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Abstract
The estimation of nondisplaceable binding from cerebellar white matter, rather than from whole
cerebellum, was proposed for the PET tracer carbonyl-11C-WAY-100635 (N-{2-[4-(2-
methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridyl)cyclohexane-carboxamidel]) because of the
heterogeneity of total ligand binding in this region. For the 5-hydroxytryptamine receptor 1A (5-
HT1A) antagonist 18F-N-{2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl}-N-2-pyridyl)trans-4-
fluorocyclohexanecarboxamide (18F-FCWAY), the estimation of nondisplaceable binding from
cerebellum (VND) may be additionally biased by spillover of 18F-fluoride activity from skull. We
aimed to assess the effect of using cerebral white matter as reference region on detection of group
differences in 5-HT1A binding with PET and 18F-FCWAY.

Methods—In 22 temporal lobe epilepsy patients (TLE) and 10 healthy controls, 18F-FCWAY
distribution volume in cerebral white matter (VWM) was computed using an extrapolation method
as part of a partial-volume correction (PVC) algorithm. To assess the feasibility of applying this
method to clinical studies in which PVC is not performed, VWM was also calculated by placing
circular, 6-mm-diameter regions of interest (ROIs) in the centrum semiovalis on parametric
images. Binding potentials were BPF = (VT − VND)/fP and BPF-WM = (VT − VWM)/fP, where VT is
total distribution volume and fP = 18F-FCWAY plasma free fraction. Statistical analysis was
performed using t tests and linear regression.

Results—In the whole group, VWM was 14% ± 19% lower than VND (P < 0.05). VWM/fP was
significantly (P < 0.05) lower in patients than in controls. All significant (P < 0.05) reductions of
5-HT1A receptor availability in TLE patients detected by BPF were also detected using BPF-WM.
Significant (P < 0.05) reductions of 5-HT1A specific binding were detected by BPF-WM, but not
BPF, in ipsilateral inferior temporal cortex, contralateral fusiform gyrus, and contralateral
amygdala. However, effect sizes were similar for BPF-WM and BPF. The value of VWM calculated
with the ROI approach did not significantly (P > 0.05) differ from that calculated with the
extrapolation approach (0.67 ± 0.32 mL/mL and 0.72 ± 0.34 mL/mL, respectively).

Conclusion—Cerebral white matter can be used for the quantification of nondisplaceable
binding of 5-HT1A without loss of statistical power for detection of regional group differences.
The ROI approach is a good compromise between computational complexity and sensitivity to
spillover of activity, and it appears suitable to studies in which PVC is not performed. For 18F-
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FCWAY, this approach has the advantage of avoiding spillover of 18F-fluoride activity onto the
reference region.
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Pet studies of serotonergic 5-hydroxytryptamine receptor 1A (5-HT1A) are of interest in
several neuropsychiatric disorders. Carbonyl-11C-WAY-100635 and 18F-N-{2-[4-(2-
methoxyphenyl)piperazin-1-yl]ethyl}-N-2-pyridyl)trans-4-fluorocyclohexanecarboxamide
(18F-FCWAY) are frequently used for quantitative measurements with PET of 5-HT1A
receptor specific binding. Quantification of the binding potential requires the estimation of
nondisplaceable (free plus nonspecific) binding. Autoradiographic studies showed that,
among gray matter regions, 5-HT1A receptor concentration was lowest in the cerebellum
(1,2). Therefore, this region traditionally has been used for the estimation of nondisplaceable
binding for 5-HT1A tracers.

More recently, PET studies with carbonyl-11C-WAY-100635 indicated a significant
concentration of 5-HT1A in cerebellar vermis and cortex of adult subjects and suggested that
cerebellar white matter could be a better reference region for the estimation of
nondisplaceable binding (3,4). The potential advantage of using cerebellar white matter has
been addressed in a limited number of studies (3–5).

The possibility of using a reference region other than the cerebellum is of particular interest
for the 5-HT1A tracer 18F-FCWAY (6). After intravenous injection, this tracer rapidly
undergoes defluorination to 18F-fluoride, which irreversibly accumulates in the skull (7),
causing substantial spillover of activity into the neighboring brain tissue. Despite the
development of a correction strategy (8,9), tissue counts can be biased, especially in low-
binding regions such as the cerebellum. Therefore, regions of interest (ROIs) have been
drawn far from the cortical rim to avoid bias in binding potential measurement (10).

On the basis of results obtained for carbonyl-11C-WAY-100635 with cerebellar white matter
and because of the distance of the centrum semiovalis from the extracerebral 18F-fluoride
activity, we hypothesized that cerebral white matter could be a valid alternative to the
cerebellum for the estimation of nondisplaceable binding for 18F-FCWAY. The aim of this
study was to assess the impact on detection of differences in 5-HT1A receptor availability
between temporal lobe epilepsy (TLE) patients and healthy controls using 18F-FCWAY
binding in cerebral white matter as an estimate of nondisplaceable binding. The regional
pattern of group differences obtained using the cerebellum was previously reported (10).

MATERIALS AND METHODS
Patient Selection

Data from 22 TLE patients (18 men; mean age ± SD, 37 ± 11 y) and 10 healthy volunteers
(7 men; mean age, 35 ± 9 y) previously studied (10) were reexamined. Briefly, patients were
referred for evaluation of medically refractory TLE. All patients were taking different
combinations of antiepileptic drugs (10,11). None had experienced partial seizures for at
least 2 d, or a secondarily generalized tonic clonic seizure for at least 1 mo, before PET
studies. T1-weighted volumetric MR images were acquired for segmentation purposes, and
T2-weighted and fluid-attenuated inversion recovery (FLAIR) images were obtained for the
evaluation of mesial temporal sclerosis. The study was approved by the National Institute of
Neurological Disorders and Stroke Institutional Review Board and the National Institutes of
Health Radiation Safety Committee.
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PET Procedure
Each patient was scanned with an Advance Tomograph (GE Healthcare). A bolus of 333 ±
74 MBq of 18F-FCWAY was injected intravenously, and dynamic scanning was performed
for 120 min in 3-dimensional mode. Arterial samples were taken to quantify plasma 18F-
FCWAY and 18F-fluorocyclohexanecarbox-ylic acid metabolite (18F-FC) concentrations
and whole-blood activity. The 18F-FCWAY fraction unbound to plasma proteins was
measured with ultracentrifugation (12).

PET Data Analysis
Radioactivity frames registered to MR images (13) were corrected for cerebral uptake of
acid radioactive metabolite, intravascular radioactivity, and 18F-fluoride spillover onto the
brain (8,9). The method to correct for 18F-fluoride spillover assumes that there is a known
true skull time–activity curve, and each brain region receives a fractional contribution of this
time–activity curve that is higher for areas that are closer to the skull (8,9). Next, a
previously developed partial-volume correction (PVC) algorithm (10,14) was applied.
Briefly, the PVC algorithm corrects on a frame-by-frame basis gray matter pixels for spill-
out of gray matter activity and for spill-in of activity from white matter (15). No correction
for partial-volume averaging between adjacent gray matter regions is performed (16,17).
The procedure is based on the segmentation of MR images into binary masks (18), which
are subsequently smoothed to the PET resolution; these smoothed masks are named sGM,
sWM, and sCSF. The corrected activity gray matter values can be calculated as follows:

Eq. 1

where CPVC represents the corrected activity value in a gray matter pixel after PVC, CORIG
is the original uncorrected pixel value, CWM is the estimated white matter activity, and sGM
and sWM are the pixel values (range, 0–1) from the smoothed masks for gray and white
matter, respectively. Original and corrected pixel data were fitted to a 2-tissue-compartment
model with 3 parameters using the metabolite-corrected input function to provide parametric
images of 18F-FCWAY distribution volume (V).

18F-FCWAY distribution volume in cerebral white matter (VWM) was estimated directly on
parametric images. To obtain an accurate estimate of VWM, pixel values that represent 100%
white matter should be used. Such pixels have a high sWM value (close to the maximum
value of 1) and are typically found in the centrum semiovalis. Therefore, pixels with sWM
values between 0.986 and 0.995 were identified. The lower threshold of 0.986 was chosen to
ensure a stable fit in all patients. Potential inaccuracies in white matter estimation introduce
only marginal errors in PVC-corrected gray matter values (15,19), but the effect is expected
to be more important if white matter is used as the estimate of nondisplaceable binding. An
anatomic constraint was applied to avoid sampling from the basal ganglia and thalamus, in
which gray matter is frequently misidentified as white matter (14). Values of these pixels
were then fitted as a linear function of sWM, and the fitted value at sWM = 1 was used as an
estimate of nondisplaceable binding.

The extrapolation method is used for studies in which PVC is performed. To assess the
feasibility of using white matter for more routine clinical studies without PVC, VWM was
also calculated with an ROI procedure on parametric PET images. First, 3 contiguous
transverse slices for which the centrum semiovalis displayed minimal activity were
identified. Next, a 6-mm ROI was centered on the area of lowest signal in both hemispheres.
This operation was performed on each identified slice, using a total of 6 ROIs. The mean
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pixel value was calculated in each ROI, and the 6 regional values were averaged to obtain
VWM.

Derivation of Binding Potential
Binding potentials were derived using both VND and VWM, as following:

Eq. 2

Eq. 3

where VT is the total distribution volume in the target ROI, VND is the distribution volume in
the cerebellum, and fP is 18F-FCWAY plasma free fraction (20).

ROI Analysis
Temporal and extratemporal ROIs were drawn on MR images and applied to coregistered
parametric images (10). Cerebellar ROIs were initially drawn along the outer cortical edge,
then uniformly shrunk until, on visual inspection, no spillover of activity was observed.
Final cerebellar ROIs were about 50% smaller than original ROIs (10). ROI measurements
were computed using only gray matter pixels, as defined by the gray matter segment (18).
For the cerebellum, for which gray matter segment definition is not accurate, the mean ROI
value was computed from unmasked PET images coregistered to MRI volumes (10). The
effect size was computed as the difference between patients and controls divided by the SD
in the control group. Statistical analysis was performed using t test and linear regression, and
statistical significance was set at uncorrected P < 0.05.

RESULTS
Figure 1 shows transverse images of 18F-FCWAY distribution volume in a TLE patient. In
the cerebellum, the large spillover of 18F-fluoride activity masks the visualization of
possible differences in specific binding between gray and white matter. At the cortical level,
there is a clear difference in 18F-FCWAY binding between centrum semiovalis white matter
and gray matter or mixed gray matter–white matter regions. Spillover of 18F-fluoride
activity is observed in the left frontal and bilateral parietal cortex.

Figure 2 shows representative time–activity curves from a healthy control. In white matter,
activity peaked at about 5 min after injection, then progressively decreased to 57%, 24%,
and 21% of peak at 30, 60, and 120 min, respectively. The activity peak in white matter was
about 40% lower than that in cerebellum. White matter and cerebellar time–activity curves
overlapped, starting from about 25 min after injection. As expected, in both regions the
time–activity curve was markedly different from the time–activity curve of the mesial
temporal cortex.

Figure 3 shows the extrapolation method used to automatically estimate VWM, as part of the
PVC process. On the distribution volume images, values of voxels with smoothed white
matter mask sWM between 0.986 and 0.995 were fitted to a straight line, and the extrapolated
value for sWM = 1 was taken as an estimate of nondisplaceable binding. The volume of
white matter voxels with an sWM between 0.986 and 0.995 was 19 ± 5 mL. The quality of
fit, as quantified by r2 values, was good in the whole sample (r2 = 0.88 ± 0.11; range, 0.59–
0.99).
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In the whole sample, VWM estimated with the extrapolation approach was significantly
smaller than VND (0.72 ± 0.34 mL/mL and 0.84 ± 0.30 mL/mL; paired t test, P < 0.05). The
percentage difference between VWM and VND was 14% ± 19%, without significant (P >
0.05) differences between TLE patients and controls. On a subject-by-subject basis, VWM
was lower or of the same magnitude as VND in all but 3 subjects, in whom VWM was 11%,
14%, and 29% higher than VND. A significant relationship was found between VWM and
VND (regression equation, VWM = −0.10 + 0.99 · VND [r2 = 0.76; P < 0.05]) (Fig. 4). VWM
was significantly (P < 0.05) higher in patients than in controls (0.81 ± 0.35 mL/mL and 0.55
± 0.25 mL/mL, respectively). 18F-FCWAY fP was significantly higher in patients than in
controls (0.121 ± 0.033 vs. 0.066 ± 0.024, respectively; P < 0.05), a finding that may be
attributed to antiepileptic drugs (10,11). VWM/fP, however, was significantly (P < 0.05)
lower in patients than in controls (6.80 ± 2.56 mL/mL and 9.32 ± 3.16 mL/mL,
respectively).

The variability of VWM, as quantified by the percentage coefficient of variation (%CV), was
greater than that of VND (45.2% vs. 39.5% in controls and 43.0% vs. 31.6% in patients,
respectively). Nevertheless, the variability of BPF-WM was not significantly higher (P >
0.05) than that of BPF, respectively. In the whole group, mean values of %CV across ROIs
were 36.8% ± 5.6 and 35.5% ± 6.0, respectively, for BPF and BPF-WM.

All significant differences detected using BPF (10) were also detected using BPF-WM.
Significantly (P < 0.05) lower BPF-WM, but not BPF, was detected in ipsilateral inferior
temporal cortex, contralateral fusiform gyrus, and contralateral amygdala. However, effect
sizes were similar for BPF-WM and BPF (Table 1).

In the whole group, values of VWM calculated with the ROI approach did not significantly
differ from those obtained with the extrapolation technique (0.67 ± 0.32 mL/mL and 0.72 ±
0.34 mL/mL, respectively; P > 0.05). Group differences in specific binding were detected
without any regional discrepancy in comparison to those detected with the extrapolation
approach.

DISCUSSION
The cerebellum has been used in several PET studies to estimate nondisplaceable binding of
5-HT1A. However, for both carbonyl-11C-WAY-100635 (21–23) and 18F-FCWAY (8), a 2-
compartment model was necessary to accurately fit cerebellar time–activity curves. This
finding was attributed to a slow component of nondisplaceable binding or to the progressive
accumulation of radioactive metabolites (8,21–23). This unexpected finding motivated the
search for nontraditional reference regions for the estimation of non-displaceable binding.

Using PET with carbonyl-11C-WAY-100635, Parsey et al. found that cerebellar white
matter time–activity curves were well described by a 1-tissue-compartment model (3). Using
cerebellar white matter, rather than the whole cerebellum, for the derivation of the binding
potential improved the identifiability and time stability in all cortical regions. The authors
concluded that for carbonyl-11C-WAY-100635, cerebellar white matter could be a better
reference region than the whole cerebellum (3).

For 18F-FCWAY, the estimation of nondisplaceable binding from the cerebellum has the
additional problem of spillover of 18F-fluoride activity. This applies to the cortex as well,
even though specific binding is high in cortical regions. A method to correct for such
spillover was developed. This method, however, does not accurately take into account
intersubject variations in the skull shape and thickness (8,9). Disulfiram was used to inhibit
defluorination of 18F-FCWAY in humans (24). The drug reduced the accumulation of 18F-
fluoride in the skull and improved the visualization of radioligand cerebral binding.
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However, disulfiram also affected the clearance of 18F-FCWAY and acid radioactive
metabolite and jeopardized the accuracy of the compartmental analysis (24).

A simple approach to minimize the effect of 18F-fluoride spillover onto the cerebellum is to
draw ROIs far from the cerebellar edge (10). However, some residual spillover from the
bone or mixing of regions with different 5-HT1A receptor concentrations cannot be
excluded. Alternatively, a different reference region could be identified.

Suitability of Cerebral White Matter for Quantification of 18F-FCWAY Nondisplaceable
Binding

The suitability of a region to provide an estimate of nondisplaceable binding can be inferred
from kinetic analysis or preblocking studies. Adequate fitting with a 1-tissue-compartment
model and negligible k3 and k4 values are consistent with a lack of significant concentration
of specific receptors. In preblocking studies, the baseline regional distribution volume is
compared with that obtained after the administration of a specific receptor cold ligand. If a
region is truly devoid of specific binding, the regional value should be comparable in the 2
conditions. Carson et al. performed preblocking 18F-FCWAY PET studies in monkeys (8).
The administration of unlabelled WAY-100635 in advance produced a significant reduction
in total binding in the cerebellum by about 44%. This result is inconsistent with the
assumption that the cerebellum is a region with only nondisplaceable binding sites for 18F-
FCWAY. Unfortunately, changes of the distribution volumes in white matter were not
evaluated (8). Admittedly, the lack of preblocking studies and of formal kinetic analysis,
that is, analysis of goodness of fit and calculation of rate constants, represents a significant
limit of this study.

Cerebral white matter would be expected to be suitable for the quantification of
nondisplaceable binding. White matter is composed of bundles of myelinated axons. The
myelin sheath, which is produced by glial cells, is a bimolecular layer of lipids interspersed
between protein layers. No significant expression of 5-HT1A or receptor messenger RNA
was found in glial cells (25–27).

Visual inspection of both carbonyl-11C-WAY-100635 (3,28) and 18F-FCWAY (8,10,24)
images shows low activity in the centrum semiovalis.

Finally, starting from about 25 min after the injection of 18F-FCWAY, the cerebral white
matter time–activity curve is similar to the cerebellar time–activity curve, and both time–
activity curves have characteristics consistent with negligible concentration of specific
binding sites, compared with the cortex.

Group Differences Using White Matter
We failed to show a substantial gain in statistical power using white matter. In TLE patients,
lower 5-HT1A receptor specific binding was detected in ipsilateral inferior temporal cortex,
contralateral fusiform gyrus, and contralateral amygdala using VWM but not VND (Table 1).
However, by comparing P values and effect sizes, it is evident that the lack of significant
group differences in these regions using BPF (10) is likely a false-negative finding. These
results are not unexpected given that regional values of specific binding are much greater
than those of nondisplaceable binding, independently of the reference region. Our findings
are consistent with results obtained with carbonyl-11C-WAY-100635, indicating no
substantial advantage in the detection of sex differences in the hippocampus using BPF-WM,
compared with using BPF (3).
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Comparison Between VWM and VND
We found lower VWM than VND. Although this difference was statistically significant, the
magnitude of the difference (14%) was low, and several factors could contribute to this
finding. Admittedly, smaller 18F-FCWAY distribution volume in white matter per se does
not constitute evidence of less specific binding. Because of the low parent accumulation in
these regions, differences in radioligand delivery, blood volume, radiometabolite
accumulation, spillover of 18F-fluoride onto the cerebellum, and partial-volume averaging
could contribute to this difference.

The lower peak of the white matter time–activity curve than of the cerebellar time–activity
curve likely reflects lower flow-mediated radioligand delivery. The lower peak of the
cerebellar white matter time–activity curve than of the whole cerebellum time–activity curve
was reported by Parsey et al. (3) and by Hirvonen et al. (4). Starting from about 25 min after
injection, the 2 time–activity curves had similar height and time dependence.

Group Differences in Nondisplaceable Binding
The absence of significant group differences in non-displaceable binding is a prerequisite for
determining that measured differences of interest reflect only specific binding. Such
differences can be assessed only in arterial line–based models, which are now favored less
than less invasive reference tissue models (21,29–32). However, when arterial line–based
models were used, significant group differences in nondisplaceable binding with 5-HT1A
tracers were reported. A higher VND (not corrected for fp) was found in healthy women than
in healthy men (3,33), whereas a lower uncorrected VND was found in depressed patients
than in healthy controls (5). A lower VND, after correction for fp, was previously reported in
these TLE patients (10,11). If a region is devoid of specific binding and fp drives the kinetics
of the tracer, group differences in nondisplaceable binding estimates might be expected in
values uncorrected for fp, but they should be canceled out after fp correction. These group
differences could be attributed to actual differences in 5-HT1A receptor availability,
nondisplaceable binding, blood volume, or acid corrections. For 18F-FCWAY, an additional
artificial cause might be the spillover of 18F-fluoride activity.

Choice of Binding Outcome
Previous PET studies with carbonyl-11C-WAY-100635 found that BPF is the most sensitive
binding outcome for the accurate quantification of 5-HT1A receptor availability (3,5,23,33).
On the basis of this finding and to account for group differences in VND, we had chosen BPF
as primary binding outcome (10,11). For 18F-FCWAY, the magnitude of nondisplaceable
binding is small, as evidenced by the low value of VND or VWM, compared with VT, in
cortical and limbic areas. Thus, VT primarily reflects specific binding. In this sample,
regional group differences detected with BPF were similar to those detected with VT/fp
without significant loss of statistical power (data not shown). Thus, if spillover of 18F-
fluoride onto the cerebellum is a concern and scientific evidence supporting the use of white
matter as an estimate of nondisplaceable binding is not sufficient, the small group
differences in nondisplaceable binding could be neglected and VT/fp could be used as
primary binding outcome in future studies in TLE patients with 18F-FCWAY (34).

Variability of VWM
The variability of VWM was higher than that of VND. Comparable %CV for cerebellar white
matter and whole cerebellum was detected by both Parsey et al. (3,33) and Hirvonen et al.
(4). Because of the higher specific binding of cortical regions and large interregion
variability, ultimately no variability is added to 18F-FCWAY binding potential
measurements.
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Cerebellum and TLE
In TLE patients, the use of cerebral white matter as reference region may be preferable
because of cerebellar atrophy. Epilepsy itself—and some antiepileptic drugs, particularly
phenytoin—may induce cerebellar structural change and hypometabolism on 18F-FDG PET
(35,36). These effects may be more severe in patients with long epilepsy duration and
uncontrolled seizures, who are most likely to have PET studies (35). Moreover, changes in
5-HT concentration in the cerebellum have been reported because of antiepileptic drugs and
the effects of uncontrolled epilepsy itself (37).

CONCLUSION
Using cerebral white matter, rather than the cerebellum, as an estimate of 18F-FCWAY
nondisplaceable binding, we found regional reductions of 5-HT1A receptor specific binding
in TLE patients, without loss of statistical power. These findings add to results obtained with
carbonyl-11C-WAY-100635 that support the use of white matter for the estimation of
nondisplaceable binding for 5-HT1A tracers in clinical studies and expand the emerging
topic of non-traditional reference regions.
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FIGURE 1.
Transverse MR and 18F-FCWAY distribution volume images passing through centrum
semiovalis and cerebellum in TLE patient. Negligible binding of tracer in cerebellar white
matter and centrum semiovalis and large spillover of 18F-fluoride activity onto cerebellum
were observed. Two 6-mm-diameter, circular ROIs used for calculation of VWM with
manual approach are displayed. 18F-FCWAY distribution volume image (V/fP) is scaled to
maximum of 80 mL/mL.
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FIGURE 2.
Representative time–activity curves from healthy control for white matter (○, 1.9 cm2),
cerebellum (▴, 4.2 cm2), and mesial temporal cortex ( , 2.8 cm2).
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FIGURE 3.
Estimation of 18F-FCWAY distribution volume in white matter (VWM) with extrapolation
method. Values for VWM are plotted vs. smoothed white matter mask (sWM). VWM values of
voxels with sWM between 0.986 and 0.995 (○) were fitted to straight line, and value at sWM
= 1.0 (●) was used as estimate of nondisplaceable binding.
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FIGURE 4.
Correlation between 18F-FCWAY distribution volume in white matter (VWM) and in
cerebellum (VND) in controls (○) and in TLE patients (●). For whole group, regression
equation was VWM = −0.10 + 0.99 · VND (r2 = 0.76; P < 0.05).
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