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Abstract
High neighborhood density reduces the speed and accuracy of spoken word recognition. The two
studies reported here investigated whether Clustering Coefficient (CC) — a graph theoretic
variable measuring the degree to which a word’s neighbors are neighbors of one another, has
similar effects on spoken word recognition. In Experiment 1, we found that high CC words were
identified less accurately when spectrally degraded than low CC words. In Experiment 2, using a
word repetition procedure, we observed longer response latencies for high CC words compared to
low CC words. Taken together, the results of both studies indicate that higher CC leads to slower
and less accurate spoken word recognition. The results are discussed in terms of activation-plus-
competition models of spoken word recognition.
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A number of recent studies have modeled complex systems as a network or graph (see
Albert & Barabási, 2002, for a review). In a graph, entities are represented as nodes and
relations of interest between nodes are represented as links or edges between the nodes. For
example, in a model of scientific collaboration, individual scientists may be represented as
nodes. If two of those scientists have published together, then a link is placed between the
two nodes representing those individual scientists (see Watts, 2003). Among other findings,
knowing the structure of a graph may provide information on how that graph evolved over
time (Albert & Barabási, 2002; Barabási & Albert, 1999). Understanding the properties of
the network of scientific collaboration might provide new insights into the underlying
processes that determine who collaborates with whom.

Several recent papers have used graph theory to address questions about how various forms
of linguistic knowledge are represented in the mind (Dorogovtsev & Mendes, 2001; Ferrer i
Cancho & Solé, 2001; Motter, de Moura, Lai, & Dasgupta, 2002; Soares, Corso, & Lucena,
2005; Steyvers & Tenenbaum, 2005; Vitevitch, 2008). Motter et al. (2002), for example,
built a network of words, linking any two words that expressed similar concepts. Extending
this approach, Steyvers and Tenenbaum (2005) modeled semantic memory — people’s
mental representation of word meaning — as a graph. They constructed three separate
graphs from three different sources of data. In each graph, words were represented as nodes.
In the graph based on the word association norms originally collected by Nelson, McEvoy,
and Schreiber (1999), two words were linked if one word was produced as an associate of
the other in a free association task. A second graph was based on a version of Roget’s
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Thesaurus (Roget, 1911) which consisted of a large number of words classified into a
smaller number of semantic categories. Each word and category was represented as a node
and a link was placed between a word node and a category node if the word was a member
of that category. Their third network was based on Word-Net (Fellbaum, 1998; Miller,
1995), a corpus of words and word meanings. Each word and word meaning was
represented by a node. A word node was linked to a word-meaning if the word has that
meaning. Word nodes were connected to one another if two words share a relation, such as
antonymy (e.g., the words “black” and “white”) or hypernymy (e.g., “maple” and “tree”).
Steyvers and Tenenbaum found that all three of these networks had properties that were
similar to other complex networks, including the “small world” property described by Albert
and Barabási (2002). The authors explained those properties with several hypotheses about
the developmental processes children go through when learning word meanings.

Ferrer i Cancho and Solé (2001) modeled the English language by representing each word as
a node and linking two nodes if the two words co-occurred with a frequency greater than
chance (see also Dorogovtsev & Mendes, 2001). They appealed to the evolution of the
language to explain the properties of the resulting graph. Finally, Vitevitch (2008) used
graph theory to model the mental lexicon for spoken word recognition. Words were again
represented as nodes and a link was placed between two nodes if one word could be
transformed into the other by the deletion, addition, or substitution of a single phoneme (see
Greenberg & Jenkins, 1964; Landauer & Streeter, 1973; Luce & Pisoni, 1998). This rule is
referred to here as the DAS rule for Deletion, Addition, or Substitution. Like the other
authors cited above, Vitevitch explained his results in terms of several hypotheses about
processes involved in language acquisition and language evolution (see also Gruenenfelder
& Pisoni, 2009; Vitevitch, 2008).

Following the work of Barabási and his colleagues (Albert & Barabási, 2002; Barabási &
Albert, 1999), the focus of all of the studies described above was on how language
acquisition and/or language evolution processes could account for the observed structure of
the graph. An equally valid question concerns whether the observed structure and graph
theoretic variables have any behavioral consequences for the human listeners when asked to
perceive and process spoken words. Can a graph theoretic model of semantic memory, for
example, make predictions about what word meanings will be particularly easy or hard to
comprehend in a sentence? Is a graph theoretic model of the mental lexicon for spoken word
recognition able to predict the relative ease and difficulty of recognizing different words?
Although some authors (Motter et al., 2002; Vitevitch, 2008) have speculated on possible
behavioral consequences of their observed network structures, very little empirical work
investigating the relation between formal graph theoretic properties and behavioral data has
been reported to date in the literature (although see Steyvers & Tenenbaum, 2005 for
discussion on semantic networks).

The two experiments reported here explored the effects of a spoken word’s Clustering
Coefficient (CC) on the ease with which a word is identified in spoken word recognition
tasks. In a graph, nodes joined by a link are typically referred to as neighbors. A node’s CC
is a measure of the probability that two of its neighbors are themselves neighbors of each

other. Specifically, a node’s CC is the ratio , where n denotes the number of neighbors
formed by (i.e., links between) that node’s neighbors, and p is the number of possible
neighbor pairs that could exist among the node’s neighbors. Consider a node with 5

neighbors. The number of possible neighbor pairs is 5-choose-2  or 10. Suppose that
those 5 neighbors in fact form 3 neighbor pairs. Then, the node’s CC is 3/10 = .30. CC
represents a probability and ranges from 0 to 1.
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Following Vitevitch (2008), we created a network modeling the mental lexicon for spoken
word recognition by using the DAS rule — two words were linked if one could be
transformed into the other by a single phoneme deletion, addition, or substitution. Under the
DAS rule, some of the neighbors of the word /sɪt/ are /lɪt/, /ɪt/, /rɪt/, and /sɪn/. Note that /lɪt/
and /ɪt/, /lɪt/ and /rɪt/, and /ɪt/ and /fɪt/ are all themselves neighbor pairs because they differ
by one phoneme, and therefore add to the CC of the word /sɪt/. On the other hand, none of
the following pairs: /lɪt/ and /sɪn/, /ɪt/ and /sɪn/, and /fɪt/ and /sɪn/ are neighbor pairs. The
fact that these neighbors of /sɪt/ are not neighbors of each other subtracts from the CC of /
sɪt/ (In this example, /sɪt/ has four neighbors. Hence, the number of possible neighbor pairs
is 6. The number of actual neighbor pairs is 3. There the CC of /sɪt/ in the example is 3/6 = .
50). Figure 1 below shows a graphical representation of high versus low CC words. Each
target word in the figure has four neighbors, but the degree of clustering between the word’s
neighbors differs.

Our interest in the behavioral consequences of the CC was motivated by three findings in the
literature on spoken word recognition. First, in a post-hoc analysis of word repetition
latencies collected in an earlier study by Luce and Pisoni (1998), Gruenenfelder and Pisoni
(2005) found some evidence that words with a higher CC were repeated more slowly than
words with a lower CC. Their findings led us to hypothesize that in general, words with a
higher CC would be recognized more slowly and less accurately than words with a lower
CC. Second, one of the motivations for applying graph theory to the study of complex
systems is that some graph theoretic properties measure non-local or global properties of a
node (of a word, in the case of the present study) than more traditional measures do. The CC
is one such measure. The CC is a measure that can be made on a single node, although it
takes into account characteristics of the graph that are not strictly local to just that node. The
CC looks at how tightly inter-connected a word’s neighbors are in the entire graph structure
rather than simply the number of neighbors a word has as a measure such as neighborhood
density does (see Luce & Pisoni, 1998). Thus, the CC not only looks at the size of a word’s
neighborhood but also the connectivity of the neighborhood of a word as a whole. Our hope
was that our understanding of the process of spoken word recognition and the structure of
the mental lexicon could be advanced by examining the effects of such non-local global
variables on spoken word recognition processes. Third, as discussed in more detail below,
variables similar to the CC have already been shown to have effects in visual word
recognition tasks and we felt it would be worthwhile to determine if these indices had
similar effects in spoken word recognition tasks.

The experiments reported below examined the effects of the CC on spoken word recognition
in two different experimental tasks. We created a set of stimuli that controlled for
neighborhood density, word frequency, neighborhood frequency (i.e., frequency weighted
neighborhood density; Luce & Pisoni, 1998), phonotactic probability, word length, word
familiarity, and syllable structure (CVC) while at the same time manipulating CC. As used
here, a word’s neighborhood density, or more simply, just density, is the number of
neighbors that word has according to the DAS rule. Experiment 1 examined the effects of
the CC on listener’s accuracy in identifying spoken words under degraded listening
conditions. Experiment 2 investigated the effects of the CC on response latency in a word
repetition task.1

1A same-different discrimination experiment was also carried out using the stimuli employed in Experiments 1 and 2. The hypothesis
was that response latencies would be greater for high CC same pairs than low CC same pairs. Null results were observed in this
experiment perhaps because the same-different paradigm might not encourage lexical access as much as word repetition or perceptual
identification paradigms.
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Experiment 1
Experiment 1 used a word identification task in which the stimuli were degraded by
processing them with a noise-excited vocoder routinely used to simulate speech signals
generated by a cochlear implant (CI) (see Shannon, Fan-Gang, Kamath, Wygonsky, &
Ekelid, 1995). CIs are surgically implanted electronic devices that act as prosthetic aids for
individuals with profound hearing loss. Interest in hearing impaired populations with CIs has
increased in recent years affording researchers with an opportunity to study the effects of
auditory deprivation on cognitive mechanisms underlying spoken word recognition (see
Bergeson & Pisoni, 2004; and Pisoni, Cleary, Geers, & Tobey, 2000 for further discussion
of this topic).

Our first experiment examined how CC affects word identification accuracy scores across
two levels of spectral degradation using a cochlear implant simulator. Vocoded speech
consists of speech filtered into a specific number of frequency bands or channels (Shannon
et al., 1995). The amplitude envelope for each band is extracted with a low pass filter.
Frequency information is then replaced in each band with white noise modulated by that
amplitude. The intelligibility of the speech can be increased or decreased by varying the
number of frequency channels (see Shannon et al., 1995). Two levels of stimulus
degradation (10 and 12 channels) were chosen for this experiment based on Shannon et al.’s
previous work investigating spoken word recognition under degraded conditions. These two
levels were also selected in part because they elicit moderate to high levels of accuracy in
spoken word recognition (70–80 % correct).

Method
Participants—The participants in Experiment 1 were 40 native speakers of American
English who reported no prior history of speech or hearing disorders at the time of testing.
Twenty participants were recruited for each of the two between-subject conditions from the
undergraduate psychology pool at Indiana University in Bloomington. Listeners either
received course credit or were paid seven dollars for their participation.

Design—A 2 × 2 design was used in Experiment 1. The between subject variable was the
level of speech degradation (either 10 channels — high degradation — or 12 channels —
low degradation).

The within subject variable was CC. The dependent variable was the percentage of words
correctly identified.

Stimulus materials—The critical experimental stimuli consisted of 94 familiar
(familiarity rating ≥ 6.25 for both high and low CC words; t(92) = .25, p = .80) mono-
syllabic CVC words (three phonemes each: Consonant-Vowel-Consonant). Word familiarity
measurements consisted of subjective measures obtained from a group of subjects using an
ordinal scale, 1 through 7, with 7 being highly familiar and 1 being unfamiliar (see
Nusbaum, Pisoni, & Davis, 1984). The 94 lexical stimuli were drawn from a larger set of
160 words (originally created for another study). The stimuli were divided into 47 low CC
words and 47 high CC words based on a median split of CC for all words in the Hoosier
Mental Lexicon, a corpus of approximately 20,000 American English words (Nusbaum et
al., 1984). The average CC for high CC stimuli was .426, while the average CC for low
stimuli was .257.

Each low CC word was matched with a high CC word that had approximately the same log
frequency (Kucera & Francis, 1967). The mean log frequency was 2.21 for the low CC
words, and was 2.17 for the high CC words, t(92) = .32, p = .75 (all t-tests are two-tailed). In
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addition, each low CC word’s corresponding high CC word had a neighborhood density
within two of the low CC word’s density. For each case where the high CC word had a
higher density than its low CC partner, there was another case where the high CC word had
the lower density (In 41 of the 47 combinations, the low and high CC words had the same
density). The average neighborhood density measure for low CC words was 19.55, and for
high CC words it was 19.62, t(92) = −.05, p = .96. High and Low CC words also did not
differ from one another in terms of frequency weighted neighborhood density (see Luce &
Pisoni, 1998). The mean neighborhood frequency for low CC words was 146, and the mean
neighborhood frequency for high CC words was 172, t(92) = .72, p = .47.

Phonotactic probability was also controlled across low and high CC pairs. Phonotactic
probability was computed using Vitevitch’s online calculator (see Vitevitch & Luce, 2004).
The average phone probability for low CC words was .145, and for high CC words it was .
140, t(92) = 1.04, p = .30. The average bi-phone probability for low CC words was .0050,
and for high CC words it was .0059, t(92) = .58, p = .56. The low and high CC words are
shown in Appendix A.

Each of the stimulus tokens were recorded by a male talker (who was naïve to the purpose of
the experiment) in a sound attenuated booth using a high-quality microphone. A randomized
list of the stimulus words was presented to the talker on a CRT display and the words were
recorded one at a time on a PC using the SAP program in the Speech Research Laboratory in
Indiana University. The words were then digitized and edited into individual files using the
Praat version 4.1.5 waveform editor (http://www.praat.org). The Level-16 v2.0 program was
used to normalize the signal level’s amplitude of all the words at 65 dB (Tice & Carrell,
1998). Clustering Coefficient was computed using the Pajek program for Windows (Batagelj
& Mrvar, 1998) (http://vlado.fmf.uni-lj.si/pub/networks/pajek/).2

Each listener heard and responded to each of the 94 stimuli. The stimuli in Experiment 1
were degraded using the Tiger Speech Cochlear Implant Simulator developed by Tiger
Speech Technology, Inc., Version 1.01.07 (obtained from
www.tigerspeech.com/tst_tigercis.html).

Procedure
Experiment 1 used an open-set word identification task. Words were played at a comfortable
listening level over Beyer Dynamic DT 100 headphones connected to a Macintosh computer.
Subjects were instructed to listen to the words and use the keyboard to type in whatever
English word they thought they heard as accurately as possible.

Each trial began with the presentation of a plus sign (+) on the center of the computer screen
displayed for 500 milliseconds. After the plus sign disappeared from the screen, a degraded
word was played over the headphones. After the word finished playing, a dialogue box was
displayed on the screen requesting the listener to type in what they heard. After the listener
finished typing their response and hit “Return”, there was a 1,500 ms pause before the next
trial began. The stimulus words were played in a different random order to each listener.

Results and Discussion
In the data analysis, both the target word and response were automatically transcribed using
the phonemic alphabet from the CMU dictionary (Obtained from
www.speech.cs.cmu.edu/cgi-bin/cmudict). If the transcription of the target and response

2Pajek computes two measures of CC: One that is normalized by the relative number of neighbors, and one that is not. We used the
measure of CC that is not normalized because we were interested in measuring CC as a lexical variable independent of neighborhood
density.
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matched in the onset, nucleus, and coda positions, the response was scored as correct. If
listeners typed in a homonym of a target word, for example, by typing in the word sea
instead of see, the response was also scored as correct since the phonetic transcriptions are
identical. The overall percentage of words correctly identified as a function of number of
channels and CC is shown below in Figure 2.

For the data analysis, we implemented a generalized linear model (see Baayen, Davidson, &
Bates, 2008; and Baayen, Feldman & Schreuder, 2006, for discussion on implementing
linear models) with a logistic link function since responses across subjects and items were
treated as either correct or incorrect (i.e., the proportion of correct responses was treated as a
binomial random variable). The linear modeling approach has the advantage of adding
statistical power to data analysis, in particular, because it allows variables such as CC to be
treated as continuous rather than dichotomous.

The best fitting model was obtained by maximizing the log-likelihood ratio and including
channels (10 vs. 12) and CC as main effects. As the level of degradation decreased by
increasing the number of channels from 10 to 12, listeners identified words more accurately.
The main effect of channel was statistically significant. Words were recognized correctly
75.5 percent of the time in the 10-channel condition (SD = .22) and 84.0 percent of the time
in the 12-channel condition (SD = .182) (likelihood-ratio χ2(1) = 48.32, p < .0001). The
main effect for CC was also highly significant as well. The mean percent correct words
identified for low CC words was 82.2 percent (SD = .198), and for high CC words was 76.8
percent (SD = .218) (likelihood-ratio χ2(46) = 406.90, p < .0001).

Additionally, ANOVAs were carried out on the accuracy scores and were done separately
treating subjects (F1 or t1) and items (F2 or t2) as random effects (Clark, 1973). Some
researchers have questioned whether the use of F2 or t2 is well founded particularly when
item variability is well controlled as it was in this study (e.g., Raaijmakers, Schrijnemakers,
& Gremmen, 1999), although we still included the items in our analysis. In the F2 analysis,
items falling 2.5 standard deviations above or below the mean accuracy score in each
condition were eliminated. Three words were dropped from the items analysis in the
ANOVA (two low CC words and one high CC word) as well as the subject analysis using
this criterion.3

The results of Experiment 1 provided support for the hypothesis that a word’s CC affects
spoken word recognition. Words with a higher CC were identified less accurately under
degraded listening conditions than words with low CC.

Experiment 2
Experiment 2 was designed to obtain converging evidence for the hypothesis that a higher
CC leads to poorer spoken word recognition performance than a lower CC. In this
experiment we used a speeded word repetition task, a procedure that strongly encourages
lexical access. On each trial listeners heard a spoken word under clear listening conditions
and were simply required to repeat the word as quickly as possible back into the
microphone. The dependent variable of interest was the listener’s reaction times.

3More traditional ANOVAs were also carried out on the accuracy scores and were done separately treating subjects (F1 or t1) and
items (F2 or t2) as random effects (Clark, 1973). Items falling 2.5 standard deviations above or below the mean accuracy score in each
condition were eliminated. Three words were dropped from the items analysis in the ANOVA (two low CC words and one high CC
word) as well as from the subject analysis using this criterion. The results for the One-Way ANOVA were as follows: For the main
effect of Channel, both F1 and F2 analyses were significant (F1(1,38) = 23.73, d(effect size) = .41, p < .0001; F2(1, 89) = 19.56, p < .
0001). The main effect of CC was highly significant in a subjects analysis, (F1(1,38) = 22.37, d = .26, p < .0001), and significant in an
items analysis, (F2(1, 89) = 4.39, p < .05). The CC x channel interaction was not significant, (F1(1,38) = 1.61, p = .211; F2(1, 89) <
1).
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Method
Participants—The participants in Experiment 2 were 21 native speakers of American
English who reported no prior history of speech or hearing disorders at the time of testing.
The participants were recruited for this experiment from the undergraduate psychology pool
at Indiana University in Bloomington. Participants received course credit for their
participation. None of the participants were used in Experiment 1.

Design—Experiment 2 measured response latencies in a word repetition task to low and
high CC words. CC was a within subjects variable.

Stimulus materials—The same set of 47 high CC words and 47 low CC words used in
Experiment 1 was used in Experiment 2.4 The words used in this experiment were not
degraded and were presented under quiet listening conditions.

Procedure and Apparatus—The entire set of stimulus words were presented in a
different random order for each subject in a sound attenuated booth. Words were played at a
comfortable listening level over Beyer Dynamic DT 109 headphones connected to a
Macintosh computer. Subjects were instructed to listen to the words and simply repeat the
word they heard back into the microphone as quickly and as accurately as possible in an
audible voice. The microphone in turn was interfaced to a voice key. Subjects were also
instructed to listen carefully and not make any adjustments to the microphone that was
connected to their headphones.

Each trial began with the presentation of a plus sign for 500 milliseconds in the center of a
computer monitor screen. After the plus sign disappeared from the monitor, a word
randomly selected from the stimulus set was played over the headphones. After the stimulus
word was played, the timer began recording until the voice key was triggered by the
listener’s response. There was a 2,000 ms pause before the next trial began. This inter-
stimulus interval did not begin until the listener triggered the voice key with his/her
response.

Both the spoken stimulus word and the listener’s verbal response were recorded through a
mixer to a Tuscam DA-P1 digital audio tape recorder for later analysis.

Results and Discussion
The mean reaction times, standard deviations, and standard errors were computed for each
listener. Any reaction time falling 2.5 standard deviations above or below the listener’s
mean reaction time, reaction times to incorrect responses, and any reaction time falling
below 100 ms were eliminated from the final data analysis (see Winer, 1971). The mean
reaction time for low CC words was 452 ms (SD = 75.70; SE = 16.52) while the mean
reaction time for high CC words was 472 ms (SD = 74.50; SE = 16.26). The results for mean
reaction time across conditions are shown below in Figure 3. Fifteen of the 21 listeners
responded more quickly to low CC words than to high CC words, a proportion significantly
different from chance according to a binomial test, p = .05. Word repetition accuracy scores
were nearly 100 percent. No participant made more than 2 percent errors in either condition.

We applied linear mixed effects models to the data set treating subjects and items as random
effects and CC as a fixed effect (see Baayen et al., 2008). Since reaction time data is

4Research has shown that phonetic biases can affect voice key response measurements. In particular, voiceless obstruent consonants (/
s/, /ʃ/, /f/, /h/, and /θ/) have been shown to be detected later than stop consonants (/p/, /b/, /g/, /k/, /t/, and /d/) (see Kessler, Treiman, &
Mullennix, 2002) since they typically produce less energy. The number of stop consonants (Low CC = 17 and High CC = 15) and
voiceless and obstruent consonants (Low CC = 14 and High CC = 15) in the onset position were controlled across conditions.
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typically skewed to the right, we applied a logarithmic transformation on the data prior to
the analysis. Two tests using linear mixed effects models were applied to the data set: one
treating both subjects and items as random effects (since they are randomly sampled from
their respective populations) and CC as a fixed effect, and a second reduced model with just
subjects as a random effect and CC as a fixed effect. In each analysis, the effect of CC
reached statistical significance. For the full model with both random effects F(1, 1632) =
3.77 p = .05 with the log-likelihood ratio = 597 (AIC = −964.70). For the reduced model
with only subjects as a random effect, F(83, 1642) = 2.63, p = .0001 with the log-likelihood
ratio = 584.50 (AIC = −959). The model selection criteria of the log-likelihood ratio and
AIC were close for each model fit. We therefore selected the reduced model without items
as the model that best characterized the data.5

Experiment 2 provided additional evidence supporting the hypothesis that CC, or the
connectivity between the lexical neighbors of a word, affects spoken word recognition. The
results from Experiment 2 showing faster latencies when repeating low CC words than when
repeating high CC words are consistent with the results obtained in Experiment 1, where
listeners identified low CC words more accurately than high CC words. It is possible that
idiosyncratic perceptual strategies could be used in either paradigm to allow for lexical
access to be bypassed. Still, evidence for the effects of CC in spoken word recognition was
obtained by using two paradigms that encourage lexical access. Taken together, these
findings suggest that the CC of a word affects both the speed and accuracy of spoken word
recognition during the retrieval of words from the mental lexicon.

General Discussion
Experiment 1 provided evidence that a higher CC leads to poorer performance when
recognizing spoken words under degraded listening conditions. Experiment 2 provided
additional evidence that a higher CC leads to longer word repetition latencies. Taken
together, the results of both experiments are consistent with the hypothesis that a higher CC
has a deleterious effect on a listener’s ability to recognize isolated spoken words. The effects
of CC demonstrate the importance of the global network structure and lexical connectivity,
rather than simply the local structure, in spoken word recognition. What mechanisms might
be responsible for producing the observed effects? Is the CC effect found here consistent
with current models of spoken word recognition?

Most contemporary models of spoken word recognition are what could be called
“activation-plus-competition models” (see Luce & Pisoni, 1998; McClelland & Elman,
1986; Norris, 1994; Norris, McQueen, & Cutler, 2000; although see Norris & McQueen,
2008, for a probability-based model). In such models, words are activated to the degree that
their lexical representations are consistent with the acoustic-phonetic input in the speech
signal. The activated words then compete with one another until one exceeds some
threshold. In neural network models such as TRACE (e.g., McClelland & Elman, 1986) and
MERGE/Shortlist (Norris et al., 2000), this competition is typically implemented as lateral
inhibition between processing units or nodes. Competition occurs at both the phonological
segment level where activated segments inhibit other segments and the lexical level where
activated words inhibit other words (see Vitevitch & Luce, 1998).

Why would a higher CC result in more difficult spoken word recognition in the context of
an activation-plus-competition model? Conceivably, feedback could drive the effects of CC.

5We also carried out a traditional paired sample t-test (two-tailed) on the reaction times across subjects, and an independent samples t-
test (two-tailed) on items. The effect of CC was significant in the subjects analysis (t1(20) = 2.09, d = .28, p = .05), but not in the
items analysis where only a non-significant trend was observed, (t2(92) = 1.43, p = .16). Overall, the effect size was moderate.
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In an important contribution to the field of visual word recognition Mathey and Zagar (2000;
see also Mathey, Robert, & Zagar, 2004) examined the effects of neighborhood distribution
or what they called spread, and discussed the variable in the context of “activation-plus-
competition” models. Spread denotes the number of different letter positions (phonological
segment positions, in the case of spoken words) where a letter substitution (or phoneme) can
result in a new word. For example, suppose that the only two neighbors of the word “sit”
were “lit” and “kit”. Then, the spread of “sit” is 1 since both neighbors differ from “sit” in
the same letter position. Now suppose that the only two neighbors of “sit” were “lit” and
“sin”. Now its spread would be 2 since neighbors can be formed by a letter change at either
the first or third letter position. Although it is theoretically possible to construct cases where
a low spread is associated with a low CC and a high spread is associated with a high CC, a
low spread typically means a high CC and a high spread means a low CC (i.e., spread and
CC are negatively correlated).

Consider a 4-letter target word with 4 neighbors and a spread of 1. Since all 4 neighbors
differ from one another at the same letter position, they themselves are all neighbors of one
another and the CC of the target word is 1. Consider a 4-letter word target word with 4
neighbors and a spread of 4. Each neighbor differs from the target word at a different letter
position. Hence, none of the neighbors are themselves neighbors of one another and the
target word’s CC is 0. We analyzed our stimuli in terms of spread and found that the average
spread for low CC words was 3, and the average spread for high CC was 2.77. While the
mean value for the spread variable was numerically very close for both stimulus sets, a t-test
revealed that the low CC set had a larger spread value (all words had spread 3) than the high
CC stimulus set t(92) = 3.61, p < .001.

Mathey and Zagar (2000) reported slower lexical decision times to words with low spread
(high CC) than to words with high spread (low CC), a finding that is consistent with our
results for spoken word identification. They also simulated the effects of spread in
McClelland and Rumelhart’s (1981) Interactive Activation Model (IAM), a visual word
analogue of McClelland and Elman’s (1986) TRACE model for spoken word identification.
They found that the IAM model correctly predicted the results of lexical spread. Although
they did not directly test this hypothesis in their simulation, they did argue that, in the
context of the IAM model, the effect of spread was due to feedback from the word level to
the letter level.

Although similar to IAM, TRACE includes top-down feedback from the word level to the
phonological segment level. One explanation for the observed effect of CC in our results is
that feedback from lexical units somehow provides more facilitation to sub-lexical units
(i.e., phonemes) in low CC words. When a word becomes active, it sends activation back
down to the segment level, activating those segments contained in the word. The neighbors
of low CC target words are typically inhibited by fewer words compared to high CC words.
Intuitively, the lexical competitors of high CC words should be suppressed more than the
competitors of low CC words, due to the fact that they are inhibited by more neighbors,
thereby causing high CC words to reach their threshold sooner in the detection process. This
effect though, may be offset by the effects of lexical feedback from low CC neighbors
(which are, on average, more active than high CC neighbors due to fewer neighbors
inhibiting them) providing greater facilitation to the phonemes that overlap with the target
word. This process would essentially allow the effects of feedback to overcome inhibition.
As a result of interactive activation, low CC words can, on average, reach threshold sooner
than high CC words. Presumably in a behavioral experiment, this result would be reflected
in faster response times and higher percent correct to low CC words than to high CC words,
a finding that would be consistent with the results observed in Experiments 1 and 2. Thus,
the effects of CC observed in our two experiments are generally consistent with the
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interactive framework in the TRACE model of McClelland and Elman (1986) as well as
other potential activation-plus-competition models of spoken word recognition.

One major difference between TRACE and Norris’s (1994) Shortlist model and Norris et
al.’s (2000) MERGE model is the presence of feedback from the word level to the
phonological level in TRACE and the lack of feedback in Shortlist and MERGE. In fact, the
need to incorporate such feedback has been a major source of controversy between the
adherents of the two models (see e.g., Norris et al., 2000, for a thoughtful discussion of this
point, as well as McClelland, Mirman, & Holt, 2006; McQueen, Norris, & Cutler, 2006; and
Mirman, McClelland, & Holt, 2006). Strictly feed-forward mechanisms can theoretically
produce faster/more accurate recognition for low CC words due to the fact that high CC
words typically share a segment among many neighbors (i.e. because of lower spread).
Thus, the neighbors of high CC words might remain active longer and inhibit the target for a
greater duration. Future research designed to disentangle these two possible explanations of
the effects of CC could also help discriminate between models of spoken word recognition
that include feedback from the word to the phonological level, such as TRACE, from those
that include no such feedback, such as MERGE.

Norris and McQueen (2008) recently developed a Bayesian probabilistic version of
Shortlist, known as Shortlist B, as an alternative to activation based models. Unlike
activation based connectionist models of word recognition, including the interactive
activation model TRACE, or strictly feed forward models such as MERGE, Shortlist B
performs computations on paths — a lattice of words in a sentence or a string of phonemes
in a word. Some paths, naturally, have higher probabilities than others. Shortlist B computes
the posterior probability (i.e., the probability of recognizing a word given the available
perceptual evidence) on a string of words or phonemes by considering the available
perceptual evidence conditioned on the overall probability of the string.

While the lattice structure inherent in Shortlist B differs from the structure of connected
networks with inhibitory connections, both conceptualizations can account for the effects of
neighborhood density. For words, Norris and McQueen (2008) pointed out that statistical
dependencies are built into the lexicon in such a way that words with common sequences
will also tend to have many lexical neighbors. These dependencies “modulate” word
recognition rates as a function of the effect of similar sounding words. The more similar
sounding words there are to a target word, the greater the impact on the available evidence.
Note though that Mathey et al. (2004) explained the results for spread (CC) by arguing that
lexical feedback counteracts the effects of lateral inhibition at the word level. Inhibition
creates an advantage for high CC, but downward feedback apparently offsets this effect. It is
therefore possible that the effects of CC might be predicted to go in the direction opposite to
what we observed by models with inhibition but without feedback. Shortlist B does away
with inhibition as well as feedback, and consequently, it might predict null effects for CC.
However, the model is complex and simulations will be necessary to verify this reasoning.

Mathey and Zagar’s (2000) finding that lower spread has similar effects in visual word
recognition as high CC has in spoken word recognition also raises the issue of how
orthographic variables might be related to phonological variables in the mental lexicon.
While the focus of our research was on the phonological mental lexicon, it is vital to
recognize that lexical representations and information in those lexical networks carry
information above and beyond the phonological. In fact, the focus on the phonological
lexicon, and phonology in general is a simplification arrived at by dimensional reduction.
True lexical representations in memory include multiple sources of information specific to
the episode of the utterance, including talker specific information (Palmeri, Goldinger, &
Pisoni, 1993). Phonological information stored in memory is, almost certainly, tightly
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coupled with other stimulus attributes such as orthographic, as well as information related to
the role typically played by the word in a sentence (i.e., noun or verb?).6 One potential
theory advocated recently by Port (2006) is that our knowledge of orthography, the alphabet,
and even grammatical structure of the language provides the basis for our phonological
representations and intuitions about phonology.

Finally, the effects of CC on spoken word recognition are not entirely unequivocal.
Vitevitch (2007) recently examined the influence of phonemic spread (either 2 or 3) on
spoken word processing of CVCs using three experimental paradigms: lexical decision,
word repetition, and same-different discrimination. When neighborhood density is held
constant, it is mathematically conceivable for two CVCs of different spread to have the same
CC. In reality, though, as explained above for printed words, CVCs of spread 2 tend to have
a higher CC than CVCs of spread 3. An analysis of the stimuli used by Vitevitch using a
two-tailed t test confirmed that in fact the spread 2 words used in his study on average had a
higher CC than the spread 3 words (p < .01). Nevertheless, Vitevitch found that words with
a spread of 2 (high CC) were responded to more quickly in each of his three experimental
paradigms than words with a spread of 3 (low CC), a result that is opposite of the findings of
the present experiments. It is worth noting in this regard that we also used the same set of
stimuli used in both Experiments 1 and 2 in a same-different task and found no difference in
response times to high and low CC words.

One potential explanation for the discrepancy in the two studies may be due to task
differences. Of the various tasks used, the same-different task seems to be the one least
likely to require lexical access, since discrimination responses could at least theoretically be
based on the degree of acoustic-phonetic similarity between the two stimuli on any given
trial. If lexical access were not occurring, then there is little reason to expect CC to have any
effect. Such an analysis is consistent with our finding of no effect of clustering in a same-
different task. It does not, however, explain Vitevitch’s (2007) finding of faster responding
to high CC words in lexical decision or in word repetition. Currently, there is no satisfactory
explanation regarding the discrepancy across studies, and additional research will be needed
in order to determine the reason for the discrepancy.

A similar state of affairs exists in the printed word recognition literature. Mathey and Zagar
(2000) and Mathey et al. (2004) found faster and more accurate response times in a visual
lexical decision task to what were in effect low CC words than to what were in effect high
CC words. Other researchers (e.g., Johnson & Pugh, 1994; Pugh, Rexer, Peter, & Katz,
1994), also using a visual lexical decision task, found faster responding to what were in
effect high CC than to low CC words. (Note that all these authors talked in terms of spread
rather than CC). Mathey and Zagar argued that the discrepancy between their results and
Johnson and Pugh’s (1994) results showing inhibitory effects for high spread (low CC)
could be due to the distribution of the number of neighbors formed by changes at each letter

6A reviewer used a logistic regression model and a database (containing 75 out of 94 of our stimuli) to determine whether two
principle components (PCs) (derived from 10 measures of orthographic consistency; Baayen, Feldman, & Schreuder, 2006) as well as
the noun-verb ratio (the extent to which high vs. low CC words were used as nouns or verbs) differ across levels of CC. The results
indicated the noun-verb ratio and both PCs serve as significant predictors for the level of CC. The analysis revealed that high CC
words tend to be used as nouns more than verbs, and were associated with larger values of PC1 as well as higher values of the second
PC related to “type and token counts” (PC4 in Baayen et al., 2006). PC1 contrasts the number of words with different pronunciations
(for the same sequence of letters) with the number of orthographic neighbors. A large value of PC1 characterizes words with many
neighbors, while a low value of PC1 is associated with words that are more likely to have multiple pronunciations for the same letter
sequence. The reviewer suggested that one reason why nouns might contribute to more neighborhood connectivity than verbs might be
due to the fact that verbs typically have a more complex argument structure. Finally, a post-hoc regression analysis was carried out on
data collected by Balota and colleagues (Balota, Cortese, & Pilotti, 1999). The results from the linear model analysis revealed that
reaction times (RTs) from a printed word lexical decision task were lower for low CC stimuli, with CC being a greater predictor than
either the first principle component or the noun-verb ratio. Interestingly, these results are in line with the data obtained by Mathey and
Zagar (2000) as well as with our own data using spoken words.
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position. For example, consider a word with a spread of 2 with six neighbors. Five of those
neighbors could be formed by a change in the first letter position and one formed by a
change in the second letter position (a distribution of 5-1-0). Or, three neighbors could be
formed by a change in the first position and three by a change in the second position (a
distribution of 3-3-0). Mathey and Zagar (2000) demonstrated in a series of simulations that
the effects of spread did, in fact, vary as a function of neighborhood distribution. However,
the variable of neighborhood distribution is completely confounded with CC. For example,
consider a CVC with a spread of 2 and eight neighbors, four formed by changing the first
phoneme and four by changing the second (4-4-0). The CC equals 12/28. Now consider
another word also of spread 2 and with eight neighbors, but an unbalanced distribution of
7-1-0. Its CC is equal to 21/28. In the above example, the spread is identical across words
(i.e., spread = 2), and the neighborhood density is held constant. CC though also differed
considerably across words and covaried with spread.

Interestingly, when spread was held constant at 2, Mathey and Zagar observed higher
activation levels when the neighbors were equally spread out over two letter positions
compared to when they were unbalanced. Similar logic holds for words with spread equal to
3. Though likely to be difficult in practice, it is at least mathematically possible to hold
spread and number of neighbors constant while varying CC. The balance of the
neighborhood distribution would also vary with CC. It is also mathematically possible to
hold CC constant while spread (and hence also the balance of the distribution) vary.
Performing experiments like these (if possible) might help sort out which of these three
seemingly inextricable intertwined variables has an effect.

In summary, our finding that a higher CC slows spoken word recognition and leads to less
accurate word recognition under noise should lead to future studies exploring the effects of
network and graph related variables in spoken word recognition. These findings,
furthermore, have potential implications for model selection issues in spoken word
recognition, such as whether it is necessary to incorporate feedback mechanisms in models.
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Figure 1.
The target word on the left has a high CC while the target word on the right has a low CC.
Each target word has four neighbors and therefore has the same neighborhood density.
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Figure 2.
Percent correct word identification as a function of CC and number of channels. Error bars
represent one standard error of the mean.
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Figure 3.
Mean reaction times for the high CC and low CC conditions in Experiment 2. Error bars
represent one standard error of the mean.
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Appendix A

Low CC Words High CC Words

beach noose bail pool

bead peck bath rear

boom pit beige shag

burn pup chain shear

calm purse chat sheep

chef rood chill shin

cool rough dies shine

coop rush dive ship

cup sang dud shore

dawn shove fad shun

dog shut foul siege

fed sing gag thief

gas sod gap third

hide soup gear toad

hop sour gin tongue

hurl suck goal tour

known sung got vain

lake tape hear veal

lead tough hen vile

learn wash jail wage

loss weed knock watt

mass wig league wire

mike witch mug youth

mood nap
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