-

tion procedure. The simulation method, although faster

than permutation, is still computationally intensive

when applied to genome-wide datasets.

A separate issue for the design of gene-based tests is the

possibility of improving the power of the test by imposing

weights on the SNPs according to prior information on

their likely relative importance. The idea of p value weights

was introduced in the context of a sequential step-down

test for maintaining the family-wise type 1 error rate17

and was subsequently incorporated into a false-discovery

rate (FDR) procedure.18 A procedure for assigning prior p

value weights based on a mixture model for p values has

been suggested.19 Indeed, given the observed p values, it

is possible to optimize the choice of p value weights to

be applied to tests grouped by prior information.20

However, because the observed dataset might contain

limited information, it might be desirable to also make

use of established functional information and prior data

in the assignment of p value weights.

In this paper, we propose a rapid gene-based association

test that uses extended Simes procedure (GATES) to assess

the gene-level statistical association significance that

can efficiently handle results based on millions of SNPs

(possibly from imputation and meta-analysis) in the later

stages of GWASs and next-generation sequencing studies.

This test can rapidly combine the p values of SNPs within

a gene, without relying on raw, individual phenotype and

genotype data, to produce valid gene-based p values. This

gene-based test can also incorporate functional informa-

tion on SNPs by the use of prior weights to increase statis-

tical power. After introducing the test, we present a series

of computer simulations that are useful in investigating

the test’s type 1 error rate, and we compare the test’s statis-

tical power with that of alternative gene-based tests. To

assess its performance in real datasets, we applied the
284 The American Journal of Human Genetics 88, 283–293, March 1
method to GWAS data on Crohn disease (CD [MIM

266600]).
Material and Methods

Construction of Gene-Based-Association p Value
We assume that a test of association between the disease and each

of the available SNPs within a gene has been carried out and that

the resulting p values and pair-wise correlation coefficients r for all

the SNPs are available. The proposed method, GATES, a modifica-

tion of the Simes test, combines these available p values to give

a gene-based p value. Let p(1), ., p(m) be the ascending p values

ofm SNPs within a gene. We propose combining them SNP-based

p values to obtain an overall p value for the gene as follows:

PG ¼ Min

�
mepðjÞ
meðjÞ

�
;

where me is the effective number of independent p values among

the m SNPs and me(j) is the effective number of independent p

values among the top j SNPs. The null hypothesis of this gene-

based test is that no SNP within the gene is associated with the

disease, whereas the alternative is that at least one SNP in the

gene is associated with the disease.

In the test proposed above, we used a measure that is more

robust than those currently available21–24 (unpublished data) to

obtain me. The value of me is estimated to be equal to

M � PM
i¼1

½Iðli > 1Þðli � 1Þ� li > 0 , where I(x) is an indicator function

and li is the ith eigenvalue of the p value correlation coefficient

matrix ½ri;j� of SNP-based statistic tests. The negative eigenvalues

are set as zero and ignored. Negative eigenvalues should only arise

in the presence of missing data, and they are usually relatively few

in number and close to zero.21 When the SNPs are independent,

the eigenvalues are all 1, so that me is equal to the number of

SNPs. When all the SNPs are in complete LD, the first eigenvalue

is equal to the number of SNPs and the rest are 0, so that me ¼ 1.

For intermediate situations, we have performed simulation and

permutation studies (see below) to show that the formula also

provides an appropriate effective number of SNP p values and that

PG will thus have an approximate uniform (0,1) distribution.18,25

For a simple case-control study, the pair-wise SNP p value corre-

lation coefficient r is expected to be mainly determined by the

pair-wise LD between the two corresponding SNPs, as measured

by the allelic correlation coefficient r, although it could also be

influenced by the allele frequencies of the two SNPs and the

numbers of cases and controls in the study. We explored the rela-

tionship r and r, for different allele frequencies and sample sizes,

empirically by simulation. Genotype data of two biallelic SNPs

were simulated for 1,500 cases and 1,500 controls, for a particular

set of values of r and allele frequencies, under Hardy-Weinberg

equilibrium. We then performed an allelic association test for

each of the two SNP to obtain two p values. Repeating this proce-

dure 100,000 times resulted in 100,000 sets of p values, from

which the correlation coefficient of the p values of the two SNPs,r,

was calculated.We increased the allele frequencies and r in steps of

0.05 from their minimum to their maximum values to generate

a series of data points. It turned out that the p value correlation

coefficient r could be accurately approximated by a sixth-order

polynomial function of the pair-wise allelic correlation coefficient

r (coefficient of determination R2 ¼ 0.9986), regardless of allele
1, 2011



y = 0.2982x6 - 0.0127x5 + 0.0588x4 + 0.0099x3 + 0.6281x2 - 0.0009x
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Figure 1. The Relationship between LD r and Correlation Coef-
ficient of p Values by Curve Fitting
frequencies (see Figure 1). Repeated simulations using samples of

different sizes and quantitative traits (analyzed by linear regres-

sion) also yielded the same polynomial approximation.

The gene-based test can be further extended to incorporate

differential SNP weights as follows:

PG ¼ Min

0
BBB@

mepðjÞ
Pj
k¼1

wðkÞ

1
CCCA;

wherew(1), .,w(m) are non-negative and sum tome. These weights

are calculated from prior weights r(1), ., r(m), set according to the

relative functional importance of the SNP to non-negative values

but otherwise unconstrained. The procedure takes in turn the

sorted SNPs, according w(i) ¼ c(me(i) � me(i-1))r(i), where me(0) ¼
0 and c is defined such that the weights sum to me:

c ¼ mePm
i¼1

�
meðiÞ �meði�1Þ

�
rðiÞ

The use of weights is expected to increase statistical power if SNPs

with higher weights are more likely to be associated with disease

than SNPs with lower weights. In the absence of information,

equal weights can be used.
Alternative Gene-Based Tests
We performed simulation studies to compare the type 1 error rate

and statistical power of GATES with those of the following alterna-

tive gene-based tests:

d Logistic regression. Each SNP is entered as an explanatory

variable, coded as 0, 1, or 2 for the number of copies of the

minor allele in the genotype, and case-control status is coded

as the response variable. A gene-based p value is provided by

the likelihood ratio test comparing the full model with all

available SNPs and the null model without any SNP.

d Fisher combination test. The gene-based test statistic is given

by T ¼ �2
Pm
j¼1

lnpðjÞ, which has a chi-square distribution with

2m degrees of freedom under the null hypothesis when the

m tests are independent.26 The test is expected to be liberal
The Ameri
for positively correlated tests, such that a permutation proce-

dure is needed if a valid p value is to be obtained.13

d Original Simes test. The gene-based p value is PS ¼
minðmpðjÞ=jÞ. For independent tests, PS is uniform (0,1) under

the null hypothesis. For positively correlated tests, PS is

expected to be conservative.

d Aversatilegene-based test for genome-wideassociation studies

(VEGAS) proposed recently by Liu et al. (2010).16 The test

allows the SNP-based chi-square test statistics within a gene

to be combined in a flexible manner to give a gene-based test

statistic (e.g., it can take the sum of all the statistics, or the

sumof the several top statistics, or simply the largest statistic).

An empirical null distribution for this gene-based test statistic

is obtained through a simulation of multivariate standard

normal random vectors with correlations equal to those

between the SNPs in the gene; the component variables are

squared to give correlated chi-square random variables, and

then appropriate variables are summed as dictated by how

the gene-based test statisticwas calculated. In our simulations,

we calculated two versions of the test, one basedon the sumof

all the SNP-based chi-square statistics in the gene (VEGAS-

Sum) and one based on just the largest statistic (VEGAS-Max).

Note that only logistic regression requires the raw phenotype

and genotype data, whereas the other tests require only the SNP-

based p values. However, a permutation procedure, which is neces-

sary to ensure the correct type 1 error rates for the Fisher and orig-

inal Simes tests when the SNPs are correlated, also requires the raw

data. The VEGAS method does not require raw data but instead

requires only the correlation matrix of the SNPs.
Simulation Studies of Type 1 Error Rate

and Statistical Power
The simulation involved the generation of genotype data on 30

SNPs, which were all biallelic and under Hardy-Weinberg equilib-

rium.We considered three different scenarios in terms of LD struc-

ture: (1) the SNPs are situated in six strong LD blocks (see Table S1),

(2) the SNPs are situated in six moderate LD blocks (see Table S2),

or (3) the SNPs are in linkage equilibrium. Given the LD pattern

and the allele frequencies of the 30 SNPs, we used a program based

on the HapSim algorithm27 to generate genotype data. We then

considered three different scenarios in terms of gene size: (1)

a three-SNP gene containing the first three SNPs, (2) a ten-SNP

gene containing the first ten SNPs, and (3) a 30-SNP gene contain-

ing all 30 SNPs. Finally, we considered three scenarios in terms of

disease model: (1) a null model where no SNP has any effect on

disease risk, (2) an additivemodel where one SNP in each LD block

has a minor allele that increases the risk ratio additively by 0.14,

and (3) a multiplicative model where one SNP in each LD block

has a minor allele that increases the risk ratio multiplicatively by

a factor of 1.14 (see Tables S1 and S2).28 Because three-SNP, ten-

SNP, and 30-SNP genes contain one, two, and six LD blocks,

respectively, the number of susceptibility SNPs they contain are

correspondingly one, two, and six. The baseline risk correspond-

ing to the absence of any risk-increasing alleles is calculated

from the allele frequencies and risk ratios of the susceptibility

SNPs and gives a population disease prevalence of 0.1. For each

combination of scenarios, a population of 1,000,000 individuals

was generated. A random sample of 1500 cases and 1500 controls

was drawn, without replacement, from the population and sub-

jected to the different methods of gene-based association. Type 1
can Journal of Human Genetics 88, 283–293, March 11, 2011 285



error rates and statistical power estimates under the different

scenarios were obtained from the proportion of simulated data-

sets, out of 1,000 simulated populations, that resulted in signifi-

cant p values (set at 0.05).

Impact of Weighting on Type 1 Error Rates

and Statistical Power
To evaluate the impact of weighting the SNPs in the construction

of the gene-based test, we assigned some SNP with a high weight

(wi > 1) and the others with a low weight (0 < wi < 1) in simulated

data generated as described above. We considered two scenarios of

weight assignment: (1) the SNPs assigned to have the high weight

are the true susceptibility SNPs, whereas the SNPs assigned to have

the lowweight have no direct causal effect, and (2) the assignment

of weight is random. Although the first scenario is expected to

increase statistical power, the latter scenario is expected to have

no effect or to result in reduced statistical power. Although

random assignment is not the worst possible scenario, it might

be the worst that is likely to occur in real data analyses. We also

varied the ratio of high to low weights from 1 to 16 to see the

impact on type 1 error rates and statistical power.

Genome-wide Type 1 Error Rates under Realistic

LD Patterns
The above evaluation of type 1 error rates in simulation was based

on arbitrary LD structure and might not represent realistic exam-

ples of the actual LD structure of genes in real populations. In

order to assess the genome-wide type 1 error rates under realistic

situations, we calculated the various gene-based test statistics for

genotype data from a real GWAS, where the phenotypes were reas-

signed at random. The real GWAS data used were on a sample of

2514 Chinese subjects typed by the Illumina Human610-Quad

BeadChip from projects in Hong Kong with Institutional Review

Board approval. After standard quality-control procedures,

473,931 SNPs were left for analysis; among these, 209,784 SNPs

were in 23,672 genes. SNP-based association analysis was carried

out with a genotypic association test in Plink.29 Two LD datasets

from different sources were prepared: the pair-wise r-squares esti-

mated through Plink29 from the genotype data of the actual case-

control sampleand the r-squares fromthe latestHapMapLDdataset

(CHBpanel) released onApril 19, 2009.WeusedGATES to combine

SNP-level p values to obtain gene-basedpvalues.We assessed type1

error rates for the gene-based tests by examining the proportion of

genes for which the gene-based p value is lower than various

threshold values (0.05., 0.01, 0.001, 0.0001). In addition, we used

a quantile-quantile (Q-Q) plot to compare the overall distribution

of the gene-based p values to a uniform (0,1) distribution.

Application to GWASs
To further evaluate the performance of GATES under realistic situ-

ations, we used it to reanalyze the data from a published meta-

analysis of three CD GWASs with a total of 3,230 cases and

4,829 controls.30 We used the r-square values from the HapMap

CEU sample to adjust for marker dependency. Prior to applying

GATES, we subjected the SNP-based p values to genomic control

correction31 to avoid inflated significance levels. SNPs were map-

ped onto genes according to the gene coordinate information

from NCBI. SNPs within 5 kilobase pairs of each gene were also as-

signed into the gene. In the very rare case where a SNP was in the

overlapping region of two genes, the SNP was assigned into both

genes.We compared the results of the SNP-based tests, the original
286 The American Journal of Human Genetics 88, 283–293, March 1
Simes test and GATES, in terms of the number of significant hits

after Bonferroni correction.
Results

Simulation Studies of Type 1 Error Rate

and Statistical Power

The empirical type 1 error rates and statistical powers of

GATES and the five alternative methods at a nominal

type 1 error rate (a) of 0.05 are given in Table 1. When

the markers within a gene are independent, the empirical

type 1 error rates of all tests are approximately 0.05. For

dependent markers, however, the Fisher combination test

is a liberal test with an inflated type 1 error rate. In

contrast, the original Simes test becomes conservative for

a gene with multiple SNPs in strong LD. The type 1 error

rates of the other five tests (including the one we propose)

are all correct regardless of the marker dependency.

The statistical powers of the tests are affected by the

number of disease-susceptibility loci (DSL) and the marker

dependency.When themarkers are independent and there

are only 1 or 2 susceptibility loci (i.e., in the case of the

three-SNP or ten-SNP gene), all the tests have approxi-

mately equal power to identify the susceptibility genes.

When a gene has 30 SNPs and six susceptibility loci, the

most powerful tests are those that combine the evidence

from all the SNPs in an additive manner, i.e., logistic

regression, Fisher’s combination, and VEGAS-Sum (see

Table 1). GATES has power comparable to that of the

VEGAS-Sum test in the three-SNP and ten-SNP scenarios,

but it is slightly less powerful for a gene with 30 SNPs

and six susceptibility loci. It is more powerful than logistic

regression when the markers are in strong LD, and it is

similar or superior in power to the original Simes test or

the VEGAS-Max test in all situations.

The powers of the Fisher combination test with permuta-

tion, the original Simes test with permutation, and GATES

are shown in Table 2. In general, all three tests have very

similar powers, with a few exceptions. One of these situa-

tions is when there are six susceptibility loci (among 30

SNPs), in which case the Fisher combination test is more

powerful than the other two tests. Another is when there

is only one susceptibility locus among a large number

(i.e., 10) of independent SNPs, in which case the Fisher

combination test is less powerful than the other two tests.
Impact of Weighting on Type 1 Error Rates

and Statistical Power

The use of weights does not lead to an inflated type 1 error

rate for GATES (see Figure 2). However, weight setting can

have substantial effects on statistical power. When the

SNPs are independent or in moderate LD, the assignment

of relatively high weights to the true susceptibility SNPs

can substantially increase the power of the gene-based

test (see Figure 2). The bigger the difference between the

high and the low weights, the greater the power gain.
1, 2011



Table 1. Empirical Type 1 Errors and Power of Alternative Approaches (in percentage)

#SNP (#DSL) Logistic Regression Fisher VEGAS –Sum Original Simes VEGAS �Max GATES

LE

Error Rate (no disease) 3(0) 4.66 4.67 4.70 4.61 4.62 4.61

10(0) 5.10 5.00 5.04 5.06 5.07 5.06

30(0) 5.26 4.96 4.97 4.97 5.04 4.97

Power (additive model) 3(1) 43.71 41.79 42.67 45.28 45.22 45.28

10(2) 56.88 53.32 54.56 54.76 54.00 54.76

30(6) 65.32 61.5 63.28 47.18 45.62 47.18

Power (multiplicative model) 3(1) 46.61 44.72 45.54 48.39 48.3 48.39

10(2) 69.00 65.25 66.88 67.00 66.26 67.00

30(6) 93.45 91.44 92.28 82.21 80.18 82.21

Moderate LD

Error Rate (no disease) 3(0) 4.86 7.17 4.91 4.54 4.81 4.98

10(0) 4.88 9.8 4.83 4.55 4.92 5.00

30(0) 5.63 11.09 5.03 4.97 5.29 5.56

Power (additive model) 3(1) 44.59 55.8 49.36 49.71 50.51 51.23

10(2) 56.25 72.38 61.36 58.93 59.12 60.72

30(6) 65.47 83.04 71.96 53.29 52.24 55.65

Power (multiplicative model) 3(1) 46.52 57.5 50.98 51.19 52.00 52.65

10(2) 68.42 81.73 72.48 70.66 70.9 72.4

30(6) 93.68 98.04 95.59 86.07 84.34 87.52

Strong LD

Error Rate (no disease) 3(0) 4.96 11.49 5.23 3.88 5.22 5.35

10(0) 5.33 15.68 4.84 3.37 4.88 5.34

30(0) 5.57 17.9 4.89 3.38 4.89 5.64

Power (additive model) 3(1) 45.03 72.29 58.81 53.88 58.2 60.43

10(2) 57.2 89.82 75.74 66.39 71.71 74.3

30(6) 65.56 96.04 86.3 62.84 66.80 72.75

Power (multiplicative model) 3(1) 47.13 74.28 60.88 56.28 60.74 62.77

10(2) 68.45 94.41 84.89 77.14 80.59 83.00

30(6) 93.4 99.92 99.2 91.42 92.24 95.38

Data are given as percentages. Abbreviations are as follows: LE, linkage equilibrium; LD, linkage disequilibrium; and DSL, disease susceptibility loci.
However, the assignment of high weights to nonpredis-

posing SNPs can decrease power; bigger differences

between high and low weights leads to greater power

loss. Fortunately, the power loss is generally much less

than the potential power gain that can result from favor-

able weight setting for genes. For example, when the

high:low weight ratio is 3, the randomly assigned weights

result in only 2% power loss for the scenario with one

susceptibility locus among ten independent SNPs in the

gene, whereas a favorable weight assignment would result

in more than a 10% increase in power in the same situa-

tion. However, this pattern does not seem applicable to

the gene with three SNPs in strong LD; in that case, the
The Ameri
power loss due to random weighting might be larger

than the power gain when the ratio of high to low weight

is large. Actually, when all SNPs are in strong LD, the effec-

tive number of p values will approach 1, and the higher

weight will be also close to 1 so that the type 1 error can

be controlled. Hence, the favorable weight will only have

a slight effect on the SNPs p values and thus on the power

of the statistic test. Anyway, according to the empirical

simulation, a high:low weight ratio less than 5 seems pref-

erable because the power loss due to the randomweights is

trivial, at least across the scenarios we have tested, whereas

the power gain as a result of corrected weight can be

substantial.
can Journal of Human Genetics 88, 283–293, March 11, 2011 287



Table 2. Empirical Power of Alternative Approaches by
Permutation

#SNP (#DSL)
Permuted Fisher
Combination Test

Permuted Original
Simes Test GATES

LE

3(1) 46.47 50.03 48.77

10(1)* 27.18 35.29 33.5

10(2) 55.72 56.68 54.78

30(1)* 16.79 25.89 24.21

30(6) 92.1 83.61 82.55

Moderate LD

3(1) 52.89 55.3 54.18

10(1)* 42.56 42.68 41.02

10(2) 72.56 73.46 72.79

30(1)* 26.36 29.03 27.95

30(6) 95.1 87.21 87.32

Strong LD

3(1) 62.29 62.45 62.77

10(1)* 56.94 53.45 51.18

10(2) 86.02 83.61 83.88

30(1)* 38.78 39.48 38.44

30(6) 99.18 94.56 95.22

Powers are given as percentages. Abbreviations are as follows: LE, linkage
equilibrium; LD, linkage disequilibrium; and DSL, disease susceptibility loci.
An asterisk indicates that only the first locus in each LD block was assumed
as a disease susceptibility locus.
Genome-wide Type 1 Error Rates under

Realistic LD Patterns

In the simulation study with real genotypes and permuted

phenotypes from an actual GWAS dataset, GATES does not

show inflation of type 1 error rates across all genes at the

a levels of 0.05, 0.01, 0.001, and 0.0001, regardless of the

number of SNPs in the gene (see Table 3). The use of LD

derived from the current GWAS dataset or from HapMap

CHBdata leads to similar results (Table 3). The Pearson corre-

lationcoefficientbetween the twosetsofgene-basedpvalues

was 0.997. An examination of the QQ plot of the p values of

all genes, genes with three or fewer SNPs, and genes with

more than three SNPs reveals no deviation from a uniform

(0,1) distribution (Figure 3).

Application to Genome-wide Association

Dataset on CD

GATES was implemented in an open-source tool named

Knowledge-Based Mining System for Genome-wide

Genetic Studies (KGG), which was used for analysis of

the SNP-based p values for CD. The program took less

than 2 min to perform a whole-genome scan for the data-

set on an ordinary desktop computer with Intel Core 2

CPU 2.66G Hz, RAM 1.97 GB, and 32-bit Windows XP

Professional Version 2002.
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There was an overall inflation of SNP-based p values

(genomic control l 1.1586) in the Meta-analysis dataset

on CD. Barrett et al. (2008)30 argued that, given the large

sample size (3,230 CD cases and 4,829 controls), the over-

all inflation was modest and would not introduce spurious

differences between cases and controls. Nevertheless, we

adjusted the SNP-based p values by the genomic control

inflation factor31 to reduce potential false positives. In

the dataset, 311,638 (49.09%) SNPs were assigned to be

within one ormore of 23,974 genes. The numbers of signif-

icant p values for the SNP-based test, the original Simes

test, and GATES at three levels of family-wise significance

are shown in Table 4. GATES detected more significant

genes than the original Simes test or SNP-based test. At

the family-wise error rate of 0.05, GATES detected five

more significant genes than the SNP-based p values alone.

All significant genes according to SNP-based p values were

also significant by the original Simes test. The extended

Simes test reported two more significant genes, MST1

[MIM 142408] and BSN [MIM 604020], than the original

Simes test; the other genes were significant for both tests.

MST1was convincingly replicated in independent samples

by Barrett et al. (2008).30 Recent studies also support

a contribution from BSN32,33 to CD. At the family-wise

error rate of 0.1, GATES detected five more significant

genes than the SNP-based p values. Among these five

genes, Barrett et al. (2008)30 successfully replicated ITLN1

[MIM 609873], and there is also support for TNFSF15

[MIM 604052] as a candidate gene involved in CD.34–36

In a recent genome-wide meta-analysis of CD in a larger

sample, the susceptibility of the four genes was recon-

firmed.37 The significant genes (FWER % 0.1) and their

SNPs are detailed online in the Table S3.

Using the Gene-Based Test to Guide Replication Studies

After a genome-wide gene-based scan, the next practical

issue is how to use the results to guide follow-up replica-

tion studies. A straightforward strategy is to prioritize

genes on the basis of their p values and then select the

SNPs with the smallest p values within each prioritized

gene for replication. We conceptually validated this idea

by using the released replication results in Table S2 of Bar-

rett et al. (2008)30 for CD. There were 23 SNPs with a signif-

icant replication p value < 3.85E�4 (¼ 0.05/130) among

the 130 SNPs in their Table S2. These SNPs could be map-

ped onto 19 known genes. In 13 of these 19 genes, the

same SNP was the most significant SNP within the gene

in both the original Meta-analysis and the independent

replication study (see Table S4 online), suggesting that

choosing the most significant SNP within each selected

gene is usually optimal. However, functional consider-

ations are also potentially relevant for SNP selection. The

most significant SNPs of two genes (IL23R [MIM 607562]

and RTEL1 [MIM 608833]) in the Meta-analysis later

were surpassed in the replication study by other SNPs in

the same gene with greater functional significance. For

IL23R, the most significant SNP in the replication study

is rs11209026, a missense variant. For RTEL1 [MIM
1, 2011
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Figure 2. Empirical Type 1 Error and Power of
the Weighted Gene-Based Test
(A) Additive mode and independent SNPs.
(B) Multiplicative mode and independent SNPs.
(C) Additive mode and SNPs in moderate LD.
(D) Multiplicative mode and SNPs in moderate
LD.
(E) Additive mode and SNPs in strong LD.
(F) Multiplicative mode and SNPs in strong LD.
The high weights are assigned to the true suscep-
tibility SNPs (i.e., the favorable weight setting) or
are just randomly assigned to any SNPs within
the gene (i.e., the random weight setting).
Error lines in the (B), (D), and (F) are omitted
because they are identical to those in (A), (C),
and (E), respectively.
608833], it is rs2297441, a variant in utr-3. Interestingly,

rs2297441 is also mapped onto a miRNA binding site of

RTEL1 in Sanger’s miRBase.
Discussion

The proposed gene-based test, GATES, is a Simes test exten-

sion that is valid for correlated SNPs and capable of incor-

porating previously assigned functional weights of the

SNPs in the gene. The test does not require the raw geno-

type or phenotype data as inputs but requires only the

SNP-based p values and SNP-SNP correlations, and it

need not assume that all SNPs of a gene have the same

direction of effect. It is also very fast because there is no

need for permutation or simulation. GATES can handle

millions of SNPs in less than 10 min, which makes it

convenient for post-GWAS analyses, especially for the

huge datasets that are being generated by genome-wide

meta-analyses38 and imputation,39,40 as well as by next-
The American Journal of Hu
generation sequencing technology,41

although it will lack power for rare variants.

We have shown GATES to have correct

type 1 error rates in both simulated and

permuted datasets, regardless of the number

of typed SNPs in the gene or LD structure.

We have also shown that it is similar in

statistical power to alternative gene-based

tests that require permutation or simula-

tion.12,16,42 Furthermore, we have shown

that the power of the test can be improved

by the appropriate assignment of differen-

tial prior weights to the SNPs within a gene.

In the present study, we made a system-

atic comparison between several simple

and efficient methods of combining p

values to guide gene-level association

studies. These tests can be generally catego-

rized into two groups, ones simultaneously

combining all SNPs and others mainly

focusing on the best SNPs. The first group
includes the logistic regression method, Fisher combina-

tion test (adjusted by permutation), and the VEGAS-Sum

test proposed by Liu et al.16; tests belonging to the second

group are the Simes test, the VEGAS-Max test proposed by

Liu et al. ,16 and GATES in the present study. The first group

of tests are generally more powerful for detecting a gene

withmultiple independent DSL, whereas the second group

of tests can work better when a gene has only one or a few

independent DSL. In addition, the performance of the first

group of tests is more sensitive to the number of neutral

SNPs within a gene. That is, they can be much less power-

ful than the second group of tests for detecting a large gene

withmany typed SNPs but only a few truly associated ones.

Interestingly, the presence of LD invalidates only the

Fisher combination test and tends to increase the statistical

power of the other tests, except for logistic regression,

which has the same power regardless of LD. As a result,

logistic regression is more powerful than other tests

when the SNPs in the gene are uncorrelated but less power-

ful when the SNPs are in LD. Among the second group of
man Genetics 88, 283–293, March 11, 2011 289
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Figure 3. Q-Q Plot of Gene-Based p Values in Real Data under
the Null Hypothesis
The gene-based p values calculated from SNP-based p values for
a real GWAS dataset in which disease status has been randomly as-
signed to individuals; the calculation assumed LD statistics calcu-
lated from the GWAS dataset itself.

Table 4. The Number of Genes Passing the p Value Thresholds

Family-wise
Error Rate SNP p Value Original Simes Test GATESa

0.01 17 (3.21E�8) 17 (4.172E�7) 19

0.05 22 (1.60E�7) 25 (2.09E�6) 27

0.1 22 (3.21E�7) 30 (4.17E�6) 32

a The p value thresholds are identical to those in the left column and are
omitted.

Table 3. Proportion of Rejected Null Hypotheses Given the
Nominal Type 1 Error in a Real GWAS Dataset when the Phenotype
Is Permuted at Random

Nominal Type I Error

0.05 0.01 0.001 0.0001

Actual LD

PG 5.27E�2 1.11E�2 1.01E�3 1.27E�4

PG (3 or less SNP) 5.08E�2 1.01E�2 1.14E�3 8.75E�5

PG (over 3 SNP) 5.44E�2 1.20E�2 8.99E�4 1.63�4

HapMap CHB LD

PG 5.29E�2 1.12E�2 1.01E�3 1.27E�4

PG (3 or less SNP) 5.06E�2 9.97E�3 1.14E�3 8.75E�5

PG (over 3 SNP) 5.51E�2 1.23E�2 8.99E�4 1.63�4

The proportions are subject to sampling variation.
tests, GATES has comparable power but is much faster than

the best-SNP test proposed by Liu et al.16 and can be more

powerful than the original Simes test when the SNPs

within a gene are in strong LD.

GATES could be less powerful than the permutation-

based Fisher combination test and the simulation-based

summation statistic test proposed by Liu et al.16 when it

comes to detecting a gene that is of small or moderate

size but that includes quite a few (say, five or more) inde-

pendent DSL. However, to the best of our knowledge,

this would be a rare scenario in real datasets. Instead, it is

probably more usual for a gene to contain only one or

two independent DSL, in which case the power of GATES

to detect a susceptibility gene is similar to that of the

permutation-based Fisher combination test and the simu-

lation-based summation statistic test proposed by Liu

et al.16 Moreover, the methods based on summation of

SNP-based statistics also have their own weakness, in that

they are less powerful for detecting a large gene with

many typed SNPs that do not have a true effect. Therefore,

when we are uncertain about the true pattern of associa-

tion in a gene, it might be reasonable to adopt GATES

because computation is fast and convenient.

The construction of prior weights is still an open ques-

tion. There is no guarantee that true susceptibility SNPs

will always be assigned high or favorable weighs because

we do not yet have full understanding of the relationship

sequence and function to allow us to accurately predict

the functional consequences of a sequence change. One

potentially useful resource for weight construction is the

Catalog of Published GWAS.43 In comparison to SNPs

randomly selected from genotyping arrays, trait/disease-

associated SNPs (TASs) were significantly overrepresented

only in nonsynonymous sites (odds ratio [OR] ¼ 3.9

(2.2–7.0), p ¼ 3.5E�7] and 5 kb promoter regions (OR ¼
2.3 (1.5–3.6), p ¼ 3E�7)]; however, they were not overrep-

resented in introns, although 88% of TASs collected

through December 31, 2008 in the Catalog of Published
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GWAS were intronic. Nicolae et al. found that TASs were

more likely to be expression quantitative trait loci (eQTL),

and theeQTL informationcanbeused to enhancediscovery

of trait-associated SNPs for complex phenotypes.44 Hence,

it might be possible to construct the prior weights for each

SNP on the basis of the ORs associated with their genomic

annotations. However, many of the GWAS hits are likely

to represent indirect associations, and the sequence at the

associated SNP itself might therefore be of no significance.

Moreover, different classes of diseases (e.g., neurological

diseases and immunological diseases) might have different

distributions of the enrichment across various categories. If

this is true, weights that are specific to a disease, or a disease

class, might be more effective. Unfortunately, the number

of available GWAS hits is still too limited to allow stable

estimates even for a class of diseases, not to mention an

individual disease. As the number of GWAS hits increases,

this obstacle will diminish. Anyhow, as we have shown in

our simulation, the power gain resulting from a favorable

weight setting in GATES is expected to be greater than the

power loss resulting from an arbitrary weight setting, espe-

cially when the ratio of high to lowweight is<5. Therefore,

the use the prior weights to evaluate gene-based association

may be worthwhile when it is feasible to generate reliable

weights.
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The statistically valid gene-level p values attained with

GATES can facilitate in-depth bioinformatics analysis

because it is usually more appropriate to take the entire

gene (rather than individual SNPs) as a basic analysis

unit. The evaluation of association at the gene level nicely

avoids the difficulties in processing the evidence from

numerous dependent SNPs in biological pathways or

networks. On the basis of these gene-level p values, many

Bioinformatics methods45 originally developed for gene-

set enrichment analysis of microarray expression data

could be readily adopted for the functional analysis of

GWAShits. A commonbasic assumption of the enrichment

analysis is that genes responsible for the same diseases tend

to be distributed within the same biological modules.46

Such an assumption implies that many disease suscepti-

bility genes might not function alone but could be con-

nected to each another in one or more biological modules.

A module can be a protein complex,47 a pathway,48 or

a subnetwork of PPIs.49Within amodule, unknown under-

lying disease-susceptibility genes could be predicted on the

basis of some known ones. The coexistence of multiple

significantly associated genes within the same biological

modules could, in turn, strengthen the evidence of the

involvement of the modules in the development of

disease.50–52 More importantly, the biological modules

could also aid our understanding of the pathogenic mech-

anisms of the disease and therefore suggest novel targets for

drug development. The strategy of integrating multiple bi-

oinformatics resources into genetic analysis is a promising

and important trend for genetic studies in the near future.

An advantage of GATES is that it can use LD information

from a known reference population (e.g., HapMap), and it

therefore canbe used evenwhen individual genotype infor-

mation on the study sample is not available, as long as the

SNP-based p values are accessible. The method behaves

well when the reference population matches closely with

the actual study population. For example, using the LD

information from HapMap Chinese reference sample on

the SNP-based p values of a permuted Chinese dataset

gave the correct type 1 error rate (Table 3), and the gene-

basedpvalues correlatedhighly (r¼ 0.997)with gene-based

p values obtained from an analysis where LD is obtained

from the genotype data of the actual study sample.

However, if the reference population does not match well

with the study population, then the type 1 error rate will

be affected. If the reference population has a generally

higher level of LD than the actual study population, then

the me will be underestimated, and the gene-based test

will tend to be liberal. Conversely, if the reference popula-

tion has a generally lower level of LD than the actual study

population, then the me will be overestimated, and the

gene-based test will tend to be conservative. One problem-

atic scenario is when the SNP-based p values have been ob-

tained from a meta-analysis of multiple populations with

differing LD structures. In practice, apart from African pop-

ulations and population isolates,most outbred populations

such as Europeans and Asians have rather similar levels of
The Ameri
LD, and when the type 1 errors of the gene-based tests for

these populations are calculated from HapMap reference

samples, they are unlikely to be grossly inflated or deflated.

In principle, one can apply this method to combine the

SNP p values of genes within a pathway to produce

a pathway-based p value. However, the complex structure

of pathways might make it more difficult to interpret the

results. A single highly significant SNP p value within

a pathway might lead to a significant pathway p value. If

the gene containing this SNP is only involved in a single

pathway, then this would suggest that this pathway

is important. However, because a gene can belong to

multiple pathways and a large pathway can contain

multiple small pathways, it might be difficult to clearly

identify which pathways are involved in disease etiology.

A gene-based test can obviously only cover SNPs within

and near to genes, and although genes are the most inter-

esting regions of genome, it is certain that some intergenic

SNPs are still of functional significance, for example in

altering the expression of genes at a distance. We suggest

that a gene-based analysis should be complemented by

SNP-based tests of SNPs outside of genes, so that the entire

genome is exhaustively explored for all possible associa-

tion signals. We have implemented this strategy in KGG,

which is a standalone tool with graphic interface. It can

read SNP p values by any statistic tests and LD information

from various sources to perform a gene-based test. In addi-

tion, supported by multiple integrated bioinformatics

databases, KGG can also use the generated gene-based

p values to explore biological pathways and PPI networks.
Supplemental Data

Supplemental Data include four tables and can be found with this

article online at http://www.cell.com/AJHG/.
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The Catalog of Published Genome-Wide Association Studies,

http://www.genome.gov/gwastudies
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Gene coordinates information from NCBI, ftp://ftp.ncbi.nlm.nih.

gov/genomes/MapView/Homo_sapiens/sequence/BUILD.36.3/

updates/seq_gene.md.gz

HapMap, http://www.hapmap.org/

KGG website, http://bioinfo.hku.hk/kggweb/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/omim

PLINK, http://pngu.mgh.harvard.edu/~purcell/plink/

Sanger’s miRBase, http://microrna.sanger.ac.uk/
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33. Márquez, A., Cénit, M.C., Núñez, C., Mendoza, J.L., Taxonera,

C., Dı́az-Rubio, M., Bartolomé, M., Arroyo, R., Fernández-
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