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Abstract
Modeling heartbeat variability remains a challenging signal-processing goal in the presence of
highly non-stationary cardiovascular control dynamics. We propose a novel differential
autoregressive modeling approach within a point process probability framework for analyzing R-R
interval and blood pressure variations. We apply the proposed model to both synthetic and
experimental heartbeat intervals observed in time-varying conditions. The model is found to be
extremely effective in tracking non-stationary heartbeat dynamics, as evidenced by the excellent
goodness-of-fit performance. Results further demonstrate the ability of the method to
appropriately quantify the non-stationary evolution of baroreflex sensitivity in changing
physiological and pharmacological conditions.

I. Introduction
Recently, point process probability models have been advocated for characterizing human
heartbeat intervals [1,2,3,4,5]. Unlike previous methods, the point process paradigm allows
to estimate instantaneous heart rate (HR) and HR variability (HRV), as well as specific
cardiovascular/cardiorespiratory functions such as respiratory sinus arrhythymia (RSA) or
baroreflex sensitivity (BRS). In order to track the non-stationary heartbeat dynamics, an
adaptive point process filtering approach has been proposed to trail the instantaneous model
parameters [2,4]. In this work, we propose a distinctive modeling perspective to tackle the
non-stationary nature of the heartbeat intervals as well as potential other physiological
covariates (such as blood pressure or respiration measures). The main feature of the
proposed algorithm is the inclusion of a linear regression on the mean of the point process
probability density by use of an autoregressive integrated moving average (ARIMA) model.
Such framework also allows for a newly defined differential BRS index. Notably, the new
index is conceptually similar to the time-domain “sequence method” [6,9,10], which has
been often used to measure the sensitivity of the change of blood pressure (BP) relative to
the change of R-R interval. However, more suitably in the presence of dynamic changes in a
non-stationary environment, our index provides an instantaneous BRS characterization at
arbitrarily small time resolutions.

The paper is organized as follows. We first present an overview of the point process
modeling paradigm, the new frequency analysis framework associated with the ARIMA
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model, and the definition of the BRS index. We then apply the proposed model to both
synthetic heartbeat series and experimental data recordings consisting of non-stationary
heartbeat intervals and systolic BP during a propofol induction of anesthesia protocol [11]
and a tilt-table protocol [1]. We demonstrate the noticeable improvement in model
goodness-of-fit while fitting highly non-stationary recordings. Additionally, we use these
examples to illustrate the ability of our new model to estimate the instantaneous differential
BRS index. Finally, we conclude the paper with some discussions.

II. A Probability Model for Heartbeat Intervals
Given a set of R-wave events {uj}j=1J detected from the electrocardiogram (ECG), let RRj =
uj−uj−1 > 0 denote the jth R-R interval. By treating the R-waves as discrete events, we
develop a point process model for the heartbeat interval. Assuming history beat dependence,
the waiting time t −uj (t > uj) until the next R-wave event can be modeled by an inverse
Gaussian model [1]:

where uj denotes the previous R-wave event occurred before time t, θ > 0 denotes the shape
parameter, and μRR(t) denotes the instantaneous R-R mean. It is worth pointing out that
when the mean μRR(t) is much greater than the variance, the inverse Gaussian can be well
approximated by a Gaussian model with a variance σRR

2(t) = μRR
3(t)/θ:

In point process theory, the inter-event probability p(t) is related to the conditional intensity

function (CIF) λ(t) by a one-to-one transformation: . The estimated CIF
can be used to evaluate the goodness-of-fit of the point process model for the heartbeat
intervals.

A. Instantaneous Indices of HR and HRV
Heart rate (HR) is defined as the reciprocal of the R-R intervals. For time t measured in
seconds, the new variable r = c(t −uj)−1 (where c = 60 s/min) can be defined in beats per
minute (bpm). By the change-of-variables formula, the HR probability p(r) = p(c(t −uj)−1)

is given by , and the mean and the standard deviation of HR r can be derived
[1]:

(1)

where μ̃ = c−1 μRR and θ̃ = c−1 θ. Essentially, the instantaneous indices of HR and HRV are
characterized by the mean μHR and standard deviation σHR, respectively.

Chen et al. Page 2

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2011 March 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



B. Modeling of Instantaneous Heartbeat Interval’s Mean
In general, the heartbeat interval can be modeled by Wiener-Volterra series expansion, using
previous R-R intervals and other physiological covariates (e.g., blood pressure or
respiration) as the input variables. Although inclusion of nonlinear or bilinear terms in
modeling is possible [3,5], in this paper we focus on the investigation on linear modeling
approaches.

1) AR Modeling—We can use the bivariate AR model to model the instantaneous mean
μRR(t) [3]:

(2)

where a0 compensates the nonzero mean effect of the R-R measurements, {RRt−i}i=1p

represents previous p R-R series prior to time t, and BPt−j denotes the previous jth systolic
blood pressure (BP) value prior to time t. The BP in (2) can be represented by the systolic
beat-to-beat BP values. Note that the AR coefficients {ai(t)} and {bj(t)} in the above equation
are time-varying, thus allowing to account for non-stationarity. However, when the R-R
series and/or BP series contain non-stationary dynamics not directly associated with the
cardiovascular control elicited oscillations (for example a linear increasing or decreasing
trend), the AR coefficients have to be updated to account for such trends, and their evolution
may track less effectively the non-stationarities of real interest.

2) ARIMA Modeling—In time-series (linear) modeling, it is a common practice to
“detrend” a time series by taking differences if the series exhibits undesired non-stationary
features. The autoregressive integrated moving average (ARIMA) process may provide a
suitable framework to achieve such goal from a modeling point of view [12]. Simply, the
original time series is applied by a difference operator (one or more times) until the non-
stationary trends are not observed in the final series of interest. Motivated by this idea, we
here define the “increment of R-R series” {δRRt−i}≡{RRt−i−RRt−i−1} and the “increment of
SBP series” {δBPt−j}≡{BPt−j−BPt−j−1}, and model the instantaneous heartbeat interval
mean by the following new equation:

(3)

Note that the a0(t) term in (2) has been replaced by RRt−1 in (3).

C. Adaptive Point Process Filtering
Let ξ = [{ai}i=1p,{bj}j=1p,θ]T denote the vector that contains all unknown parameters from the
new model (3), we can recursively estimate them via adaptive point process filtering [2]:
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where P and W denote the parameter and noise covariance matrices, respectively; and Δ=5

ms denotes the time bin size. Symbols  denote the first- and
second-order partial derivatives of the CIF w.r.t. ξ at time t = kΔ, respectively. The indicator
variable nk = 1 if a heart beat occurs in time ((k−1)Δ, kΔ] and 0 otherwise.

D. Goodness-of-fit Tests
The goodness-of-fit of the point process model is tested based on the time-rescaling theorem
[1,2]. Given a point process specified by J discrete events: 0 < u1 < …< uJ < T, define the

random variables  . Then the random variables zjs are
independent, unit-mean exponentially distributed. By introducing the variable of
transformation vj = 1−exp(−zj), then the vjs are independent, uniformly distributed within
the region [0, 1]. Let gj = Φ−1(vj) (where Φ(·) denotes the cumulative density function (cdf)
of the standard Gaussian distribution), then the gjs will be independent standard Gaussian
random variables. The Kolmogorov-Smirnov (KS) test is used to compare the cdf of the vj
against that of the random variables uniformly distributed in [0, 1]. The KS statistic
meausres the maximum deviation of the empirical cdf from the uniform cdf. To visualize the
KS plot, the vjs are sorted from the smallest to the largest value, then we plot values of the

cdf of the uniform density defined as  against the ordered vjs, and the 95% confidence

interval lines are defined by . When the model matches the data, the KS
plot shall fall within the 95% confidence bounds.

In addition, the autocorrelation function of the gjs, defined by

 , is computed. If the gjs are independent, they are also
uncorrelated; hence, ACF(m) shall be small (around 0 and within the 95% confidence

interval ) for all values of m.

III. Frequency Analysis for Differential BRS
In light of equation (3), we can derive the instantaneous BP→RR transfer function in the
feedback loop, which essentially relates to the differential BRS

(4)

Note that the new form of transfer function is reminiscent of the “sequence method” [6,9,10]
previously used to define the BRS. However, the sequence method employed a time-domain
batch method, while ours is a frequency-domain instantaneous method. We further assume
that the effect of time discretization is small such that the linear dependence between two

variables remains unchanged, i.e. . As expected, due to the difference
operator used in the time domain, the new AR coefficients {ai,bi} are more sensitive to the
“incremental changes”; consequently, in the frequency domain, |H(f,t)| would amplify the
baroreflex gain assessment (especially in the high-frequency range).
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IV. Data and Results
A. Simulation

We simulated the heartbeat R-R series (unit: ms) using a stationary linear Gaussian model
plus a linear increasing trend along time (for simplicity, we use only a univariate AR model
in simulation):

(5)

where α=0.001, and n(t) is a Gaussian noise process with zero mean and variance of 100. As
seen from the top panel of Fig. 1, the simulated R-R series has a linear increasing trend
(from ~800 ms to ~1200 ms) during a 6-min interval. The overall R-R series has a global
mean of 1000 ms and standard deviance of 110. The AR coefficients {ai} used to generate
the series were previously estimated from stationary experimental recordings. The estimated
instantaneous HR and HRV indices are shown in Fig. 1. The assessment of goodness-of-fit
for the new differential AR formulation (4) indicates that the model provides an excellent
characterization of the non-stationary R-R interval series (Fig. 1). Furthermore, the
differential regression model achieves a better KS statistic (0.059) than a model with
standard linear regression (0.072), although both models fall within the 95% confidence
intervals. Of note, the autocorrelation plot is also significantly improved by using the
differential regression, probably because the AR structure in the standard regression would
require a higher regressive order to capture the non-stationary nature of the beat intervals—
this can be confirmed by the oscillatory shape in the autocorrelation plot. Overall, this
example illustrates how the model perspective (i.e., the ARIMA modeling) and the
algorithm perspective (i.e., point process adaptive filtering) are equally important for
tracking non-stationarities. An inappropriately chosen model (even empowered by adaptive
point process filtering) would inevitably lead to unsatisfactory characterization of particular
non-stationary dynamics in the heartbeat interval data.

B. Experimental Data: Induction of General Anesthesia
We analyzed the experimental recordings from a general anesthesia experiment. The
experimental protocol was approved by the Massachusetts General Hospital (MGH)
Department of Anesthesia and Critical Clinical Practices Committee, the MGH Human
Research Committee and the MGH General Clinical Research Center, and has been reported
previously [3,11]. Briefly, subjects were delivered several concentration levels of propofol
anesthetic drug (0.0, 1.0, …, 5.0 µg/ml) administered by anesthesiologists. Each epoch
lasted about 15 minutes.

In examining the data, we have observed that upon propofol administration, the
physiological measurements exhibit highly non-stationary dynamics (as opposed to the
awake baseline steady state), which brings in the challenge of correctly modeling these data
while simultaneously assessing cardiovascular control. Here, we consider only two
experimental epochs during induction of anesthesia (level-1 propofol concentration) to
illustrate our model. The experimental data recordings from two subjects are shown in Fig.
2. The model parameters in (3) are initialized by fitting a bivariate AR model with a least-
squares method on the first 100 samples. The model order p is chosen from 4 to 8 and the
final optimum order is chosen according to the Akaike information criterion (AIC). The
estimated instantaneous HR, HRV, and BRS indices from two subjects are shown in Figs. 3
and 4, along with the KS plot and autocorrelation plot. As seen, the KS plots are almost
aligned with 45° line, indicating a nearly perfect model fit.
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C. Experimental Data: Tilt-Table
Finally, we considered R-R intervals and SBP recordings, from a protocol where each
subject underwent a few cycles of “rest” and “tilt” posture conditions (details of the “tilt-
table” protocol can be found in [1]). For demonstration purpose, we analyzed two
representative subjects (#1 and #4). As an illustration, Figure 5 shows the estimated
instantaneous indices from Subject #1 (only 5 cycles are shown). As seen, the point process
filter tracks the instantaneous differential BRS with fluctuating trend similar to R-R
intervals, i.e. decreasing during tilt and increasing back to baseline level as the subject
returned to supine position. For statistical analysis, we averaged the differential BRS
estimates (HF range) along the “rest” and “tilt” epochs (values are shown in Table I).
Notably, comparing the tilt epochs with the rest epochs, the mean differential BRS is lower,
in agreement with consolidated previous findings in the literature [7,8]. As further
comparison, we also computed the BRS using the sequence methods (one value for each
epoch, as the sequence method cannot perform an instantaneous assessment). The slope of
the linear interrelation between SBP and the next R-R interval is calculated when the
correlation coefficient is at least 0.7 (violation of this condition will inevitably make the
slope estimate inaccurate). As seen from the table, the significant decrease in differential
BRS from rest to tilt are confirmed by both methods, with the point process measure
providing a more accurate representation in terms of both timescale and methodology.

V. Summary and Discussion
We propose a novel differential autoregressive modeling approach within a point process
probability framework for analyzing R-R interval and blood pressure variations. In testing
the proposed model as applied to synthetic and experimental data in highly non-stationary
conditions, the model is found to be greatly effective in tracking non-stationary heartbeat
dynamics, as evidenced by excellent goodness-of-fit performance. In addition to producing
optimal KS statistics, the new model also includes the computational advantage of allowing
for lower autoregressive orders, as the incremental series exhibit more stationary features.
The differential BRS assessment proves as a valid instantaneous characterization at
arbitrarily small time resolutions Overall, the new formulation allows for more precise
dynamic measures in a highly non-stationary environment, and provides one further
advancement towards potential realtime indicators for ambulatory monitoring and
instantaneous assessment of autonomic control in clinical practice.
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Figure 1.
Simulated R-R interval series (top panel, red trace) and the estimated instantaneous indices,
as well as the KS plots and autocorrelation plots obtained from two models (Eqs. 3 and 4)
for the instantaneous R-R mean. The KS statistic is improved from 0.072 (old model, red
curve) to 0.059 (new model, blue curve).
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Figure 2.
Two experimental R-R interval series and SBP series (left panels) from two recording
epochs during level-1 propofol concentration. Their corresponding incremental series are
also shown at the right panels. In subject 13, R-R series has a clear increasing trend. In both
subject 13 and subject 5, the SBP series has a clear decreasing trend.
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Figure 3.
The estimated instantaneous indices from the data of subject 13 and the associated KS and
autocorrelation plots. The KS statistic is improved from 0.0681 (old model, red curve) to
0.0152 (new model, blue curve).
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Figure 4.
The estimated instantaneous indices from the data of subject 5 and the associated KS and
autocorrelation plots. The KS statistic is improved from 0.0893 (old model, red curve) to
0.0513 (new model, blue curve).
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Figure 5.
The estimated instantaneous indices from one subject from the tilt-table data set.
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Table 1

Comparison of the differential BRS estimate in the “rest” and “tilt” epochs. The mean and SD statistics are
computed by averaging all epochs for each subject.

our method (HF) sequence method

Subject #1 Subject #4 Subject #1 Subject #4

rest 8.54 ± 2.88 5.36 ± 1.35 15.87 ± 6.36 7.82 ± 2.07

tilt 5.76 ± 2.06 4.65 ± 0.99 3.70 ± 0.51 3.28 ± 0.86
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