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High-throughput tools for nucleic acid characterization
now provide the means to conduct comprehensive anal-
yses of all somatic alterations in the cancer genomes.
Both large-scale and focused efforts have identified new
targets of translational potential. The deluge of informa-
tion that emerges from these genome-scale investigations
has stimulated a parallel development of new analytical
frameworks and tools. The complexity of somatic geno-
mic alterations in cancer genomes also requires the de-
velopment of robust methods for the interrogation of the
function of genes identified by these genomics efforts.
Here we provide an overview of the current state of can-
cer genomics, appraise the current portals and tools for
accessing and analyzing cancer genomic data, and dis-
cuss emerging approaches to exploring the functions of
somatically altered genes in cancer.

The development of powerful and scalable methods to
analyze nucleic acids has transformed biological inquiry
and has the potential to alter the practice of medicine
(Lander 1996; Collins et al. 2003). The application of
such technologies, together with powerful computational
methods in human disease and animal model systems,
has facilitated the study of both normal and disease-
affected tissues in a manner previously not possible. In-
deed, the connection between basic inquiry and potential
clinical translation has never been more intimate.

This convergence is particularly evident in cancer,
a complex multigenic disease characterized by a diversity
of genetic and epigenetic alterations (Vogelstein and
Kinzler 1993; Weir et al. 2004; Jones and Baylin 2007;
Stratton et al. 2009). Early cancer genome analysis has
already led to new targets for cancer therapy and new
insights into the relationship of specific genetic muta-
tions and clinical response, as well as new approaches
useful for diagnosis and prognosis. These initial efforts
have motivated large-scale coordinated cancer genomic
efforts to obtain complete catalogs of the genomic alter-
ations in specific cancer types (The Cancer Genome Atlas
[TCGA], http://cancergenome.nih.gov; Hudson et al.

2010). Moreover, the current pace of technological ad-
vances make it increasingly clear that the ability to
perform prospective and comprehensive molecular pro-
filing of tumors will become commonplace and enable
genome-informed personalized cancer medicine.

However, the bottlenecks along this path are formi-
dable and numerous. For one, these large-scale genome
characterization efforts involve the generation and in-
terpretation of data at an unprecedented scale, which has
brought into sharp focus the need for improved informa-
tion technology infrastructure and new computational
tools to render the data suitable for meaningful analyses.
Moreover, exploiting this information to develop new
therapeutic strategies depends on further biological in-
sights derived from understanding the functional conse-
quences of such genomic alterations. Thus, it is also clear
that new approaches that permit the efficient validation
of genomic data are required as a first step in distinguish-
ing mutations responsible for disease pathogenesis from
other mutations that are the consequence of genomic
instability; defining genes involved in cancer initiation,
progression, or maintenance; and identifying the optimal
ways to exploit this information therapeutically.

In this review, we provide an overview of the current state
of cancer genomics, describe the types of data being gen-
erated and where they can be accessed, and discuss recent
progress in developing tools, models, and methods for
analysis of gene functions in cancer, which is the requisite
next step in the translation of cancer genome information.

State of cancer genomics

Nearly all cancer genomes contain many nucleotide se-
quence changes compared with the germline of the can-
cer patient (Vogelstein and Kinzler 1993; Stratton et al.
2009). These variations include the genomic alterations
that cause or promote cancer, often referred to colloqui-
ally as ‘‘drivers,’’ as well as alterations present in the
cancer genome but without obvious advantage to the can-
cerous cells when they occurred, referred to as ‘‘passen-
gers’’ (Davies et al. 2005). The major known somatic
alterations in the cancer genome include nucleotide sub-
stitution mutations and small insertion/deletions (indels),
copy number gains and losses, chromosomal rearrange-
ments, and nucleic acids of foreign origin (e.g., oncogenic
viruses) (Weir et al. 2004; Chin and Gray 2008; Stratton
et al. 2009). In addition, alterations in the epigenetic
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mechanisms that regulate gene expression occur in most
cancers; this subject has been covered elsewhere (Jones
and Baylin 2002, 2007) and is not treated in detail here.
All of these acquired changes occur in the setting of
germline variations of copy number and nucleotide se-
quence, which may influence the rate of occurrence
and/or the effects of somatic genetic alterations (Balmain
et al. 2003). Moreover, although somatic mutations occur
in tumor cells, it is increasingly clear that the tumor
microenvironment mediates important heterotypic sig-
nals between the tumor and stromal cells for growth and
survival (Hanahan and Weinberg 2000). In this respect,
global gene expression encompassing the full tran-
scriptome—including coding messenger RNAs (mRNAs)
(Schena et al. 1995) and noncoding microRNAs (miRNAs)
(Lu et al. 2005)—of the complex tumor tissue reflects the
panoply of somatic and epigenomic alterations, together
with the state of cell differentiation of the tumor and the
admixture of noncancerous cells. Hence, transcriptional
profiling can define a unique gene expression signature
for each tumor that may prove useful for classification
and prognosis (Golub et al. 1999; Alizadeh et al. 2000;
van’t Veer et al. 2002).

Evolution of cancer genomics

Over the past decade, technologies for detection of each
of these types of alterations have been developed and
applied to analyses of the cancer genomes. The initial
studies focused on a single technology platform and/or
type of genetic alteration. For example, high-resolution
copy number profiling has led to the discovery of novel
oncogenes in ovarian cancer (Nanjundan et al. 2007),
melanoma (Garraway et al. 2005; Kim et al. 2006; Scott
et al. 2009), lung carcinoma (Weir et al. 2007; Bass et al.
2009), and colon carcinoma (Firestein et al. 2008), and
tumor suppressor genes in leukemias (Mullighan et al.
2007, 2008). Similarly, the application of directed se-
quencing of specific classes of genes has identified novel
genes involved in specific types of cancer (Davies et al.
2002; Lynch et al. 2004; Paez et al. 2004; Pao et al. 2004;
Samuels et al. 2004; Stephens et al. 2004; Baxter et al. 2005;
James et al. 2005; Kralovics et al. 2005; Levine et al. 2005;
Zhao et al. 2005; Pollock et al. 2007; Chen et al. 2008; Dutt
et al. 2008; George et al. 2008; Janoueix-Lerosey et al. 2008;
Mosse et al. 2008). These observations underscore the
contribution of different types of somatic genome alter-
ations in different subsets of cancer, and that comprehen-
sive profiling of the cancer genome will require interroga-
tion of different types of genome alterations in diverse
cancer types and subtypes.

As technologies to perform comprehensive profiling of
the cancer genome progressed, different technology plat-
forms from microarrays to capillary sequencing were
brought together on unified sample sets (The Cancer
Genome Atlas Network 2008; S Jones et al. 2008; Parsons
et al. 2008). For example, Velculescu and colleagues (S
Jones et al. 2008) integrated sequencing with expression
and copy number profiling to identify IDH1 mutations in
glioblastomas (GBM). The Cancer Genome Atlas pilot

project applied targeted sequencing, copy number, and
expression profiling, in addition to epigenetic assessment
to a large number of stringently qualified tumor samples to
define core pathways of deregulation in GBM (The Cancer
Genome Atlas Network 2008) and discover genomic and
epigenomic definition of molecular subtypes (Noushmehr
et al. 2010; Verhaak et al. 2010). Indeed, global com-
prehensive analysis with complementary genome an-
notation tools in statistically powered high-quality
sample cohorts is a key aspect of the current consensus
standard for large-scale cancer genomics efforts under
the International Cancer Genome Consortium (ICGC)
(Hudson et al. 2010), now encompassing >20 projects
from 14 countries (Table 1).

Second-generation sequencing technologies

During the past several decades, continuous improve-
ments in genomic technology have led to a series of
breakthroughs in our understanding of cancer genetics.
The advent of second-generation sequencing technolo-
gies and their applications to cancer have already accel-
erated the pace of genome discovery, as summarized in
recent reviews (Shendure and Ji 2008; Meyerson et al.
2010). During the last 5 years, a variety of array-based
methods have been developed, including picotiter plate
pyrosequencing (Margulies et al. 2005; Wheeler et al.
2008), single-nucleotide fluorescent base extension with
reversible terminators (Bentley et al. 2008), and ligation-
based sequencing (Shendure et al. 2005; Drmanac et al.
2010). All of these second-generation methods involve
the amplification of individual DNA molecules on arrays
or beads prior to massively parallel sequence generation.

The throughput limitation and cost of first-generation
Sanger-based capillary sequencing technology had, until
now, dictated two predominant study designs for cancer
genome discovery: one in which large numbers of sam-
ples were analyzed but only a small number of genes were
interrogated (Greenman et al. 2007; The Cancer Genome
Atlas Network 2008; Dalgliesh et al. 2010; Kan et al.
2010), versus a second in which all coding genes were
sequenced but in only a handful of discovery samples,
followed by targeted sequencing of candidates in an ex-
tension cohort comprised of an independent set of sam-
ples (Sjoblom et al. 2006; Wood et al. 2007; S Jones et al.
2008; Parsons et al. 2008). Second-generation sequencing
technology enables the complete sequencing of entire
genomes in a time- and cost-efficient manner. Today, a
single sequencing run of an Illumina HiSeq 2000 se-
quencer can generate ;200 gigabases of sequence data
in 8 d—an output that easily exceeds the annual sequenc-
ing production of a genome sequencing center a few years
ago (http://www.genome.gov/10001691). This astronom-
ical increase in sequencing capacity, along with the rapid
reduction in sequencing cost (which is faster than the
doubling of semiconductor/computer capacity every 18
mo, known as Moore’s law) (Pettersson et al. 2009), has
completely transformed cancer genome discovery science.

Second-generation sequencing offers several advan-
tages over previous technologies. It has the power to
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identify mutations in highly admixed samples by virtue
of deep coverage (Thomas et al. 2006), overcoming a major
limitation of Sanger-based capillary sequencing technol-
ogy. Whereas previous technologies could query one
modality of cancer genome alteration (mutation, copy
number, or expression) at a time, second-generation se-
quencing analyses permit the identification of all such
alterations simultaneously. For example, one can obtain
high-resolution and accurate measurements of somatic
copy number alterations (SCNAs) from whole-genome
sequencing (Campbell et al. 2008; Chiang et al. 2009), and
the same data can identify nucleotide substitutions. Fur-
thermore, second-generation sequencing offers structural
information never before available from other genomic
platforms, thus enabling for the first time global assess-
ment of chromosomal rearrangements in cancer (Campbell
et al. 2008; Mardis et al. 2009; Stephens et al. 2009; Ding

et al. 2010a; Pleasance et al. 2010a,b). Similar approaches
can be applied to cDNA, also known as RNA-seq, which
permits accurate digital measurements of gene expression
across the whole transcriptome. Importantly, this latter
approach provides the means to measure known, and
discover novel, splice variants as well as aberrant tran-
scripts generated by somatic structural genome rear-
rangements (Maher et al. 2009a,b; Berger et al. 2010;
Palanisamy et al. 2010). This type of data will undoubt-
edly reveal new insights into the regulation of gene
transcription and RNA processing.

In the near future, sequencing-based approaches will be
applied to nearly all aspects of cancer genome character-
ization. For example, current TCGA projects involve the
comprehensive sequencing of all protein-coding genes
and transcripts by hybrid capture/whole-exome sequenc-
ing in hundreds of tumor- and germline-matched pairs,

Table 1. ICGC cancer genome projects, committed or active, including 37 projects in 12 countries and two European consortia as of
January 2011

Lead jurisdiction Organ sites Tumor subtypes

Australia
Ovary Serous cystadenocarcinoma

Pancreas Pancreatic ductal adenocarcinoma

Canada
Pancreas Pancreatic ductal adenocarcinoma
Prostate Prostate adenocarcinoma

China Stomach Intestinal- and diffuse-type gastric cancer

European Union/France Kidney Renal cell carcinoma
European Union/United Kingdom Breast ER-positive, HER2-negative breast cancer

France
Breast HER2-amplified breast cancer
Liver Hepatocellular carcinoma secondary to alcohol and adiposity
Prostate Prostate adenocarcinoma

Germany

Blood Germinal center B-cell-derived lymphoma

Brain Medulloblastoma and pediatric pilocytic astrocytoma

Prostate Early onset prostate cancer

India Oral cavity Gingivobuccal carcinoma
Italy Pancreas Rare pancreatic subtypes, including enteropancreatic endocrine

tumors and exocrine tumors

Japan Liver Virus-associated hepatocellular carcinoma
Mexico Multiple Common tumor types in Mexico

Spain Hematopoietic Chronic lymphocytic leukemia with mutated and unmutated IgVH

United Kingdom

Bone Osteosarcoma/chondrosarcoma/rare bone cancers

Breast Triple negative/lobular/other breast cancers

Hematopoietic Chronic myeloid disorders, including myelodysplastic syndrome,
myeloproliferative neoplasms, and other chronic myeloid
malignancies

United States (TCGA)

Brain GBM and low-grade gliomas
Breast Ductal and lobular breast adenocarcinomas
Stomach Intestinal-type gastric adenocarcinoma
Liver Hepatocellular carcinoma
Intestine Colon and rectal adenocarcinomas
Gynecologic Serous ovarian adenocarcinoma; endometrial carcinoma; cervical

adenocarcinoma; and squamous carcinomas
Prostate Prostate adenocarcinoma
Bladder Nonpapillary bladder cancer
Head and neck Head and neck squamous cell and thyroid papillary carcinomas
Hematopoietic Acute myeloid leukemia
Skin Metastatic cutaneous melanoma
Lung Non-small-cell lung cancer, adenocarcinoma, and squamous subtypes
Kidney Renal clear cell and renal papillary carcinomas
Pancreas Pancreatic adenocarcinoma

For updated information, see http://www.icgc.org and http://cancergenome.nih.gov.
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complemented by deep sequencing of the whole genomes
(WGS) (at >30-fold coverage) in 10% of the samples.
Given the rate at which sequencing capacity is increasing
and cost is shrinking, it is highly likely that deep-coverage
WGS will soon be applied to the majority of the discovery
samples. In parallel, efforts to use low-coverage sequenc-
ing to conduct structural and copy number analyses are
likely to replace array-based technologies in the near
future. Similar study designs are being adopted by ICGC
projects.

Accessing cancer genomics data

Although the data generated from these large-scale can-
cer genome characterization efforts have been and will
continue to be made publicly available, accessing and
using these cancer genome data remains a major chal-
lenge. In this section, we attempt to provide a framework
for nongenomic noncomputational cancer biologists to
become familiar with what data are available and where
to download or query each of the major genomic data
types. Specifically, we describe briefly the technology
platform(s) used to generate each data type, followed
by common public sites where cancer genome data can
be downloaded and summarized results can be queried.
We also point out basic open source analytical tools or
computational algorithms for manipulation and analysis
of cancer genome data. However, it should be noted that
the tools described here are illustrative examples, rather
than a complete survey of sites, data sources, or analytical
tools, as these are rapidly evolving.

Data structure and data access policies

Generally speaking, cancer genomic data can be divided
into (1) raw, (2) processed or normalized, (3) interpreted,
and (4) summarized categories based on the degree of
computational modification and integration applied to
the data. These categories are sometimes referred to as
Level I–Level IV data. Raw, processed, and interpreted
(Level I–III) data apply to individual samples, while sum-
marized (Level IV) data refer to analyses across sample
sets. For example, normalized or processed data represent
data that have been assigned to a genome reference, such
as alignment of sequences to reference genome or map-
ping of probes to chromosomal positions. For microarray-
based platforms, normalization refers to combining mul-
tiple probes measuring a single genomic locus to a single
value and transforming the measured intensities such
that the values can be compared between experiments;
examples of normalization steps include correction for
background noise and total brightness. Interpreted data
represent meaningful biological results extracted from
each specimen, such as genome-wide copy number pro-
file, where copy number breakpoints have been statisti-
cally defined, or gene expression profiles, where individ-
ual gene expression levels have been collated from
multiple loci across the gene. Summarized (Level IV) data
represent analysis of interpreted data across a cohort of
samples, where statistical methodologies can be applied

to define significant events or molecular subtypes. This
category of analyzed data is often presented as the
findings of a genomic study in a publication. Major sites
where these data sets can be accessed are listed in Table 2
and are described in some detail below.

Although cancer genomic data from various large-scale
projects—including the Cancer Genome Project (CGP) at
Wellcome Trust Sanger Institute (http://www.sanger.ac.
uk/genetics/CGP), TCGA (http://cancergenome.nih.gov/
dataportal), and ICGC (http://dcc.icgc.org)—are publi-
cally available, for protection of patient privacy, access
is either open or controlled. Prior to second-generation
sequencing, most raw data and some type of normalized
data (e.g., single nucleotide polymorphism [SNP] profiles)
are subjected to controlled-access restriction, while inter-
preted and summarized data are openly accessible. With
the transition to second-generation sequencing data, it is
likely that raw and processed data, and possibly some
interpreted data, will fall under the ‘‘controlled-access’’
category, since the level of resolution may provide the
means to identify specific patients. Controlled-access
data are restricted to qualified researchers (with certifi-
cation by host institution) with a specific proposal of data
use that is deemed compliant with the project’s data
access policy, typically requiring preapproval by the in-
stitutional review board of the requesting investigator.
For TCGA, access to controlled data is obtained through
dbGAP (http://www.ncbi.nlm.nih.gov/gap); for ICGC
projects, access is obtained through its Data Access
Compliance Office (http://www.icgc.org/daco). In the
case of the Sanger Institute’s Cancer Genome Project,
genotyping and first-generation sequencing traces can be
requested at its data archive (http://www.sanger.ac.uk/
genetics/CGP/Archive), and its second-generation sequenc-
ing data must be obtained through the European Genome-
Phenome Archive (EGA, http://www.ebi.ac.uk/ega). At
present, downloading raw data from these sources is a
technically and logistically challenging task that requires
significant network infrastructure to handle the size of the
data files.

Nucleotide sequence mutations

Nucleotide substitutions and small insertions/deletions
are common mechanisms for activating oncogenes and
inactivating tumor suppressor genes. The initial develop-
ment of methods to determine the nucleotide sequence
of DNA in 1975 (Sanger and Coulson 1975) led to the
discovery of cancer-specific somatic mutations in the
RAS gene family in the early 1980s (Parada et al. 1982;
Shimizu et al. 1983; Santos et al. 1984; Bos et al. 1985) and,
later, mutations in human tumor suppressor genes (Friend
et al. 1986; Hahn et al. 1996). Subsequently, the invention
of automated sequencing instruments (Hunkapiller et al.
1991) led to the initial sequencing of the human genome
(Lander et al. 2001; Venter et al. 2001), and then to sys-
tematic efforts to sequence gene families (Davies et al.
2005; Stephens et al. 2005; Greenman et al. 2007). These
latter efforts identified several new oncogene mutations
that are targets for cancer therapy—most notably the
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BRAF and EGFR protein kinase genes and the PIK3CA
phosphatidylinositol kinase gene (Davies et al. 2002;
Lynch et al. 2004; Paez et al. 2004; Pao et al. 2004;
Samuels et al. 2004)—leading to approved and in-devel-
opment targeted therapeutics for cancers.

For sequencing data, the normalized data category
represents sequencing reads that have been aligned to
a specific version of the human reference genome. As the
reference genome is refined and filled in with each new
version, mapping data may change; thus, researchers
should pay attention to and always note the specific
reference genome build used in an analysis. Raw sequenc-
ing reads from both Sanger-based capillary sequencing
and second-generation platforms are stored at NCBI
Sequence Read Archive and dbGAP (see Table 2). Access
to these sequencing data is restricted and requires data
use approval by the appropriate data access committee.
The interpreted category for mutation data includes the
sequence variant calls, the types of sequence variants
(such as synonymous versus nonsynonymous or mis-
sense versus indel), and the location of the nucleotide
change in relation to annotated gene structure; e.g., in-
tron versus exon and consequent amino acid changes.
One aspect of this analysis includes an annotation of
whether such sequence variants are reported in dbSNP,
a database representing likely common SNPs. If not found
in dbSNP and not observed in matched germline-derived
sequences, such variants are generally considered so-
matic in nature. Putative variants should be verified
(e.g., result reproduced in an independent assay using
the same technology platform) or validated (e.g., result
observed by an orthogonal method) by methods including
genotyping. For TCGA projects, all verified, validated, or
putative somatic mutations and associated descriptions
discovered in a sample or a cohort of samples can be
found in the .MAF file, which is available on the TCGA
data portal (http://cancergenome.nih.gov/dataportal).
Similar data files can be found at the ICGC Data Co-
ordination Center (http://dcc.icgc.org) under the Down-
load Data page. New file formats will likely emerge in the
near future to support the increasing applications of next-
generation sequencing platforms for data generation.

A key downstream (Level IV) analysis of verified or
validated mutations is the determination of significance,
accounting for the background mutation rate and size as
well as composition of a gene. Several methodologies
have been developed for this purpose (Getz et al. 2007;
Greenman et al. 2007). For example, in the MutSig
algorithm, a P-value is calculated for each gene, testing
the hypothesis that all of the observed mutations in that
gene are a consequence of random background mutation
processes, taking into account the list of bases that are
successfully interrogated by sequencing (i.e., ‘‘covered’’)
and the list of observed somatic mutations, as well as the
length and composition of the gene in addition to the
background mutation rates in different sequence con-
texts. As in analyses of other genomic data, such calcu-
lations must then be corrected for multiple hypothesis
testing (see below). Using these types of significance
analyses, the majority of the somatic mutations found

in cancer genomes is likely to represent passenger events
and only a minority is likely drivers. For example, of the
453 validated nonsilent mutations in GBM scattered
across 223 genes, only eight genes were considered having
higher than background mutation frequency, suggestive
of positive selection pressure (The Cancer Genome Atlas
Network 2008). However, it is worth noting that, as for
any statistical test, the lack of statistical significance by
MutSig or similar analyses does not preclude true cancer
relevance, as, relatively speaking, the number of samples
having been adequately sequenced is still low. Moreover,
computational algorithms for mutation calling and sta-
tistical frameworks for significance calculation are still
being developed and refined.

Beyond statistical analyses, there are various theoreti-
cal and computational models designed to predict the
likely functional consequences of specific nucleotide
mutations, particularly for mutations in coding genes.
These models are often based on the impact of specific
amino acid substitutions on protein structure or known
functional domains or evolutionarily conserved regions.
For example, the PolyPhen (for polymorphism phenotyp-
ing) tool predicts the possible impact of an amino acid
substitution on the structure and function of a protein
using a variety of structural and chemical parameters in
addition to evolutionary conservation (Sunyaev et al.
2001; Ramensky et al. 2002). Indeed, a recurring theme
in analysis of genomic data is the leverage of evolutionary
information. MutationAssessor (Reva et al. 2007) is a re-
cently published algorithm for predicting potential func-
tional impact of a sequence mutation based heavily on
the assumption that if a highly conserved residue is
changed to a different residue type, the change is pre-
sumed to have high functional impact on the function of
the affected protein. By analyzing aligned sequence families
of paralogous and orthologous proteins within the human
genome and across many other species, this algorithm
calculates the functional impact (FI) score for a mutation.
Both of these tools are Web accessible (http://genetics.bwh.
harvard.edu/pph; http://mutationassessor.org) and offer an
intuitive and easy-to-use query interface as well as a batch
processing feature. With MutationAssessor, in addition to
the calculated FI score for each variance, users can inspect
the placement of mutations in a multiple sequence align-
ment relative to amino acid residues that are conserved
globally or in a specific subfamily, as well as observe the
consequences of the residue change in an interactive
three-dimensional protein structure. Other examples of
prediction algorithms include SIFT, CanPredict, and
CHASM (Ng and Henikoff 2001; Kaminker et al. 2007;
Carter et al. 2009; Adzhubei et al. 2010). In the end,
beyond statistical analysis or the prediction of functional
impact, the relevance of any mutational event to human
cancer will require functional validation (see below).

The COSMIC (Catalog of Somatic Mutations in Can-
cer) site is the single most comprehensive source of
curated analyzed somatic mutation data in cancers de-
veloped and maintained by the Cancer Genome Project at
the Wellcome Trust Sanger Institute (Futreal et al. 2004;
Forbes et al. 2008). COSMIC is an open source, easily
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accessible, and searchable database containing >140,000
somatic mutations of 18,000+ genes in >550,000 tumor
samples curated from 2.8 million experiments (COSMIC
version 49, http://www.sanger.ac.uk/genetics/CGP/cosmic;
Forbes et al. 2011). While it clearly provides a valuable
source of collated mutation data in human cancers, users
should also be cognizant of the fact that there is likely
curational bias, as in any database of this type.

For germline cancer-associated mutations, no similar
effort exists to collect such mutations, but the Online
Mendelian Inheritance in Man (OMIM, http://www.ncbi.
nlm.nih.gov/omim; McCusick 1998) provides an excel-
lent literature summary regarding each major familial
cancer gene and susceptibility loci.

SCNAs and structural rearrangements

Cancer genomes are highly disordered compared with
normal genomes, with extensive changes in chromosome
structure and copy number. The SCNAs found in cancer
include whole-chromosome or regional alterations span-
ning part to whole arms of a chromosomes, as well as
focal events involving one or a few genes. The develop-
ment of array-based comparative genomic hybridization
using bacterial artificial chromosomes (Hodgson et al.
2001; Cai et al. 2002), cDNA (Pollack et al. 1999), oligo-
mers (O’Hagan et al. 2003; Brennan et al. 2004), and SNP
arrays (Lindblad-Toh et al. 2000; Mei et al. 2000; Bignell
et al. 2004; Zhao et al. 2004) has enabled systematic
analyses of the cancer genome and defined many new
recurrent SCNAs in cancer (Beroukhim et al. 2010). To
date, the major CNAs linked to cancer are somatic changes,
although many germline copy number variations are found
in human populations (Sebat et al. 2004; Redon et al.
2006). Further work is needed to determine the role of
germline copy number aberrations in cancer.

Most of the available genome-wide high-resolution
copy number profiling data were generated on either
Agilent or Affymetrix microarray platforms. Performance
of these various platforms has been compared (Brennan
et al. 2004; Lai et al. 2005, 2008; Willenbrock and Fridlyand
2005) and used comparatively on the same sample cohort
by TCGA during its pilot phase (The Cancer Genome
Atlas Network 2008). Raw data for copy number are probe-
level signals, whereas processed data are the results
of normalization, calculation of tumor-to-normal copy
number ratio, and mapping to chromosomal positions.
Interpreted data generally contain segmented copy number
profiles where breakpoints along the chromosomes have
been defined in each individual tumor using segmen-
tation methods such as circular binary segmentation
(CBS) (Venkatraman and Olshen 2007),GLAD (Hupe et al.
2004), and others (Picard et al. 2005; Wang et al. 2005;
Day et al. 2007; Ben-Yaacov and Eldar 2008). Recent
methods for measuring and determining segments of
absolute allele-specific copy number from SNP arrays
provide a more accurate description of allelic gains and
losses and loss of heterozygosity in cancer genomes
(LaFramboise et al. 2005; Bengtsson et al. 2010; Greenman
et al. 2010; Van Loo et al. 2010).

When a cohort of segmented copy number profiles is
analyzed together, several methodological tools are avail-
able to define the Level IV summarized data, where
significantly altered regions are defined (by specifying
the boundaries of ‘‘peaks’’ and significance). GISTIC is
a popular algorithm based on statistical considerations
(Beroukhim et al. 2007), allowing users to define the most
significant regions and peaks; GISTIC works most ro-
bustly in large sample cohorts. RAE uses a similar meth-
odology (Taylor et al. 2008). GTS (Wiedemeyer et al. 2008)
provides independent measures of recurrence frequency
and focality; the latter can be a strong indicator for
relevance when sample size is small. For those with
basic R programming skills, cghMCR and CNTools are
two Bioconductor packages (http://www.r-project.org;
Gentleman et al. 2004) available for copy number data
analyses. The former provides a fast and platform-in-
dependent approach to identifying and visualizing altered
regions, while the latter enables the conversion of seg-
mented copy number profiles into a matrix structure to
allow further downstream analyses. It should be noted
that most of these algorithms are built using the preva-
lence and shape (e.g., focal and high amplitude vs. flat and
broad) of a numerical copy number aberration to discrim-
inate likely target(s) at the peaks from passengers. Al-
though this framework has led to identification of new
cancer genes that have been experimentally validated,
next-generation sequencing is beginning to provide in-
formation on sequence-level structures underlying these
numerical copy number aberrations. These emerging data
will provide much finer details of structural rearrange-
ments in addition to simple numerical changes such as
duplication or amplification or deletion. Such new in-
sights will likely lead to different or improved algorithms
to identify candidate targets of these genomic alterations.

The major repositories for somatic copy number data in
cancer include Gene Expression Omnibus (GEO) (Edgar
et al. 2002; Barrett et al. 2009), Tumorscape (Beroukhim
et al. 2010), TCGA (http://cancergenome.nih.gov), COSMIC
(Forbes et al. 2008), and Oncomine (Rhodes et al. 2004,
2007) (Table 3). The GEO site contains predominantly raw
data, while COSMIC and Oncomine emphasize normal-
ized and interpreted data. All three categories of data are
available from the TCGA DCC as well as at Tumorscape.
For systematic queries of analyzed summary data on
CNAs in human cancers, Tumorscape is particularly use-
ful, as it provides segmented data for >3000 high-resolu-
tion copy number profiles from SNP arrays in a format
that can be visualized with the interactive Integrative
Genome Viewer (http://www.broadinstitute.org/igv).
COSMIC also contains copy number data annotated on
the gene level in addition to raw data download at the
CGP archive, while Oncomine has recently begun to
curate copy number profile data sets in addition to tran-
scriptome data sets.

Before the advent of second-generation sequencing
(Maher et al. 2009a,b; Berger et al. 2010; Palanisamy
et al. 2010), conventional cytogenetic methodologies
such as FISH were the primary means for identification
of chromosomal translocations in cancers, predominantly
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in leukemia and lymphoma (Rabbitts 1994). One of the
most useful compilations of cytogenetic alterations was
established by Mitelman et al. (2007), which includes
both translocations and CNAs in >50,000 samples. The
recent identification of translocations in epithelial can-
cers suggests that the application of high-throughput
sequencing will expand the number of such transloca-
tions (Tomlins et al. 2005), although the number and
significance of such recurrent translocations in solid
tumors remains to be delineated.

Expression analysis of cancer

Global gene expression profiles offer a global view to the
transcriptome of a tumor, the signature of which has the
potential to provide diagnostic (Golub et al. 1999; Alizadeh
et al. 2000) or prognostic (van de Vijver et al. 2002; Paik
et al. 2004) information. This approach has also been used
to molecularly subclassify tumors that are currently
assigned to one histopathological class. Gene expression
is also one measure of functional consequence of a geno-
mic alteration, thus potentially enabling the interpreta-
tion of inactivating genetic changes on the DNA level
or epigenomic (methylation) on DNA promoters. Inter-
preted expression data typically represent gene-level data
where multiple probes reporting on one annotated gene
are collapsed (by taking either the median or mean values
or best probe).

A major summarized category for expression data type
is definition of molecular subtypes. The discovery of
novel molecular subclasses is based primarily on differ-
ences in gene expression between groups within a cohort
using various unsupervised classification methodologies,
such as hierarchical clustering (Eisen et al. 1998), self-
organizing maps (Tamayo et al. 1999), and nonnegative
matrix factorization (Kim and Tidor 2003; Brunet et al.
2004). Visual verification or identification of clusters
requires transforming the high-dimensional expression
data (each sample is represented by the expression values
of all genes) to two or three dimensions. This is often
performed using principal component analysis (PCA)
(Raychaudhuri et al. 2000) or multidimensional scaling
(MDS) (Khan et al. 1998). However, it should be noted
that, given the large number of available gene expression
profiles and the number of independent measurements
contained within each profile, one can produce class
discriminations that may or may not reflect underlying
biological differences. For example, batch effects, intro-
duced by profiling samples on different days using differ-
ent lots of reagents or at different sites, can introduce

variations and confound such analyses. These consider-
ations require reproducing the classification results in
independent test cohorts of samples and using multiple
hypothesis testing correction methods.

Once subtypes are defined, there are several user-
friendly analytical algorithms that can be employed to
interrogate these data sets. For example, one of the most
commonly asked questions with gene expression data is:
What gene expression difference exists between two
biologically, clinically, or molecularly defined subgroups?
Significance analysis of microarrays (SAM, http://www-
stat.stanford.edu/;tibs/SAM; Tusher et al. 2001) is a com-
monly used tool to discern genes that are significantly
different between two groups of samples. In GenePattern,
ComparativeMarkerSelection (Gould et al. 2006) is an-
other tool that can be used to define genes that are char-
acteristic of a subgroup. Finally, one of the most commonly
used sites for querying analyzed cancer gene expression
data is Oncomine, which allows comparison of any two
data sets from different cancers or normal tissues to de-
termine the genes that are specifically expressed in the data
set of interest (Rhodes et al. 2004, 2007).

Once differential expression gene lists or signatures for
each subtype are generated, these lists can be interrogated
for pathway activation using knowledge-based pathway
analysis tools such as Ontologizer (Bauer et al. 2008),
which looks for statistical enrichment of Gene Ontology
terms, or Gorilla, a tool to visualize Gene Ontology terms
that are enriched in gene lists ranked by a user-defined
criterion (Eden et al. 2009). Gene set enrichment analysis
(GSEA) is an algorithm that allows one to assess whether
the differentially expressed genes are enriched for partic-
ular gene sets even though each member of the gene set
individually is not necessarily strongly differentially
expressed. Gene sets can be defined in various ways, such
as manual curation of pathways, based on genomic
position or shared motifs, expression correlation, or by
experimentally identifying signatures that represent a
molecular event or phenotype (Subramanian et al. 2005),
such as KRAS activation (Sweet-Cordero et al. 2005).
Gene signatures that can be used as input for GSEA can
be downloaded from the Molecular Signatures Data-
base (MSigDB, http://www.broadinstitute.org/gsea/msigdb/
index.jsp). Other gene set and pathway repositories include
Pathway Commons (http://www.pathwaycommons.org),
KEGG (Kanehisa et al. 2006), and others. Another com-
monly used tool for pathway and Gene Ontology enrich-
ment is DAVID (http://david.abcc.ncifcrf.gov/home.jsp;
Huang et al. 2009). These types of analyses provide
a framework for generating hypotheses for further testing.

Table 3. Sites with open source analytical tools for cancer genomics data

Tools Link

Bioconductor http://www.bioconductor.org
GenePattern http://www.broadinstitute.org/genepattern
Gene Ontology http://www.geneontology.org/GO.tools.microarray.shtml
UCSC Cancer Genome Browser https://genome-cancer.soe.ucsc.edu
Integrative Genomics Viewer (IGV) http://www.broadinstitute.org/igv
The Cancer Genomics Pathway Portal http://cbioportal.org
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However, users should be reminded that annotation of
pathways or definition of gene sets is biased by what is
known and published. Genes that are widely studied will
be linked to many different processes, while ones that
have not been explored in depth would have few connec-
tions to others.

Second-generation sequencing data

It is clear that, in the very near future, all genome char-
acterization data will be generated by second-generation
sequencing technologies. Output from these sequencing
platforms is in the form of short-sequence reads, ranging
from 35 base pairs (bp) to 100 bp or longer. These raw
sequencing reads and their mapped reads after alignments
(to reference genome) are captured in a BAM file. There-
fore, one can consider the BAM file as containing both
raw and normalized (Level I–II) data; hence, BAM files are
controlled access data. For TCGA, these data are stored at
the Sequence Read Archive of NCBI (http://www.ncbi.
nlm.nih.gov/Traces/sra) and accessed through dbGAP.
Similar second-generation sequencing data from the
Sanger CGP are accessed through EGA (http://www.ebi.
ac.uk/ega). The size of these data files (typically in tens to
hundreds of gigabytes) and the complexity of manipulat-
ing such data make it challenging to access and analyze
these data by noncomputational groups. A detailed dis-
cussion of the computational challenges, algorithms, and
software for analyzing second-generation sequencing for
cancer is provided in recent reviews (Ding et al. 2010b;
Meyerson et al. 2010).

Viewers and tools

Some of the open source software tools and viewers are
summarized in Table 3. Several user-friendly Web-based
viewers provide intuitive environments with which to
visualize and explore cancer genome data, although most
do not allow fully interactive queries at the present time.
The University of California at Santa Cruz (UCSC)
Cancer Genome Browser (Zhu et al. 2009) is perhaps
the most commonly accessed site, which allows users to
view and query a variety of cancer data types in the
context of the widely used UCSC Genome Browser
(https://genome-cancer.soe.ucsc.edu). The Cancer Geno-
mics Pathway Portal (http://www.cbioportal.org), hosted
at Memorial Sloan-Kettering Cancer Center (MSKCC), is
a recently launched site aiming to provide direct visual-
ization and queries of summarized results by cancer
biologists with little to no bioinformatic expertise as well
as download of large-scale cancer genomics data sets for
bioinformatic power users. For example, its major feature,
Oncoprints, provides an easy way to visualize distinct
genomic alterations (e.g., somatic mutations, CNAs, and
mRNA expression changes) of a gene or genes of interest
across a set of tumor samples. Another tool is the Inte-
grative Genome Viewer (IGV, http://www.broadinstitute.
org/igv), a scalable and readily browsable interface for
accessing any type of cancer genome data, including mu-
tations, expression, and copy number, particularly suit-
able for second-generation sequencing data. IGV also

allows browsing clinical annotations alongside the geno-
mic data. In addition to local data, a user can load data
from a server that contains many data sets, including
open access TCGA data. IGV can be downloaded and
launched from a desktop computer. Similarly, for viewing
and manipulating cancer copy number data and gene
expression data to generate heat map figures, the dChip
software system (Li and Wong 2001) can be installed on
a standard desktop or laptop computer.

To perform customized analyses beyond querying sum-
marized results, many open source analytical tools re-
quiring only basic programming and bioinformatics ex-
pertise are now available. For example, Bioconductor
(Gentleman et al. 2004) is an open source site with many
useful analytical packages, written in the R language
(http://www.r-project.org), for the analysis and interpre-
tation of cancer genomic data, including second-generation
sequencing data. Another site is GenePattern (Reich
et al. 2006) (http://www.broadinstitute.org/cancer/software/
genepattern), which is a user-friendly Web-based inter-
face for >125 different genomics analysis tools and pipe-
lines for various types of data, including gene expression,
copy number data, proteomic data, and others. GenePattern
can also keep track of parameters and versions of tools, and
thus achieves an important goal of enabling reproducible
research. The Gene Ontology site (http://www.geneontology.
org/GO.tools.microarray.shtml) also maintains a collec-
tion of open source analytical tools contributed by its
consortial members for analyses of microarray-based
expression data.

Computational considerations in cancer
genome analysis

In addition to specific challenges inherent in analysis of
each type of cancer genome data, several general consid-
erations should be kept in mind when one analyzes,
interprets, and uses cancer genomics data. These include
(1) quality control (QC) of data, (2) the accurate estima-
tion of signal and noise in large data sets, (3) reproducible
approaches to complex genomic analyses, and (4) achiev-
ing sufficient power in the face of multiple hypothesis
testing. We briefly touch on each of these issues, but
recommend several books for a broader introduction to
bioinformatics; these include ones that are focused on
principles and applications (Xiong 2006; Pevsner 2009),
as well as on computational methodologies (Jones and
Pevzner 2004).

Before analyzing genomic data, either publicly avail-
able or locally produced, and generating hypotheses for
further experimental follow-up, one has to ensure the
data are of sufficient quality. Two key aspects contribut-
ing to raw data quality are biospecimen and technical
execution. Criteria used for biospecimen inclusion and
exclusion can influence data quality; for example, a tumor
specimen with a high proportion of stromal contamina-
tion will reduce one’s ability to detect somatic alterations
in the tumor cells. On the data generation front, stan-
dardization of technical methods (i.e., standard operat-
ing procedures [SOPs]) and execution by highly trained
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individuals can minimize experimental variation and
ensure reproducibility and high data quality. Once data
are generated, the normalization step (Level II) attempts
to remove any experimental artifacts that can negatively
impact the data quality; however, some level of batch
effects often remains and, if not controlled, may lead to
spurious findings. A simple approach for detecting batch
effects and estimating their extent is to use standard
supervised methods to search for differences between
batches; e.g., use SAM, ComparativeMarkerSelection, or
ANOVA to look for genes that are differentially expressed
between batches.

Another potential problem with large genomic data
sets beyond data generation is sample mismatching;
hence, it is recommended that one double-checks that
the data originated from the intended sample. This is
particularly important when analyzing multiple data
types, since a mix-up could happen in some but not other
data types. A useful approach to screening for sample
mismatching is to leverage our understanding of the data
types. For example, one can (1) correlate copy number and
expression data, expecting overall positive correlation; (2)
correlate expression and promoter methylation data with
the expectation of finding a negative correlation; and (3)
detect a drop in expression levels of specific genes in
samples harboring truncating mutations (nonsense and
frameshift insertions or deletions). With second-genera-
tion sequencing for somatic alterations, a common QC
check is to compare the SNP genotype profiles between
array-based and sequencing data to ensure that there
is a match between tumor and germline DNAs, as
a mismatch will result in erroneous calls of somatic
mutations.

Like any other type of experimental data acquisition
and analysis, maximizing signal and minimizing noise is
essential in cancer genomics. In particular, using noise
filters to remove poor-quality samples helps to achieve
the most accurate analysis (Kauffmann and Huber 2010).
Platform-specific noise measures can be used to optimize
data quality for each type of genomic measurement. With
such measures, the analysis of independent genomic data
sets has proven to be reproducible across multiple in-
dependent laboratories, for example, for microarray-based
gene expression analysis of human cancers (Dobbin et al.
2005).

Another key element in any computational analysis is
reproducibility, a concept that is familiar to experimen-
talists, but the framework to ensure reproducibility in
computational analysis is still in development. Naturally,
the reproducibility standards expected from in silico
experiments are beyond what is possible from bench
experiments, since the initial raw data are available and
computational tools (at least deterministic ones) should
always reproduce the same values for all measurements.
For example, if 200 genes are reported to be differentially
expressed between two tumor subtypes, one would ex-
pect to obtain the exact same list of 200 genes when
reproducing the analysis using the same tool, parameters,
and input data. To aid in reproducibility, one must have
a clear record of all inputs, parameters, and data manip-

ulations for tracking and debugging. Such information
will permit one to identify, for example, an input error
that results in mislabeling of subsequent samples. There-
fore, some of the key elements in reproducible bioinfor-
matics include associating each analysis with a freeze of
not just the data, but also the analytic software (codes)
and parameters (Mesirov 2010). For example, recording
the specific reference genome build used for a particular
analysis is critical to one’s ability to reproduce a result
using the same input data. Increasing use of tools that
have automated version tracking capability will greatly
enhance reproducibility.

Unlike traditional molecular biology experiments,
where only relatively few measurements are generally
made (<10) in any single experiment, the number of
individual measurements in a cancer genomics study is
in the thousands to millions. This scale requires not only
a large number of samples to achieve statistical power,
but also addressing the issue of multiple hypothesis
testing. Statistical power is a concept discussed in general
publications on biostatistics, but it is also specifically
illustrated in the case of whole-exome sequencing (Getz
et al. 2007; Hudson et al. 2010), where it was calculated
that 500 tumor samples are needed to detect, with ;80%
power, genes that are mutated in 3% of patients (assum-
ing a typical background mutation rate). In other words,
a small discovery cohort will have very little power to
detect infrequently mutated genes. Therefore, a lack of
somatic mutation in a gene of interest in a study of
a small number of samples should be considered non-
informative, rather than interpreted as the gene is not
mutated in cancers.

The concept of correcting for multiple hypothesis
testing is very important in rigorous data interpretation
of cancer genomics data, as it addresses the issue of false
discovery. When thousands to millions of measurements
are queried in each sample, significant differences will be
observed, but the likelihood that such observed differ-
ences would occur by chance is extremely high. For ex-
ample, when searching for differentially expressed genes
by comparing two transcriptomes of 20,000 coding genes,
a typical P-value cutoff of 0.05 will mean that, regardless
of biological relevance, 5% of 20,000 genes (1000 genes)
will be identified as differentially expressed by chance
alone. To compensate for this, a q-value or false discovery
rate (FDR) (Benjamini and Hochberg 1995) is calculated to
bound the expected fraction of false discoveries in the
results. In the above example of comparing two tran-
scriptomes, if a set of genes in the differentially expressed
list has a calculated FDR value of 0.2 (a commonly used
cutoff) or less, it implies that the expected fraction of false
discoveries among the list of differentially expressed
genes is, at most, 20%. The FDR approach has become
widely used in cancer genome analyses, as controlling the
FDR is a more liberal approach than the standard Bonfer-
roni correction, which bounds the chance of having even
a single false discovery.

In summary, when using publically available cancer
genomic data, one should pay attention to the design of the
study that generated the data; when expertise is available,
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it is recommended that one downloads the raw data to
repeat normalization and other QC checks prior to
analyses. Analysts performing analyses, whether using
off-the-shelf tools or developing new algorithms, must be
mindful of reproducibility. With respect to interpretation
of results, one must keep in mind the statistical power of
a particular study and correct for multiple hypothesis
testing. Finally, the most stringent test to assess the
significance of these conclusions is the ability to re-
produce the findings in independent data sets.

Integrative analyses of the cancer genomes

Cancer genomic data remains incomplete due to limita-
tions of the current experimental methods as well as the
inherent complexity of its biology. One method to iden-
tify genes of particular interest involves integrating the
outputs from different types of experiments. For example,
finding that a gene is targeted for genomic deletion,
inactivating mutations, promoter hypermethylation, al-
terations of miRNA expression, and/or transcriptional
down-regulation in different tumor samples would col-
lectively suggest that this gene is a candidate tumor
suppressor gene, even if each type of genomic alteration
may be infrequent.

By extension, one can interrogate several types of data
derived from the same set of tumors for evidence of
dysregulation in a functional complex or pathway based
on known constituents. The recent work in clear cell
renal cancer is an excellent example of integrative anal-
ysis of a functional complex (Dalgliesh et al. 2010). Here,
the finding of low-frequency (3%) mutations in several
enzyme-coding genes (SETD2, UTX, and JARID1C), all
implicated in modifying regulatory lysine residues on
histone H3, was interpreted collectively as evidence
pinpointing the deregulation of H3 histone modification
as a likely cancer-promoting process in a significant pro-
portion of clear cell RCC.

An example of pathway integration is the analysis of
GBM by TCGA. In this study, hundreds of clinically
annotated GBM with matched blood normal (white blood
cells) as a reference were characterized for (1) somatic
mutation in 600 known or candidate cancer genes, (2)
global SCNA patterns, (3) mRNA and miRNA expression,
and (4) DNA promoter methylation status. By analyzing
mutations and SCNAs in the same samples, TCGA
showed that nearly all GBM harbored alterations in some
components of the receptor tyrosine kinase/PI3K/RAS,
p53, and RB/cell cycle pathways (The Cancer Genome
Atlas Network 2008), providing definitive genomic evi-
dence of the deregulation of these core pathways as
obligate events for this cancer. In addition, by integrat-
ing sequencing and copy number data with expression
profile analyses, TCGA linked major molecular subtypes
of GBM defined by transcriptional profiles to specific
genotypes (Verhaak et al. 2010). In addition, analysis of
DNA promoter methylation defined a further subclass
of GBM exhibiting a CpG island Methylator Phenotype
linked to IDH1 mutation and better survival (Noushmehr
et al. 2010).

Cross-species comparative oncogenomics

The structural complexity of human cancer genomes has
motivated efforts to leverage different data sets involving
complementary information to identify somatically al-
tered genes that likely contribute to tumorigenesis. In
addition to integrating information derived from the
same samples, the comparison of genetic alterations
found in murine cancer models with those found in
human cancers provides another method to identify
cancer drivers. The rationale for the use of model organ-
isms rests on the view that truly important driver genes
and their linked mechanisms will be evolutionarily
conserved, while bystander events not linked to bi-
ological processes are less likely to be shared in these
cross-species comparisons.

Several studies have successfully leveraged the mouse
cancer genomics along with human cancer genome data
to identify novel cancer genes (Kim et al. 2006; Zender
et al. 2006). For example, Zender et al. (2006) compared
regions that were amplified in both murine and human
liver cancer genomes and found that cIAP1 and Yap are
coamplified. Similarly, Kim et al. (2006) investigated a
focal amplification in a murine model of melanoma that
acquired new metastatic capability and found NEDD9 as
a metastasis gene that is the target of the large 6p23
regional gain observed in ;30% of human metastatic
melanomas. In a more recent example using second-
generation sequencing technology, a mouse mammary
tumor was found to carry an internal deletion of exons of
the Lrp1b gene, an event similar to internal deletions
found in the corresponding human ortholog in ;4% of
human cancer cell lines (Varela et al. 2010). Unlike what
is usually observed in human cancer genomes, most
mouse cancer genomes in genetically engineered mouse
(GEM) strains harbor relatively few structural and copy
number aberrations. Although this species difference
limits the number of events available for comparison
across the species, it also means that the presence of a
focal amplification or deletion in a mouse cancer genome
reflects strong selective pressure, thus providing strong
evolutionary evidence that implicates the syntenic event
in humans as a likely driver event. Indeed, when the
mouse genome is engineered to experience telomere
dysfunction and consequent genome instability like most
human cells, the resultant tumors acquired a human-like
genome harboring complex rearrangement and alter-
ations that are syntenic to loci altered in human cancers
(Maser et al. 2007). These examples provide a rationale for
cross-species comparative oncogenomics as an efficient
strategy for the annotation of human cancer genes.

A complementary way to use mouse cancer models to
identify cancer genes involves the use of forward genetic
screens. For example, Berns and colleagues (Uren et al.
2008) have created cohorts of mice containing retroviral
insertions for identification of genes that cooperate in a
specific genetic background to drive tumorigenesis. In the
setting of Ink4a/Arf or p53 deletion, they have identified
many candidate oncogenes and tumor suppressor genes
that corresponded to known human cancer-associated
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mutations. Similarly, Copeland and Jenkins (2010) have
deployed the Sleeping Beauty transposon system to
generate both activation and inactivation of genes in
the murine genome, and have used this system to
discover genes involved in colorectal and other cancers
(Dupuy et al. 2009; Starr et al. 2009). In another recent
study, genome-wide copy number profiles of hundreds of
human cancer cell lines were compared with hundreds of
common insertion sites isolated from >1000 mouse
tumors induced with the murine leukemia virus (MuLV),
showing a significant enrichment of human ortholog
genes with known mutations in COSMIC and overrepre-
sentation of human orthologs that are annotated as
oncogenes in the Cancer Gene Census (http://www.
sanger.ac.uk/genetics/CGP/Census; Futreal et al. 2004).
Taken together, these efforts thus far have demonstrated
the power of cross-species comparisons as a powerful
approach to identify cancer genes, and argue for sys-
tematic and comprehensive genomic characterization
of appropriately engineered mouse models of human
cancers.

Converting genomic data into biological knowledge

The current large-scale cancer genomics efforts will
identify and enumerate the frequency of every genetic
element of interest that is structurally altered in the
cancer genome, including those impacting annotated
genes, noncoding miRNA, or other conserved elements.
While statistical significance based on frequency will be
an important filter to cull bystanders from likely driver
events, it is likely that mutations that occur at a lower
frequency may also contribute to specific types of cancer.
For example, mutations or translocations involving ALK
occur in 4%–5% of non-small-cell lung cancers (NSCLCs)
(Soda et al. 2007), but confer sensitivity to small-mole-
cule ALK inhibitors (McDermott et al. 2008). In such
cases, additional experimental evidence is necessary to
identify such low-frequency events as contributors to
cancer initiation or progression (Chin and Gray 2008).
Indeed, since it is likely that multiple genetic alterations
are required to program the behavior of any specific
cancer, functional analyses will be required to comple-
ment genome annotation. For example, the recent dem-
onstration that the mutation status of KRAS dictates
the response of tumors that harbor mutant EGFR to
treatment with EGFR inhibitors and the complex in-
terplay between BRAF, CRAF, and RAS in response to
selective BRAF inhibitor (Heidorn et al. 2010; Joseph
et al. 2010; Poulikakos et al. 2010; Whittaker et al. 2010)
confirm that further functional studies will be required
to exploit knowledge of somatic mutations. In addition,
genes that are not mutated in cancers may also con-
tribute to the survival of cancers harboring other gen-
etic alterations, such as the PARP1 gene, whose in-
activation is synthetically lethal in breast and ovarian
cancers that lack BRCA1 or BRCA2 (Fong et al. 2009,
2010). Thus, functional analyses of cancer genomes are
needed to complement structural analyses of cancer
genomes.

High-throughput evaluation of gene function in cancer

In addition to laying the foundation for analysis of the
cancer genomes, the information provided by the human
genome project has facilitated the development of re-
agents to perform comprehensive somatic cell genetics in
mammalian cells through the systematic manipulation
of gene expression. Specifically, libraries that permit the
expression or suppression of the majority of human or
murine genes now exist in several formats. Although
these tools can be used to study nearly any aspect of
biology, early studies focused on cancer phenotypes have
not only provided a proof-of-principle demonstration of
the utility of such systematic functional approaches, but
have also begun to provide insights into novel aspects of
cancer biology.

Expression-based studies Although cDNA libraries
have been used for many years to identify genes whose
overexpression confers specific phenotypes (Seed and
Aruffo 1987; Lin et al. 1991; Wang et al. 1991), and played
a key role in the discovery of some of the first oncogenes
(Shih and Weinberg 1982), such screens have often been
limited by the efficiency of gene transduction as well as
the representation of genes present in such libraries. As
such, most successful screens involved positive selection
strategies. However, several vector systems now exist
that permit high-efficiency transduction of cDNAs into
a wide range of mammalian cells (Koh et al. 2002), and
increasingly complete collections of human cDNAs or
ORFs now permit more comprehensive gain-of-function
screens. Probably the most dramatic recent example of
such a gain-of-function screen is the discovery of the
EML4-ALK translocation in NSCLC by a retroviral ex-
pression system (Soda et al. 2007).

Using a positive selection screening strategy, several
groups have identified genes that bypass specific anti-
proliferative signals. For example, building on work that
identified the retinoblastoma and p53 signaling networks
as key regulators of cell proliferation and survival, TBX2
was found as a gene amplified in breast cancer that
permits cells to proliferate in Bmi1-deficient fibroblasts
(Jacobs et al. 2000), DRIL1 was discovered as a gene that
bypassed RAS-induced senescence (Peeper et al. 2002), and
BCL6 was found to permit cell proliferation in the pres-
ence of active p19ARF/p53 signaling (Shvarts et al. 2002).

This approach has also been used to identify genes
involved in other cancer-related phenotypes. For exam-
ple, the prostate-derived ETS factor gene SPDEF was
identified as a gene that permits immortalized mammary
epithelial cells to invade and migrate (Gunawardane et al.
2005). SPDEF was subsequently found to be overex-
pressed in both breast and prostate cancers, and to coop-
erate with receptor tyrosine kinase genes such as ERBB2
and CSF1R to drive cell transformation.

In each of these examples, the cDNA libraries used by
these investigators were derived from cell lines by reverse
transcription of mRNA. Although this approach has been
used successfully, several limitations of this methodology
are that each gene is not represented at equal frequency in
the library, longer cDNAs are underrepresented, and the
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full repertoire of splice variants is not present. With the
development of large collections of ORFs (Table 4; Lamesch
et al. 2007; Rolfs et al. 2008; Varjosalo et al. 2008), it is now
possible to create expression libraries in which at least one
splice version of every gene is present at equal numbers.
For example, analysis of a relatively small cDNA library
targeting 353 kinases identified IKBKE as a breast cancer
oncogene that substitutes for AKT to permit cell trans-
formation (Boehm et al. 2007). In addition to this example
of intersecting hits from a genetic screen with genomic
profiles of human cancers, another approach is to create
customized libraries of candidate genes—e.g., a library of
amplified genes or mutated genes—to assess which ones
have oncogenic activities. This type of approach can now
be expanded to hundreds, rather than tens, of genes that
emerge from genomic efforts, so one can enlist many
candidates into a gain-of-function genetic screen for func-
tional activity.

Loss-of-function approaches Similar to the cDNA or
ORF libraries used for gain-of-function approaches, librar-
ies of RNAi reagents can be introduced into cells either
stably or transiently. In mammalian cells, RNAi-medi-
ated gene suppression can be induced by the introduction
of chemically synthesized siRNAs or plasmids expressing
RNA hairpins, known as shRNAs, which are processed to
siRNAs by Dicer (Bernstein et al. 2001). Chemically
synthesized siRNAs are available from many different
commercial sources as individual reagents, as pools target-
ing specific genes, or as genome-scale libraries. In general,
siRNAs are easily synthesized and highly effective in
inducing gene knockdown. However, such oligonucleo-
tide reagents are relatively expensive and can be used only
for transient loss-of-function experiments.

Vector-based systems to express RNAi provide several
advantages compared with siRNA. By creating viruses,
these vectors permit long-term, stable expression of the
RNAi construct and expand the range and type of cells
into which such constructs can be introduced. Both
academic and commercial groups have produced large
libraries of shRNAs in a variety of expression vectors
(Table 4; Brummelkamp and Bernards 2003; Paddison
et al. 2004; Silva et al. 2005, 2008; Buchholz et al. 2006;

Moffat et al. 2006; Luo et al. 2009). Each of these systems
has unique features, including high-efficiency infections,
ease of recombination-based cloning, and inducible ex-
pression. In addition, these vector-based systems are
useful for both arrayed and pooled screening approaches.

Both siRNA and shRNA libraries have been used suc-
cessfully in arrayed screens (Aza-Blanc et al. 2003; Kittler
and Buchholz 2005; MacKeigan et al. 2005; Whitehurst
et al. 2007). For many other cancer-related phenotypic
assays—such as anchorage-independent colony formation,
bypass of senescence, or tumor xenografts—long-term
gene suppression is essential, requiring stable integration
and expression of the RNAi vector. Recent work from
several laboratories has shown that these approaches are
tractable in human cells. For example, PITX1 was found
as a negative regulator of RAS signaling (Kolfschoten et al.
2005), REST1 has been identified a negative regulator of
PI3K signaling (Westbrook et al. 2005), CDK8 has been
identified as a regulator of b-catenin signaling in colon
cancer (Firestein et al. 2008), SIK1 was found to be
a negative regulator of aniokis and metastasis (Cheng
et al. 2009), and CDK6 has been shown to be an oncogene
in GBM (Wiedemeyer et al. 2010). Although such arrayed
format screens require assays that are amenable to well-
based miniaturization, this experimental design permits
the use of high-content imaging to identify subtle or
complex phenotypes such as changes in cell morphology
(Moffat et al. 2006; TR Jones et al. 2008).

In addition, vector-based shRNA libraries can be used
to interrogate gene function in a massively parallel
manner by creating pools of shRNAs. The advantages of
this approach are that such pooled screens permit the
study of a larger number of genes with decreased cost and
provide the possibility of using loss-of-function genetics
in assays that cannot be performed in vitro. Several large-
scale screens using pooled libraries have been performed
(Brummelkamp et al. 2006; Ngo et al. 2006; Luo et al.
2008; Schlabach et al. 2008), demonstrating that both
positive and negative selection screens are possible using
these formats. To facilitate the deconvolution of genes
targeted by shRNAs in these screens, each of these groups
has developed strategies to quantify the abundance of
each shRNA at the beginning and end of each screen by

Table 4. Reagent collections for manipulating mammalian gene function

ORF/cDNA collection Link

DFCI Center for Cancer Systems Biology http://ccsb.dfci.harvard.edu/web/www/ccsb
German Cancer Research Center (DKFZ) http://www.smp-cell.org/smp-cell/cell.org/groups.asp?siteID=7
Harvard Institute of Proteomics (HIP) http://www.hip.harvard.edu
Mammalian Gene Collection (MGC) http://mgc.nci.nih.gov
NEDO (FLJ) http://www.kazusa.or.jp/NEDO

shRNA collection Link

Hannon-Elledge
http://hannonlab.cshl.edu/index.html
http://elledgelab.bwh.harvard.edu/index.html

MISSION esiRNA http://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/
mission-esirna.html

Netherlands Cancer Center http://screeninc.nki.nl/library/index.php
The RNAi Consortium (TRC) http://www.broadinstitute.org/rnai/trc
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using the sequence of the shRNA or another unique
sequence in the shRNA vector. Indeed, the use of a pooled
format screen, together with microarrays to identify the
abundance of shRNA sequences, has been used to iden-
tify the NF-kB pathway and CARD11 in particular as
essential in the activated B-cell-like subtype of diffuse
large B-cell lymphoma (Ngo et al. 2006), TTI1 (Tel two-
interacting protein 1) and TTI2 as members of a complex
with TEL2 and ATM that mediate resistance to ioniz-
ing radiation (Hurov et al. 2010), 53BP1 as an essential
mediator of nutlin-3-induced cytotoxicity (Brummelkamp
et al. 2006), and CRKL as a NSCLC oncogene (Luo et al.
2008). As deep-sequencing technologies become widely
available, this technology will increasingly be used for
deconvolution of both focused and genome-scale screens.

In addition to the identification of genes that are
oncogenes or that act in specific pathways, the use of
loss-of-function screens has also facilitated the identifi-
cation of genes whose expression is essential in a partic-
ular context. For example, several groups have identified
genes that, when suppressed, lead to cell death only in the
context of cells that are dependent on oncogenic KRAS.
Specifically, TBK1, STK33, PLK1, WT1, and SNAIL2 have
been identified as genes that are required for the survival
of cells dependent on KRAS (Barbie et al. 2009; Luo et al.
2009; Scholl et al. 2009; Wang et al. 2010). Although not
yet reaching saturation, these studies already provide
a path toward defining enhancers and suppressors that
may also serve as therapeutic targets. Indeed, a similar
strategy was used to identify genes that enhance PARP
inhibitor sensitivity (Turner et al. 2008). Taken together,
the systematic manipulation of gene function promises to
provide information complementary to that derived from
characterizing mutations in cancer genomes.

Manipulating miRNA expression miRNAs are endoge-
nous small noncoding RNAs that function by down-
regulating expression of their target genes, either primar-
ily through induction of transcript degradation or through
translational inhibition. Approximately 500 annotated
human miRNAs have been described to date, although
the targets of most of these miRNAs remain undefined
(Griffiths-Jones 2006). Several lines of evidence have
established that dysregulation of miRNAs contributes
to malignant transformation. Indeed, mice lacking Dicer,
the endo-ribonuclease that is required for miRNA pro-
cessing, show an increased susceptibility to cancer
(Sekine et al. 2009). In addition, specific miRNAs have
been implicated in particular tumors. For example, let-7,
a negative regulator of RAS, is up-regulated in a subset of
lung cancers (Johnson et al. 2005); the miR-17-92 cluster
is amplified and up-regulated in lymphomas and pro-
motes lymphomagenesis (He et al. 2005), and miR-15 and
miR-16, negative regulators of BCL2, are down-regulated
in chronic lymphocytic leukemia (Cimmino et al. 2005).
Recent work has confirmed that, just as has been reported
for protein-coding oncogenes, such miRNAs are also
essential for tumor maintenance (Medina et al. 2010).

Several groups have now created expression libraries
composed of miRNAs. For example, using a retroviral

expression library of miRNAs, Voorhoeve et al. (2006)
identified miR-372 and miR-373 in a Ras-induced senes-
cence bypass screen. Since a relatively small number of
miRNAs exist, one advantage of screening with current
miRNA expression libraries is that it is possible to compre-
hensively query each of the miRNAs. However, with the
development of large-scale libraries of cDNAs or ORFs for
the majority of human genes, similar experiments at the
genome scale will be increasingly possible in the near future.

Model systems

A wide spectrum of model systems exists that permits the
investigation of the context necessary for cell transfor-
mation and progression. The commonly used model
systems include large panels of genome-annotated hu-
man cancer cells, early passage primary cancer cells from
patients, genetically engineered immortal primary hu-
man cells, and GEM models and their derivative primary
or transformed cells. The optimal use of these models
requires an understanding of their ideal applications and
experimental limitations, and the most predictive results
will come from complementary uses of multiple models.

Established cancer cell model systems Established hu-
man cancer cell lines and primary human cancer cell
cultures have been used extensively in functional valida-
tion assays due to their ease of manipulation and versa-
tility. Although such systems only partially model the
more complex biological features of cancers in vivo, they
have proven powerful in advancing the validation of
novel cancer genes, defining signaling pathways, and
establishing pharmacogenomic relationships. A major
challenge to the optimal use of these established cancer
cell line panels has been the lack of a complete atlas of the
genetic alterations in these cells, as it is appreciated that
the specific genotypes in these cell models will dictate or
modify the response to any molecular (RNAi or over-
expression) or pharmacological perturbation. Using the
same tools described above to characterize tumor ge-
nomes, several groups are engaged in characterizing large
panels of cell lines, such as the Cancer Cell Line Project
(http://www.sanger.ac.uk/genetics/CGP/CellLines), or the
Cancer Cell Line Encyclopedia Project (http://www.
broadinstitute.org/ccle). Additionally, when multiple in-
dependent cell lines with molecular diversity are used,
the risk that the observed phenotypes are idiosyncratic to
a particular cell line can be minimized. Although these
cell line models are powerful in throughput, they do not
capture all molecular subtypes of a particular tumor type,
nor do they retain any interaction with stromal microen-
vironment, thus raising the possibility that certain gene
functions will be audited or represent artifacts of in vitro
biology. Therefore, re-enforcing data from other model
systems will continue to be important to complement
information derived from established cell lines.

Nontransformed genetically engineered cells Primary
human cells engineered with initiating events that are
insufficient to achieve full transformation represent
a powerful system to validate novel genes. In particular,
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such experimental models permit the creation of isogenic
cells with specific mutations found in specific tumor
subtypes, enabling the investigation of the role of a can-
didate cancer driver in a stringently defined genetic
context. Such models can complement the use of estab-
lished human cancer cell lines to interrogate functions of
a candidate gene through both suppression by RNAi in
established cancer cell lines and overexpression by ex-
pression in engineered primary human cells.

GEM models GEM models of cancer have proven in-
valuable in cancer gene validation and in revealing mech-
anistic insights of a novel gene’s role in the cancer process.
While tumors from these GEM models are tremendously
useful for comparative oncogenomics (see above), the
practical challenges of time and expense involved in the
creation, characterization, and uses of such GEM tumor
models limit their utility as a high-throughput system.

The recent advances in nongermline GEM (nGEM)
models offered different approaches that mitigate some
of these limitations (for review, see Heyer et al. 2010)).
Inspired by the use of nontransformed stem/progenitor
cells from GEM models, termed stem transgenesis
(Bachoo et al. 2002), these nGEM systems make use
of tissue-restricted stem and progenitor cells that are
engineered with signature mutations encountered in
specific human cancer subtypes for transplantation into
a primed syngeneic recipient, in which the engineered
primary cells hone in to the appropriate tissue for tumor
development. When these primary cells are engineered in
such a way that they are poised for (but not capable of on
their own) transformation, transduction with a library of
vectors encoding candidate oncogene ORFs or shRNAs
targeting a candidate tumor suppressor gene will permit
selection for cooperating event(s) to achieve tumorigen-
esis. For example, Rad17 was shown to be a haploinsuffi-
cient tumor suppressor in lymphoma in a study in which
a library of shRNA targeting a curated list of 1000 cancer
genes was introduced into hematopoietic progenitor cells
derived from Em-myc transgenic mice and screened for
lymphomagenesis following engraftment into syngeneic
recipients. Although this is often used in hematopoietic
systems as hematopoietic stem and progenitor cells are
readily isolated from bone marrow or fetal livers, concep-
tually similar approaches can be applied to other organ
systems, such as liver or brain, as stem or progenitor cells
have been identified, isolated, and transplanted in these
systems (Bachoo et al. 2002; Zender et al. 2006; Zindy
et al. 2007).

Approaches to functional validation

To fully credential a candidate gene as a therapeutic
target or a diagnostic biomarker requires extensive func-
tional assays and downstream biological studies that are
time- and labor-intensive (Chin and Gray 2008). One
approach to validation is to begin with assays that offer
throughput rather than depth, and move only the vali-
dated ones onto lower-throughput labor-intensive as-
says that provide insight into specific biological aspects.

However, as noted, every assay—whether it is low or
high throughput—will yield biological false positives and
false negatives due to the context-specific nature of gene
function.

Context can relate to cellular, genetic, and microenvi-
ronmental factors. One well-known example is the op-
posing roles of TGFb signaling in initiation versus pro-
gression (Massague 2008); hence, it is possible that the
role of a candidate cancer gene may be oncogenic or
tumor-suppressive, depending on the specific cellular or
developmental contexts. Alternatively, a candidate may
require cooperation of another genetic event to manifest
its oncogenicity. An example is NEDD9, a metastasis gene
that resides on chromosome 6 that is frequently gained in
melanoma (Kim et al. 2006). NEDD9 exhibited robust
invasion activity in a Modified Boyden Chamber assay
only in melanocytes harboring RAS mutations, consistent
with its focal amplification in RAS mutant melanoma
cells that have acquired metastatic capacity in vivo (Kim
et al. 2006). Thus, the specific genetic and cellular back-
ground is necessary to understand the context in which
a candidate oncogene or tumor suppressor gene operates.

Biological false positives can also emerge as a direct
consequence of the artificial nature of experimental models.
For example, overexpression may induce phenotypes due to
supraphysiologic levels of expression, or suppression of a
gene may have a different phenotype in vivo. The combi-
nation of both functional studies and information derived
from the analysis of cancer genomes can help mitigate these
concerns. In addition, clinicopathological validation using
tumor tissue microarrays can be highly informative, offer-
ing added evidentiary support for cancer relevance by
demonstrating the prevalence of dysregulation on DNA
(by FISH) and protein (by immunohistochemistry or immu-
nofluorescence) levels in independent large cohorts of
specific tumor types and of broad tumor spectrums.

Although we have at our disposal a series of assays that
permit the assessment of a large number of candidates
with high throughput, as well as ones that enable deeper
interrogation with lower throughput, the existing reper-
toire of cancer-related assays remains incomplete. Even
in assays that are well developed, cellular as well as
genetic contexts are important in interpretation of the
results. Hence, it is important that conclusions drawn
from these functional assays performed in experimental
model systems are validated in human cancer specimens.

Conclusions and challenges

Comprehensive characterization of human cancer ge-
nomes will soon generate comprehensive lists of genomic
and epigenomic alterations present in diverse human
cancers. The integration of these genome characteriza-
tion efforts—both structural and functional—promises to
provide the foundation for a complete understanding of
the somatic alterations that program cancer initiation,
maintenance, and progression. Although the majority of
early efforts have focused on known cancer pathways as a
means to validate these methodologies, the full application
of these approaches will identify new pathways and
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networks necessary for establishment and maintenance
of the malignant state. Moreover, such efforts will pro-
vide a framework on which to develop new therapeutics
and rational combination regimens.

Although the throughput and reproducibility of
methods for analyzing cancer genomes has improved at
a rapid rate, many challenges remain. For example,
collecting accurate clinical information on tumor sam-
ples remains an important and difficult task, but one that
is necessary to afford the interpretation of genomic
findings in a larger context. However, most available
samples are associated with incomplete annotation or
lack appropriate consent to permit the linkage of clinical
information. Further progress will require the develop-
ment and expansion of an infrastructure to collect sam-
ples and associated data with appropriate consent. The
challenges—scientific, operational, and legal—of this pro-
cess should not be underestimated.

In addition, it is clear that future efforts will need to
account for genetic heterogeneity within tumors. As
technologies improve in the near future, one will be able
to explore patterns of molecular heterogeneity on the
single-cell level to determine how such heterogeneity
affects tumor biology and the response to treatment.

Finally, as emphasized above, integrative analyses of
comprehensive cancer genomics data will generate hy-
potheses (such as candidate targets) that require experi-
mental testing and validation. Such experimental valida-
tion results will guide further refinements of these
analytical tools and approaches. The release of data sets
prior to publication will aid in these efforts, but it is clear
that more work is necessary to make these data sets
available in useful formats.

In summary, cancer is the consequence of accumulated
somatic genomic and epigenomic alterations within the
tumor cells, influenced by their heterotypic interactions
with a tumor microenvironment. The ability to catalog the
somatic genomic alterations in large numbers of cancers,
together with systematic functional analyses, will provide
a foundation that will facilitate efforts to understand how
these alterations induce malignant transformation. More-
over, as these genome characterization efforts are applied
prospectively in patients, these efforts will provide a frame-
work for relating studies in experimental models to the
corresponding human tumors.
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