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Abstract

Limitations to biomarker discovery are not only technical or bioinformatic but conceptual as well. In our attempt to
offer a solution, we are highlighting three issues that we think are limiting progress in biomarkers discovery. First,
the confusion stemming from the imposition of a pathology-type immunohistochemical marker (IHCM) concept
on omics data without fully understanding the characteristics and limitations of IHCMs as applied in clinical
pathology. Second, the lack of serious consideration for the scope of disease heterogeneity. Third, the refusal of the
biomedical community to borrow from other biological disciplines their well established methods for dealing with
heterogeneity. Therefore, real progress in biomarker discovery will be attained when we recognize that an omics
biomarker cannot be assigned and validated without a priori data modeling and subtyping of the disease itself to
reveal the extent of its heterogeneity, and its omics’ clonal aberrations (drivers) underlying its subtypes and
pathways’ diversity. To further support our viewpoints, we are contributing a novel a systems biology method
such as parsimony phylogenetic approach for disease modeling prior to biomarker circumscription. As an ana-
lytical approach that has been successfully used for a half of a century in other biological disciplines, parsimony
phylogenetics simultaneously achieves several objectives: it provides disease modeling in a hierarchical phylo-
genetic classification, identifies biomarkers as the shared derived expressions or mutations—synapomorphies,
constructs the omics profiles of specimens based on the most parsimonious arrangement of their heterogeneous
data, and permits network profiling of affected signaling pathways as the biosignature of disease classes.

Introduction

With the total number of cancer patients in the
United States projected to increase by 55% at 2020, the

need for an effective early detection methods and prevention
programs becomes more crucial to ameliorate the situation of
rising statistics (Roukos, 2009; Warren et al., 2008). Therefore,
accurate predictive biomarkers and/or profiling techniques
for early detection can play an important role in affecting
patients’ survival and provide the proper treatment.

The identification, qualification, and application of diag-
nostic and prognostic biomarkers remain the holy grail of the
current omics paradigm. Despite the setbacks, the quest for
biomarkers goes on and the expectations are still holding

(Morrison and Veenstra, 2008; Rifai et al., 2006). Biomedical
researchers keep a watchful eye for any gene, protein, or
metabolite expressions that could serve as biomarkers indic-
ative of early disease phenotypes and subphenotypes, or
predictive of disease progression and outcome. More highly
desirable are biomarkers that can be tagged to drug targets
and therapy. The search for biomarkers has not been very
fruitful compared to the amount of investment thus far (May,
2010; Morrison and Veenstra, 2008; Nature, 2008, 2010; Saw-
yers, 2008). Although from our perspective the search is
highly justifiable, we think that current omics-based ap-
proaches to biomarker discovery face conceptual and bioin-
formatic challenges that are impeding effective mining of
most data types. The need for a conceptual fine-tuning and an
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integrative analytical approach to data mining has become
imperative to move such efforts to success (Abu-Asab et al.,
2008a).

We have outlined below conceptual problem and practical
challenges, and demonstrated a new systems biology para-
digm of omics data mining for biomarkers and profiling of
biosignatures. Systems biology here is an integrative frame-
work to data analysis. There are several main issues that, in
our opinion, seem to be the largest hurdles in the process of
biomarkers’ discovery. Central to all other issues is dealing
with data heterogeneity that reflects disease heterogeneity.
The molecular concept of disease, as it turned out, is more
complex and problematic than was thought earlier, and in
turn, is reflected in the difficultly of demarcating disease ini-
tiation and boundaries in an omics context. Many on the
biomarker discovery wagon seem oblivious to the intractable
issue of heterogeneity as well as to the history and nature of
biomarkers. As we explain below, biomarkers that are in
current usage (especially in diagnostic pathology) are far from
being perfect, and they are not always applied in a straight
forward manner.

Successful search for omics biomarkers will move forward
by resolving the conceptual and practical challenges that we
have outlined here, especially the need for a utilitarian omics-
based biomarker definition, and more disease-relevant
bioinformatic tools. As a step forward in this direction, we are
proposing the use of parsimony phylogenetic paradigm as a
new systems biology paradigm to modeling and analyzing
omics data, identify omics biomarkers as the shared clonal
aberrations, subtype disease classes, and profile altered sig-
naling pathways as the genotypes of disease classes as dem-
onstrated on the prostate cancer gene microarray dataset
presented herein.

Current Problems in Biomarker Discovery

With the expansion of omics applications, it was expected
that a new generation of more accurate and ubiquitous bio-
markers would be identified with relative ease; however, the
task proved to be intractable; only very few biomarkers have
been brought to clinical settings, and many proved to be ir-
reproducible (Ransohoff, 2009; Sawyers, 2008). The pathology
biomarker paradigms of immunohistochemical markers
(IHCM) and blood biomarker have not applied well to the
omics realm—mainly because of their own specificities and
limitations, and thus far no adjustment of biomarker defini-
tion to the new quantitative omics data has been introduced.
Many researchers mining omics data do not seem to be fa-
miliar with IHCM’s features, modes of application, and their
limitations. The use of IHCM in diagnostic pathology has
been qualitative in nature, and the variability in their detec-
tion power, overlapping, and inconsistencies due to the het-
erogeneity of diseased tissues have always been recognized
by pathologists (Heim-Hall and Yohe, 2008; Kashani-Sabet
et al., 2009; Lerma et al., 2007; Rosai and Ackerman, 2004).

Provisionality of omics-based biomarkers is a pandemic
that is well documented is ample reports (Kaiser, 2009; May
2010). It is a common problem that is linked to the above
issues, and can additionally be attributed to a few more fac-
tors: the statistically underpowered size of diseased speci-
mens in the majority of reports; use of a limited size (or
complete lack) of a nondiseased control group of specimens as

a study baseline; and most importantly the use of bioinfor-
matic tools void of biological relevance for data mining and
disease modeling. Provisionality extends to some blood bio-
markers that are currently in use in clinical practice. For ex-
ample, the value of CA 125 (cancer antigen 125, also known as
mucin 16 or MUC16) and PSA (prostate specific antigen) as
markers of early detection remains as of now controversial,
for their benefit may be offset by overdiagnosis and unnec-
essary treatment, as well as poor sensitivity and specificity for
early detection (Barry, 2009; Partridge et al., 2009).

Difficulty in locating single biomarkers is giving way to
profiling as an alternative to single biomarkers for prognostic
and predictive purposes. Small tumors may release low-
abundance proteins in the blood that are outside of the dy-
namic range of detection of most conventional assays, but
they also alter the expression pattern of normal proteins
(Concato et al., 2009; Oved et al., et al., 2009); profiling of the
latter change may therefore be more useful as early disease
biomarker than measurement of a single circulating factor
that cannot reliably distinguish between individuals with and
without cancer (May, 2010; Schaub et al., 2009). Similarly,
profiling of gene expression on the basis of two to several
thousand genes provides diagnostic, prognostic, or predictive
information about tumors (Dowsett and Dunbier, 2008; Loi
et al., 2007; Wang et al., 2005).

The current mainstream statistical and mathematical ana-
lytical methods need to be contributing toward a solution to
these issues. The goal of a bioinformatic analytical tool is to
reveal patterns within the data [such as shared-expression
aberrations (the clonal changes shared by the specimens of a
disease type), modeling heterogeneity, profiling of disease
classes and subclasses, etc.) to produce a predictive and
seamless model of specimens’ classification that can be further
utilized in a clinical setting (Abu-Asab et al., 2008b). However,
overdependence on mechanistic parametric methods often
masks the potential usefulness of the data. As such, they
should yield to biologically relevant analytical methods that
take into account the evolutionary nature of the disease (es-
pecially cancer), capable of processing omics’ data heteroge-
neity, incorporate all expression modes within the data into
the analysis (such as biomodal expression), and produce a
seamless multidimensional predictive classification of the
specimens of interest (Abu-Asab et al., 2008a, 2008b). For
example, arbitrary choice of boundaries, such as fold change,
and heavy reliance on biostatistics reduce predictivity by
suppressing diverse patterns of expressions and their multiple
profiles, thus producing artificial interpretations of speci-
mens’ relatedness.

Dichotomy between IHCM and Omics Biomarkers

Not all types of biomarkers are equal, and little has been
reported on the inherent differences between IHCMs and
omics biomarkers (Table 1), as well as their association with
the disease process and its boundaries (Knox, 2010). This in-
formation vacuum has left room for a mix up of their natures
and uses, and created unrealistic expectations. There are
many examples of erroneous statements portending the ap-
plicability of IHCMs to high throughput omics data (Takikita
et al., 2007). What is missing in the biomarker debate is a true
understanding of IHCMs’ usage and a comprehension of the
heterogeneous nature of the disease.
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One aspect of this issue is the apparent disconnect between
omics data and IHCM data. Researchers are surprised when
the IHCMs used in pathology do not turn up as significant
in the omics results, and vice versa. For example, posi-
tive immunoreactivity of gastric cancer specimens to p53,
E-cadherin, and b–catenin was not detected in microarray
analysis of the same specimens at the RNA level (Hippo et al.,
2002). Omics specimen preparation and common analytical
methods impose a stringent quantitative criterion that is in-
compatible with IHCM’s usage. Whereas the IHCM result
represents a qualitative assessment of one or a pair of markers
at a time in a few cells, the omics result reflects the total
content of the cells’ extract used in the study. Although an
IHCM will most likely fail to transcend into an omics bio-
marker, the reverse could occasionally take place, that is, an
omics biomarker could be a useful IHCM.

Tens of IHCMs are used in disease diagnoses, prognoses,
and follow-ups. A well trained pathologist has no doubt when
a tissue is positive for an antibody marker under the light
microscope, and there is minimum quantitation needed in
order to reach a conclusion. An IHCM staining of a tumor is
usually partial because a marker rarely stains all the cells of a
tumor. Thus, in IHCMs evaluations, it is the clear presence or
absence and not the quantity that is significant for diagnosis—
a qualitative and not quantitative criterion of evaluation. For
the pathologist, the positive staining of a few cells in a field of
tumor cells is good enough to call the IHCM staining positive,
although in this case it is indicative of heterogeneity within
the tumor as in many soft tissue sarcomas, blastomas, and
mixed nonseminomatous germ cell neoplasia (Maher, 2008;
Rosai and Ackerman, 2004). Polyclonality, or heterogeneity, is
emerging as the single most important factor in obstructing
effective data mining and hindering biomarker discovery, and
is responsible for drug resistance as well (Sumer and Gao,
2008).

There are a few additional reasons for the breakdown of the
IHCM concept when applied to high-throughput data of
microarrays and proteomics; these highlight the specific ways
by which IHCMs are applied. In most situations of diagnostic
pathology, IHCMs are usually chosen to correlate the tumor

immunophenotype with its tissue of origin, so they are
markers of normally or partially differentiated tissues (tissue
specific) and not of disease type (not disease specific). This is
the reverse of the omics’ aim because the analysis is done to
find common aberrant expressions in diseased tissues. In
addition, IHCMs are routinely employed in combinations that
are selected by the pathologist. Pathologists occasionally use a
combination of IHCMs that are not biologically linked, but are
employed for practical reasons in order to narrow down a
differential diagnosis; a process that cannot be applied to an
omics dataset.

An IHCM among a number of specimens of the same dis-
ease may have a widely heterogeneous quantitative distri-
bution when measured by gene-expression or proteomics
method, which renders it challenging for consideration as an
omics biomarker. Additionally, various omics expressions of
genes and proteins have shown a deviation from normal
distribution in a group of diseased specimens; a recently
recognized phenomenon that has not been taken into con-
sideration when assessing datasets for biomarkers or disease
subtyping (Abu-Asab et al., 2008a; Lyons-Weiler et al., 2004).
These two forms of heterogeneity are quantitatively measured
only by omics methods, and may be utilized for subtyping of
disease specimens.

We have outlined the differences underlying the dichot-
omy between IHCM and omics biomarkers; these differences
bolster the argument for a conceptual fine tuning of the omics
biomarkers paradigm in order to shake off the misconceptions
of the IHCM paradigm. The assumption of one-to-one corre-
spondence between omics’ biomarkers and IHCMs, although
possible in some cases, should not be expected as the rule.
Recognizing that the two approaches stem from different
paradigms and may have different utility is important in or-
der to avoid false expectations.

Disease and Specimen Heterogeneities:
Roadblocks in the Omics’ Biomarker Path

Only recently the term heterogeneity has become widely
acknowledged as a phenomenon that is characteristic of

Table 1. A Comparison Between Immunohistochemical Markers (IHCM) and Omics Biomarkers

Showing the Differences and Similarities Between the Two Classes of Biomarkers

Immunohistochemical markers Omics biomarkers

Qualitative in nature: presence or absence is
reported with minimum quantitation

Mostly quantitative in nature: derived from data
in absolute numbers but may also be used qualitatively

Tissue specific: indicative of the origin
of a diseased tissue

Disease specific: used to define the common aberrant
omics expressions of a disease

Used for diagnosis and often in combinations
to narrow down differential diagnosis
but of very limited use for early detection of disease

Thus far have not been used for clinical diagnosis
or for early detection of disease but search is ongoing
for such biomarkers

Diagnosis is not affected by their heterogeneous
quantitative distribution among specimens

Their heterogeneous quantitative distribution among
specimens is significant and affects their statistical
designation

Based on a few cells of a specimen in a light
microscopic field

Based on the cellular extract of many cells of a specimen

Are sometimes inconsistent and overlapping Have not been evaluated for this criterion
Their partial staining of tumors indicates polyclonality They may reveal polyclonality depending

on the analytical method (statistical vs. phylogenetic)
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pathogenesis and can be detected and quantified within dis-
eased tissues (Deo and Roth, 2009; Fisher et al., 2008). Lim-
itations of conventional anticancer chemotherapy as well as
the inadequate efficacy of targeted treatments have been
attributed to tumor heterogeneity (Roukos, 2009). Hetero-
geneity occurs at two levels: one as multiple clones/
phenotypes within an individual (such as within a tumor or
between several tumors from the same patient—specimen
heterogeneity), and the other between individuals (disease
heterogeneity).

In general, pathogenesis is a downhill disruption of cellu-
lar differentiation. The disruption involves the alteration of
tissue-specific gene expression (Winter et al., 2004). The al-
terations are reversible in temporary illnesses, and irreversible
due to mutations and permanently dysregulated expressions
in cancer and degenerative diseases (Fig. 1). Difficulty with
the discovery of valuable omics biomarkers may have to do
with the heterogeneous nature of disease initiation and pro-
gression where multiple intertwined processes may produce
the same disease phenotype (Fig. 1), and the inclusion within
the definition of disease the blurry boundaries between
normal and abnormal health conditions. The collection of
symptoms that we call a disease may be produced by
hundreds or thousands of heterogeneous omics variations
(Bielas et al., 2006; Maher, 2008). The asynchronous, homo-
plastic, and heterotachous expression patterns of genes and

proteins among diseased specimens further complicate the
state of disease heterogeneity (Abu-Asab, 2009).

Cancer incipience and progression are driven by random
mutations (Abu-Asab, 2009; Heng et al., 2010; Loeb et al.,
2008). This randomness, compounded with selective pressure
within tumors, produces intra- and interspecimen heteroge-
neity, which in cancer is the basis for selection to maximize the
tumor’s success (Abelev and Eraiser, 2008). Heterogeneity is
based on a mixture of ‘‘clonal’’ (driver) and ‘‘nonexpanded’’
(passenger) mutations (Campbell et al., 2008; Loeb et al.,
2008), and may be also on nongenetic individuality as it has
been recently suggested (Brock et al., 2009). Only clonal mu-
tations are the potential biomarkers, because they systemati-
cally characterize a larger number of specimens, whereas
nonexpanded ones are restricted to fewer specimens and
would have limited utility (Abu-Asab et al., 2008a, 2008b;
Yaffe, 2008).

Heterogeneity is detected in gene-expression microarrays
and proteomic datasets (Abu-Asab et al., 2006, 2008a, 2008b;
Dalerba et al., 2007; Heng et al., 2010). It occurs as simple
asynchronous pattern of expression, where a group of dis-
eased specimens has a mixture of normal and aberrant ex-
pression values for the same genes, or as complex pattern of
dichotomous asynchronicity, where the disease gene expres-
sions are both above and below the normal range (i.e., outside
the normal range) (Abu-Asab et al., 2008a, 2008b; Lyons-
Weiler et al., 2004). As with mutations, gene expression ab-
errations can be described as clonal and nonexpanded, as well
as reversible and irreversible. In cancer, as well as degenera-
tive and chronic diseases, clonal mutations and expressions
are most likely irreversible, and will contribute to the patho-
physiology throughout the lifespan of the disease (Hoeij-
makers, 2001; Kaput and Rodriguez, 2004). This is an
important assumption in bioinformatic analysis because it
will affect data modeling and subtyping, as well as subse-
quent biomarker discovery (see Modeling Heterogeneity
below).

Lately, heterogeneity in all of its forms has emerged as the
most intractable obstacle in biomarker discovery and targeted
treatment. Therefore, in an omics biomarker discovery con-
text, the challenge is how to effectively mine heterogeneous
data. We argue that a bioinformatic analytical tool should
produce an unbiased data-based classification/modeling of
the specimens that will simultaneously map the distribution
of variant expressions or mutations, and permit the distinc-
tion between the clonal and nonexpanded mutations and
expressions before any of them can be designated as a po-
tential biomarker. Therefore, modeling of disease and speci-
mens heterogeneities is a prerequisite to omics biomarker
discovery.

Modeling Heterogeneity: Biomarkers and Profiles,
Two Faces of the Same Coin

Choosing among the different analytical paradigms for the
most suitable one to deal with heterogeneity has been the
subject of lengthy debate among systematics biologists during
the second half of the 20th century (Abu-Asab, 2009). There
are a few theoretical aspects to an analytical tool that will
successfully tackle heterogeneity and produce meaningful
results. Among these is its optimum modeling of complex
data in a multidimensional hierarchical classification such as

FIG. 1. Pathogenesis as a heterogeneous process in cancer,
degenerative disease, and temporary illness disturbs the
differentiation of the affected cells. The process is reversible
in temporary illness, but irreversible in cancer and degen-
erative diseases. The latter two are associated with mutations
and permanently deregulated expressions. Multiple arrows
signify that several pathways may produce the same disease
phenotype, a condition that complicates biomarkers discov-
ery and calls for a priori modeling of the disease to reveal its
classes.
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the phylogenetic cladogram (a tree diagram that shows the
relatedness/similarity between the specimens); identification
of shared derived clonal aberrations—the synapomorphies;
subtyping of the study collection—class discovery; ability to
reduce multiple occurrences of a change, reversals, and par-
allelism when modeling the data; and its hierarchical classi-
fication reveals direction of change among a group of
specimens. In several recent publications, we have detailed
our reasoning for the choice of maximum parsimony as the
analytical paradigm for systems biology that is most suitable
for mining heterogeneity (Abu-Asab, 2009; Abu-Asab et al.,
2006; 2008a, 2008b).

Given the inherent uncertainty about data reproduc-
ibility between runs and among laboratories, the omics
biomarkers discovery may be better approached with a
qualitative aspect to data analysis that circumvents the
shortcomings of the quantitative approach (Abu-Asab
et al., 2006, 2008a, 2008b). Data analysis has been widely
focused on specimen-based statistical methods [such as
clustering and principal component analysis (PCA)] that
are void of attempts to utilize the qualitative aspects of the
data and take into consideration the biological and evo-
lutionary nature of the disease. This has hindered a
meaningful interpretation of omics data and with it bio-
marker discovery (Kolaczkowski and Thornton, 2004; Ste-
fankovic and Vigoda, 2007a, 2007b).

Additionally, sorting out clonal from nonexpanded ex-
pressions/mutations is a qualitative process that depends on
the distribution pattern of the expressions/mutations among
the diseased specimens under study. To bring out the qual-
itative content of a dataset, there are a few required steps.
First, the experimental design should always include normal
or nondiseased specimens (Abu-Asab et al., 2008a, 2008b). For
example, an analysis of cancerous specimens should include
noncancerous ones of the same tissue type or a closely related
one to be used later in the analysis as the baseline. Second, for
an expression value to be considered differentially expressed,
its values should be outside of the normals’ range (below the
minimum or above the maximum) in all of the diseased
specimens. We have suggested the normals’ range as a base-
line reference rather than other mathematical abstracts be-
cause it does not force the dismissal from the analysis those
expressions that do not have normal distribution among a
group of specimens. An expression that occurs outside the
normal range is termed derived or abnormal (Abu-Asab et al.,
2008a). A shared derived expression state (termed synapo-
morphy) circumscribes a class into a natural clade of related
specimens. Therefore, a synapomorphy is the potential bio-
marker.

There could be tens, hundreds, or even thousands, of sy-
napomorphies within a group or the subgroups of diseased
specimens. Some synapomorphies may be universally shared
by all specimens of a disease, but others have a restricted
distribution among these specimens; thus, an analytical al-
gorithm that can optimally model such a heterogeneous dis-
tribution is needed here. Parsimony phylogenetics has been
recognized as the most suitable method to analyze heteroge-
neity among specimens (Abu-Asab et al., 2006, 2008a, 2008b;
Kolaczkowski and Thornton, 2004; Stefankovic and Vigoda,
2007a, 2007b); it is known to produce the most plausible hy-
pothesis of relationships for the study set in a hierarchical
classification—usually presented in a graphical tree-like for-

mat termed cladogram (see Fig. 2 for an example of a clado-
gram). At the same time, parsimony identifies the shared
derived states of expressions for each clade of specimens
when present—the simultaneously deregulated expressions/
mutations that form a module driving disease pathogenesis.
Because expressions/mutations in cancers and chronic dis-
eases are irreversible, a parsimony phylogenetic analysis
based on Camin-Sokal algorithm is a more appropriate
method because it is built on such assumption (Camin and
Sokal, 1965).

To illustrate our premise by an example, we selected da-
taset GDS1439 from NCBI (http://www.ncbi.nlm.nih.gov/
sites/entrez?db¼ gds). GDS1439 contains the gene-expression
microarray data of a set of specimens composed of six be-
nign specimens, as well as seven primary and six metastatic
prostate carcinoma specimens (Varambally et al., 2005). The
first step of the analysis was sorting the expression values into
derived (abnormal) and ancestral (normal) by comparing the
values of the cancerous specimens against the range of the
benign specimens for every gene in the dataset. This trans-
formed the original data matrix into a new qualitative matrix
of 0s (ancestral/normal) and 1s (derived/abnormal). The new
matrix was processed with MIX (the parsimony program of
the PHYLIP package) using Camin-Sokal parsimony method
(Felsenstein, 1989), which produced one most parsimonious
cladogram (Fig. 2).

The cladogram shows a major dichotomy of two clades;
the first clade encompasses all seven primary tumors and
four of the six benign specimens (Fig. 2, node 6), and the
second clade composed of all metastatic tumors and the re-
maining two benign specimens (Fig. 2, node 13). Each of
these two major clades is supported by a list of synapo-
morphies that are shared by their respective specimens; the
number of synapomorphies for each clade appears close to
its node in Fig. 2 (for a list of synapomorphies see Supple-
mentary Table 1). Furthermore, the two sets of cancerous
specimens, the primary and metastatic, each form a clade
separate from their respective benign sister group (nodes 8
and 15, respectively) that are also supported by their own
synapomorphies. The two sets of synapomorphies of the
primary and metastatic prostate cancer are the potential
biomarkers for each group.

The two benign specimens forming the sister group to
the metastatic specimens share 717 synapomorphies with
the metastatic tumors (node 13), a far larger number than
what the other benign specimens (node 4) share with the
primary cancer clade—a total of 24 synapomorphies. Addi-
tional 4,944 synapomorphies separate the metastatic
from their benign sister group (node 15), whereas those of the
primary cancer clade is defined by only 1,018 synapomor-
phies.

In addition to being the potential biomarkers, the synapo-
morphies of a clade permit the construction of an interaction
or linkage network, which simulates the altered signaling
processes of a tissue—the genotypic profile of a disease class
(Schadt et al., 2009). Cluster-centered analysis approach using
the synapomorphies of nodes 8 and 13 with Genomatix’s
BiblioSphere (www.genomatix.com), set at abstract level fil-
tering, showed that the primary prostate tumors share a set of
affected signaling pathways that was different from the
metastatic tumors and their benign sister specimens (Fig. 3A
and B, detailed graphs are in Supplementary Figs. 1
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and 2). BiblioSphere identified MARCKS (actin filament
crosslinking protein) as a central node for the primary tu-
mors (Fig. 3A), and designated several central nodes for
the metastatic tumors that include AXL (AXL receptor tyro-
sine kinase), DES (desmin), HSPD1 (heat-shock protein 1),
IGF1 (insulin-like growth factor 1), and TP53 (tumor protein
p53) (Fig. 3B). Although the network analysis showed star-
connected pathways centered on a cytoskeltal gene in the
primary tumors, it produced a complex multidirectional
network in the metastatic specimens and their related benign
tissue.

Parsimony phylogenetic analysis permits further insights
into the biological implications of the expression data. The
cladogram and network analysis clearly indicated that early
tumor transformation within benign cells can be detected by
knowing the location of the specimen within the topology of
the cladogram, shared synapomorphies, or by plotting its
linkage network analysis as in Figure 3. Although it has been
established that early tumor cell dissemination occurs in

prostate tissue (Klein and Stoecklein, 2009), direct cellular
transformation into a metastatic cancer phenotype without
the formation of a primary tumor has not been shown
before—that is, whether the biological stage of metastasis is
set at initiation. In 3% of all cancer cases and in 5–10% of all
cancer patients with metastases, a metastatic tumor is diag-
nosed but the primary tumor cannot be found (Briasoulis and
Pavlidis, 1997; Mareel and Leroy, 2003). Podsypanina et al.
(2008) have shown by injecting precancerous pancreatic cells
into mice that direct transformation into metastatic phenotype
can take place, and our analysis as illustrated in the clado-
gram (Fig. 2) seems to lend support to this hypothesis. The
sharing of a good number of clonal expressions (synapo-
morphies) between the metastatic cancerous specimens and
their benign sister clade that were different from those of the
primary tumors’ clade and its respective benign sister clade
suggested that the metastatic phenotype follows an inde-
pendent pathway from primary tumor formation; this point
was further illustrated by network analysis (Fig. 3). It may
be also congruent with our early prediction of two major
developmental pathways within pancreatic, prostate,
and ovarian cancers based on the phylogenetic analysis of
their serum mass spectrometry proteomics (Abu-Asab et al.,
2006).

FIG. 2. A most parsimonious cladogram produced by
PHYLIP’s MIX using Camin-Sokal parsimony algorithm.
Dataset GDS1439 (http://www.ncbi.nlm.nih.gov/sites/
entrez?db¼gds) is comprised of six benign specimens, as
well as seven primary and six metastatic prostate tumors.
The cladogram shows a major bifurcation that delineates two
clades; the first composed of all primary tumors and four
benign specimens (node 6, supported by 24 synapomor-
phies), and the second composed of all metastatic tumors
and two benign specimens (node 13, supported by 717 sy-
napomorphies). A clade of primary tumors is delimited by
1,018 synapomorphies (node 8), whereas a clade of the
metastatic tumors is delimited by 4,494 synapomorphies
(node 15). Synapomorphies at nodes 6, 8, 13, and 15 are
considered clonal (driver) expression aberrations. Pooled
primary tumor specimens PX1 and PX2 grouped into a clade
(node 12), whereas pooled metastatic specimens, WX1 and
WX2 formed a clade (node 18).

FIG. 3. Schematic summary of network analyses produced
by Genomatix’s BiblioSphere. (A) A summary of affected
nodal pathways in primary prostate tumors at node 8 of
Figure 2, and (B) in metastatic prostate tumors at node 13 of
Figure 2. More details are provided in Supplementary Fig-
ures 1 and 2.
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Conclusions

We have argued that the qualitative nature of pathology’s
IHCMs cannot be extrapolated to the realm of omics bio-
markers, and the latter should be defined within their own
paradigm preferably through a systems biology approach.
Therefore, we proposed that only shared derived mutations/
expressions (also known as clonal aberrations or synapo-
morphies) in relation to normal conditions are the potential
omics biomarkers. Within the evolutionary paradigm, we
demonstrated how a parsimony phylogenetic analysis mod-
els a disease onto a tree-like diagram—the cladogram, that
maps heterogeneous multigene expression profiles and at the
same time shows the major shared clonal expressions at var-
ious levels of the hierarchical classification. Shared clonal
expressions are the synapomorphies and the potential omics
biomarkers that can be translated to a clinical setting in order
to provide specimen characterization for early detection,
diagnosis, prognosis, and posttreatment assessment. Ad-
ditionally, using a set of synapomorphies for pathway pro-
filing produces a genotype profile for a clade of specimens.
These two points support our premise that a phylogenetic
modeling of the disease datasets should be a priori step to
biomarker exploration.

This parsimony analysis is also a systems biology approach
that permits the recognition of shared aberrations within
several datasets and among some diseases, and may allow us
in the future to construct a comprehensive cancer tree of all
cancer types to show the commonalities among them as well
as the differences. Furthermore, stratification of the patients’
population through parsimony phylogenetics into subpopu-
lations will allow a better design of randomized clinical trials
to reveal the effectiveness of treatment within various sub-
populations, and determines future personalized therapeutic
decisions.
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