
Markov Decision Processes: A Tool for Sequential Decision
Making under Uncertainty

Oguzhan Alagoz, PhD, Heather Hsu, MS, Andrew J. Schaefer, PhD, and Mark S. Roberts,
MD, MPP
Department of Industrial and Systems Engineering, University of Wisconsin–Madison, Madison,
WI (OA); the Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA (AJS,
MSR); the Section of Decision Sciences and Clinical Systems Modeling, Division of General
Medicine, and Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh,
PA (HH, AJS, MSR); and the Department of Health Policy and Management, University of
Pittsburgh Graduate School of Public Health, Pittsburgh, PA (HH, MSR).

Abstract
We provide a tutorial on the construction and evaluation of Markov decision processes (MDPs),
which are powerful analytical tools used for sequential decision making under uncertainty that
have been widely used in many industrial and manufacturing applications but are underutilized in
medical decision making (MDM). We demonstrate the use of an MDP to solve a sequential
clinical treatment problem under uncertainty. Markov decision processes generalize standard
Markov models in that a decision process is embedded in the model and multiple decisions are
made over time. Furthermore, they have significant advantages over standard decision analysis.
We compare MDPs to standard Markov-based simulation models by solving the problem of the
optimal timing of living-donor liver transplantation using both methods. Both models result in the
same optimal transplantation policy and the same total life expectancies for the same patient and
living donor. The computation time for solving the MDP model is significantly smaller than that
for solving the Markov model. We briefly describe the growing literature of MDPs applied to
medical decisions.

Keywords
Markov decision processes; decision analysis; Markov processes

Formal decision analysis has been increasingly used to address complex problems in health
care. This complexity requires the use of more advanced modeling techniques. Initially, the
most common methodology used to evaluate decision analysis problems was the standard
decision tree. Standard decision trees have serious limitations in their ability to model
complex situations, especially when outcomes or events occur (or may reoccur) over time.1
As a result, standard decision trees are often replaced with the use of Markov process–based
methods to model recurrent health states and future events. Since the description of Markov
methods by Beck and Pauker,2 their use has grown substantially in medical decision making
(MDM).
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However, standard decision trees based on a Markov model cannot be used to represent
problems in which there is a large number of embedded decision nodes in the branches of
the decision tree,3 which often occurs in situations that require sequential decision making.
Because each iteration of a standard Markov process can evaluate only one set of decision
rules at a time, simulation models based on standard Markov processes can be
computationally impractical if there are a large number of possible embedded decisions, or
decisions that occur repetitively over time. For instance, consider the optimal cadaveric
organ acceptance/rejection problem faced by patients with end-stage liver disease (ESLD),
who are placed on a waiting list, and offered various qualities of livers based on location and
waiting time as well as current health.4 For this particular problem, a patient needs to make a
decision whether to accept/reject a particular type of liver offer (14 types) for each possible
health state (18 health states) at each possible ranking (30 possible ranks), which requires
the use of 18*14*30 = 7560 nodes in a decision tree. A standard Markov-based simulation
model needs to evaluate millions of possible accept/reject policy combinations to find the
optimal solution for such a decision problem, which would be computationally intractable.

The purpose of this article is to provide an introduction to the construction and evaluation of
Markov decision processes (MDPs) and to demonstrate the use of an MDP to solve a
decision problem with sequential decisions that must be made under uncertainty. Markov
decision processes are powerful analytical tools that have been widely used in many
industrial and manufacturing applications such as logistics, finance, and inventory control5
but are not very common in MDM.6 Markov decision processes generalize standard Markov
models by embedding the sequential decision process in the model and allowing multiple
decisions in multiple time periods. Information about the mathematical theory of MDPs may
be found in standard texts.5,7–9

We will motivate MDPs within the context of the timing of liver transplantation in a patient
who has a living donor available. Furthermore, we describe the problem in a sufficiently
simple level of detail that a standard Markov process describing the sequential decisions can
be evaluated for all plausible timing strategies, providing a direct homology between the
MDP and a standard Markov process evaluated under all possible decision strategies.

PREVIOUS MDP APPLICATIONS IN MDM
The MDP applications in MDM prior to 2004 are best summarized by Schaefer et al.6
Among these, Lefevre10 uses a continuous-time MDP formulation to model the problem of
controlling an epidemic in a closed population; Hu et al.11 address the problem of choosing
a drug infusion plan to administer to a patient using a partially observable MDP (POMDP)
model; Hauskrecht and Fraser12 use a POMDP framework to model and solve the problem
of treating patients with ischemic heart disease (IHD); Ahn and Hornberger13 provide an
MDP model that considers the accept/reject decision of a patient when there is a kidney
offer.

Recently, MDPs have been applied to more MDM problems. Alagoz et al.14–16 and
Sandikci et al.4 consider the optimal liver acceptance problem; Shechter et al.17 apply MDPs
to find the optimal time to initiate HIV therapy Alterovitz et al.18 use an MDP model to
optimize motion planning in image-guided medical needle steering; Maillart et al.19 use a
POMDP model to evaluate various breast cancer screening policies; Faissol et al.20 apply an
MDP framework to improve the timing of testing and treatment of hepatitis C; Chhatwal et
al.21 develop and solve a finite-horizon MDP to optimize breast biopsy decisions based on
mammographic findings and demographic risk factors; Denton et el.22 develop an MDP to
determine the optimal time to start statin therapy for patients with diabetes; Kreke et al.23

and Kreke24 use MDPs for optimizing disease management decisions for patients with
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pneumonia-related sepsis; Kurt et al.25 develop an MDP to solve the problem of initiating
the statin treatment for cholesterol reduction. While there have been few MDP applications
to MDM, such recent successful applications suggest that MDPs might provide useful tools
for clinical decision making and will be more popular in the near future.

DEFINITION OF A DISCRETE-TIME MDP
The basic definition of a discrete-time MDP contains 5 components, described using a
standard notation.4 For comparison, Table 1 lists the components of an MDP and provides
the corresponding structure in a standard Markov process model. T = 1,..., N are the decision
epochs, the set of points in time at which decisions are made (such as days or hours); S is the
state space, the set of all possible values of dynamic information relevant to the decision
process; for any state s ∈ S, As is the action space, the set of possible actions that the
decision maker can take at state s; pt(.|s,a) are the transition probabilities, the probabilities
that determine the state of the system in the next decision epoch, which are conditional on
the state and action at the current decision epoch; and rt(s,a) is the reward function, the
immediate result of taking action a at state s. (T, S, As, pt(.|s,a), rt(s,a)) collectively define an
MDP.

A decision rule is a procedure for action selection from As for each state at a particular
decision epoch, namely, dt(s) ∈ As. We can drop the index s from this expression and use dt
∈ A, which represents a decision rule specifying the actions to be taken at all states, where A
is the set of all actions. A policy δ is a sequence of the decision rules to be used at each
decision epoch and defined as δ = (d1,..., dN-1). A policy is called stationary if dt = d for all t
∈ T. For any specific policy, an MDP reduces to a standard Markov process.

The objective of solving an MDP is to find the policy that maximizes a measure of long-run
expected rewards. Future rewards are often discounted over time.4 In the absence of a
discounting factor, if we let ut*(st) be the optimal value of the total expected reward when
the state at time t is s and there are N-t periods to the end of the time horizon, then the
optimal value functions and the optimal policy giving these can be obtained by iteratively
solving the following recursive equations, which are also called Bellman equations:

(1)

and

(2)

where rN(sN) denotes the terminal reward that occurs at the end of the process when the state
of the system at time N is sN, and α represents the discounting factor (0 < α ≤ 1). Note that
the MDP literature flips the interpretation of the discounting factor (1 – α) (0 < α ≤ 1); that
is, 1 unit of reward at time 1 is equivalent to (1 – α) units of rewards at time 0. At each
decision epoch t, the optimality equations given by equation 2 choose the action that
maximizes the total expected reward that can be obtained for periods t, t +1,..., N for each
state st. For a given state st and action a, the total expected reward is calculated by summing
the immediate reward, rt(s,a), and future reward, obtained by multiplying the probability of
moving from state st to j at time t + 1 with the maximum total expected reward ut+1*(j) for
state j at time t + 1 and summing over all possible states at time t + 1.
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A finite-horizon model is appropriate for systems that terminate at some specific point in
time (e.g., production planning over a fixed period of time such as over the next year at a
manufacturing system). At each stage, we choose the following:

(3)

where  is an action maximizing the total expected reward at time t for state s.5

In some situations, an infinite-horizon MDP (i.e., N = ∞) is more appropriate, in which case
the use of a discount factor is sufficient to ensure the existence of an optimal policy. The
most commonly used optimality criterion for infinite-horizon problems is the total expected
discounted reward. In an infinite-horizon MDP, the following very reasonable assumptions
guarantee the existence of optimal stationary policies: stationary (time-invariant) rewards
and transition probabilities, discounting26 with α, where 0 < α ≤ 1, and discrete state and
action spaces. Optimal stationary policies still exist in the absence of a discounting factor
when there is an absorbing state with immediate reward 0 (such as death in clinical decision
models). In a stationary infinite-horizon MDP, the time indices can be dropped for the
reward function and transition probabilities, and Bellman equations take the following form:

(4)

where V(s) is the optimal value of the MDP for state s, that is, the expected value of future
rewards discounted over an infinite horizon. The optimal policy consists of the actions
maximizing this set of equations.

CLASSES OF MDPs
Markov decision processes may be classified according to the time horizon in which the
decisions are made: finite- and infinite-horizon MDPs. Finite-horizon and infinite-horizon
MDPs have different analytical properties and solution algorithms. Because the optimal
solution of a finite-horizon MDP with stationary rewards and transition probabilities
converges to that of an equivalent infinite-horizon MDP as the planning horizon increases
and infinite-horizon MDPs are easier to solve and to calibrate than finite-horizon MDPs,
infinite-horizon models are typically preferred when the transition probabilities and reward
functions are stationary. However, in many situations, the stationary assumption is not
reasonable, such as when the transition probability represents the probability of a disease
outcome that is increasing over time or when age-dependent mortality is involved.

Markov decision processes can be also classified with respect to the timing of the decisions.
In a discrete-time MDP, decisions can be made only at discrete-time intervals, whereas in a
continuous-time MDP, the decisions can occur anytime. Continuous-time MDPs generalize
discrete-time MDPs by allowing the decision maker to choose actions whenever the system
state changes and/or by allowing the time spent in a particular state to follow an arbitrary
probability distribution.

In MDPs, we assume that the state the system occupies at each decision epoch is completely
observable. However, in some real-world problems, the actual system state is not entirely
known by the decision maker, rendering the states only partially observable. Such MDPs are
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known as POMDPs, which have different mathematical properties than completely
observable MDPs and are beyond the scope of this article. Technical details and other
extensions for MDPs can be found elsewhere.5

SOLVING MDPs
There are different solution techniques for finiteand infinite-horizon problems. The most
common method used for solving finite-horizon problems is backward induction. This
method solves the Bellman equations given in equations 1 and 2 backwards in time and
retains the optimal actions given in equation 3 to obtain the optimal policies.27 The initial
condition is defined by equation 1, and the value function is successfully calculated one
epoch at a time.

There are 2 fundamental algorithms to solve infinite-horizon discounted MDPs: value
iteration and policy iteration methods. The value iteration starts with an arbitrary value for
each state and, at each iteration, solves equation 4 using the value from the previous iteration
until the difference between successive values becomes sufficiently small. The value
corresponding to the decision maximizing equation 4 is guaranteed to be within a desired
distance from the optimal solution.

We use the policy iteration algorithm in solving the illustrative MDP model in this article.8,9
It starts with an arbitrary decision rule and finds its value; if an improvement in the current
decision rule is possible, using the current value function estimate, then the algorithm will
find it; otherwise, the algorithm will stop, yielding the optimal decision rule. Let Pd and d*
represent the transition probability matrix with components pd(j|s) (j corresponds to the
column index, and s corresponds to the row index) and optimal decision rules, respectively.
Let also rd represent the reward vector with components rd(s). Then the policy iteration
algorithm can be summarized as follows5:

Step 1. Set n = 0, and select an arbitrary decision rule d0 ∈ D.

Step 2. (Policy Evaluation): Obtain vn by solving vn = rdn + (1 – α)Pdn vn.

Step 3. (Policy Improvement): Choose dn+1 ∈ arg max{rd + (1 – α)Pdvn}, setting dn+1 =
dn if possible. d ∈ D

Step 4. If dn+1 = dn, stop and set d* = dn. Otherwise, increment n by 1, and return to
step 2.

Policy iteration algorithm finds the value of a policy by applying the backward induction
algorithm while ensuring that the value functions for any 2 subsequent steps are identical.

ILLUSTRATIVE EXAMPLE: MDPs V. MARKOV MODELS IN LIVER
TRANSPLANTATION
Problem of Optimal Timing of Living-Donor Liver Transplantation

We use the organ transplantation decision problem faced by patients with ESLD as an
application of MDPs. There are currently more than 18,000 ESLD patients waiting for a
cadaveric liver in the United States. Most livers offered for transplantation are from
cadaveric donors; however, livers from living donors are often used due to a shortage in
cadaveric livers. In this section, we compare the MDP model of Alagoz et al.14 and a
Markov model to determine the optimal timing of liver transplantation when an organ from
a living donor is available to the decision maker. We seek a policy describing the patient
health states in which transplantation is the optimal strategy and those where waiting is the
optimal strategy. For the purpose of this example, we will assume that the health condition
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of the patient is sufficiently described by his or her Model for End-stage Liver Disease
(MELD) score.13 The MELD score is an integer result of a survival equation that predicts
the probability of survival at 3 months for patients with chronic ESLD. The score ranges
from 6 to 40, with higher scores indicating sicker patients.13

Markov Process Model
The standard Markov model is illustrated in Figure 1. Due to sparsity in the data available,
the states that describe the patient's health have been aggregated into 18 states defined by
their MELD score, the healthiest state being those patients with a MELD score of 6 or 7, the
sickest patients with a MELD score of 40. From any state, the patient may die (with a
probability dependent upon the level of illness) or may transition to any other of the ordered
health states. Although most common transitions are between nearly adjacent states (e.g.,
MELD 6–7 to MELD 8–9), all transitions are possible and are bidirectional: at any given
state, there is some likelihood that the patient will remain the same, become sicker, or
improve. Transition probabilities were estimated using the ESLD natural history model of
Alagoz et al.28 The posttransplant expected life days of a patient was found by using the
post-transplant survival model developed by Roberts et al.29 We choose the cycle time for
the Markov model as 1 day; that is, the patient makes the decision to accept or wait on a
daily basis. Our model discounted future rewards with a 3% annual discounting factor, a
commonly used discount rate in MDM literature.26

To select the state at which transplantation is chosen, a flexible Boolean expression is placed
in the transitions out of each state that would be of the following form: If MELD ≥ h*,
transplant; otherwise, wait.

The execution of the Markov model calculates the total expected life years when a decision
rule specifying h* is used. Because a Markov model is able to evaluate only one set of
decision rules at a time, we evaluated all possible decision rules by executing the Markov
model 19 times. At each iteration, we changed the threshold MELD scores (h*) to consider
transplant options; that is, if the patient is in MELD score h < h*, then “Wait”; otherwise,
“Transplant” the patient. We computed the total life expectancy for each Markov process
run (h* = 6,8, . . . ,38,40,41). We then found the optimal policy by selecting the threshold
patient health (h*) that results in the largest total life expectancy.

MDP Model
An MDP model provides a framework that is different from a standard Markov model in this
problem, as the repetitive “Transplant” versus “Wait” decisions are directly incorporated
into the model, with these decisions affecting the outcomes of one another. For example, the
total expected life days of the patient at the current time period depend on his or her decision
at the next time period. The severity of illness at the time of transplant affects the expected
posttransplant life years of the patient; therefore, the dynamic behavior of patient health
complicates the decisions further.

We developed an infinite-horizon, discounted stationary MDP model with total expected
discounted reward criterion to solve this problem. Using an infinite horizon lets the model
determine patient death. We could also use a finite-horizon model in which patients are not
allowed to live after a certain age (e.g., 100). For stationary probabilities and reward
functions, a sufficiently long finite horizon will give the same optimal solution as an infinite
horizon.5,7–9 Figure 2 shows a schematic representation of the MDP model that is used to
solve the problem under consideration. Note that the state structure is identical to Figure 1.
In the MDP model, the decision epochs are days. The states describe the clinical condition
of the patient, which are represented by the MELD scores described above. Another
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necessary component of the MDP model is the transition probabilities that determine the
progression of the liver disease, which in model terms is the probability of transitioning
between pretransplant model states.

Slightly different in form from the Markov model are 2 types of actions that the decision
maker can take at each time period for each health state. If the patient chooses the
“Transplant” option in the current decision epoch, he or she obtains the posttransplant
reward, which is equal to the expected discounted posttransplant life days of the patient
given his or her health status and donated liver quality. On the other hand, if he or she
postpones the decision until the next time period by taking the action “Wait”, he or she
receives the pretransplant reward, which is equal to 1 day, and retains the option to select the
transplant decision in the following period provided they are not in the dead state. Because
posttransplant life expectancy depends on the pretransplant MELD score, the reward is not
assigned to the transplanted state but to the action of transplantation from each particular
MELD score. After transplantation and after dying, no more rewards are accumulated;
therefore, the transition probabilities from the transplanted state do not influence the total
reward, and this state can be modeled as an absorbing state (like death).

Let V(h) be the total expected life days of the patient using the optimal policy when his or
her health is h, h=1, ...,18, where 18 is the sickest health state. Let LE(h) be the
posttransplant expected discounted life days of the patient when his or her health is h at the
time of transplantation, and let p(h’|h) be the stationary probability that the patient health
will be h’ at time t + 1 given that it is h as time t given that the action is to wait (the action is
removed from the notation due to clarity of the presentation; similarly, although LE(h) is a
function of donor quality, we suppress this dependency for notational convenience). Under
the above definitions, the optimal value of the total expected life years of the patient was
found by solving the following recursive equation:

Note that V(h) equals either LE(h), which corresponds to taking action “Transplant”, or 1
plus future discounted expected life days, which corresponds to taking action “Wait”. The
optimality equations do not include the transitions to the “dead” and “transplanted” states
because the value of staying in these states is equal to 0. The set of actions resulting in the
maximum value gives a set of optimal policies.

Data Sources for Both Models
The data came from 2 sources. Posttransplant survival data were derived from a nationwide
data set from UNOS that included 28,717 patients from 1990 to 1996.17 Natural history was
calibrated using data from the Thomas E. Starzl Transplantation Institute at the University of
Pittsburgh Medical Center (UPMC), one of the largest liver transplant centers in the world,
consisting of clinical data of 3009 ESLD patients. One issue in estimating the natural history
of the ESLD is related to the difficulty of taking periodic measurements and turning them
into a daily measurement. We used the model by Alagoz et al.28 to quantify the natural
history of ESLD. Namely, we utilized cubic splines to interpolate daily laboratory values
between actual laboratory determinations.28 Daily interpolated MELD scores could be
calculated from these laboratory values, and the day-to-day transitions from each MELD
score were calculated over the entire sample. Different transition matrices were calculated
for each major disease group: we only use data from the chronic hepatitis group in this
example. Because we aggregated MELD scores in groups of 2, this produced an 18 × 18
matrix, although the probabilities of transitioning very far from the diagonal are small.
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A Numerical Example
We consider a 65-year-old female hepatitis C patient who has a 30-year-old male living
donor. We find the optimal transplantation policy using both a Markov-based simulation
model and an MDP. Both models result in the same optimal policy, which is to wait until the
MELD score rises to 30 and to receive the living-donor transplant when her MELD score
exceeds 30. Furthermore, both models obtain the same total life expectancies given initial
MELD scores. The computation time for solving the MDP model is less than 1 second,
whereas it is approximately 1 minute for solving the Markov model. Although the
computational time is not a major issue for this application, MDPs may be preferred over
standard Markov models for more complex problems where the solution times might be
longer. Because we could solve MDPs very fast, performing additional experiments is
trivial. Extended computational experiments using the MDP model are reported elsewhere.
14,30

DISCUSSION
This study describes the use of MDPs for MDM problems. We compare MDPs to standard
Markov-based simulation models by solving the problem of optimal timing of the living-
donor liver transplantation problem using both methods. We show that both methods give
the same optimal policies and optimal life expectancy values under the same parameter
values, thus establishing their equivalence for a specific MDM problem.

A Markov-based simulation model can be used to evaluate only one set of decision rules at a
time, and for the problem we consider, there are, in fact, an exponential number of possible
decision rules. For example, if there are 18 states that represent patient health and 2 possible
actions that can be taken at each health state, there are 218 possible distinct decision rules. In
this case, many of these possible policies do not seem credible: it seems impossible that a
policy of wait at MELD 6–7, transplant at MELD 8–9, wait at MELD 10–11, transplant at
MELD 12–13, and so on could possibly be optimal. However, in less straightforward or
more clinically complex problems, the ability to intuitively restrict the possible set of
policies may be more difficult, and evaluating each alternative by using a Markov-based
simulation model is computationally impractical. In the standard Markov model described
above, we assumed that the optimal policy has a threshold-type form; that is, there exists a
MELD score such that the patient will wait until he or she reaches that MELD score and
then transplant. As a result, the standard Markov model considered only 19 possible
solutions for the optimal policy, and hence, we obtained the solution in just 19 runs of the
simulation. However, because threshold policies are only a subset of all possible policies,
the optimality of a threshold-type policy needed to be proven mathematically14,30 before we
could use the approach taken in the standard Markov model.

A solution method based on clinical intuition without searching all possible solutions may
not lead to optimal results. For instance, Alagoz et al.15 consider the acceptance of cadaveric
liver problem, an extension of the living-donor liver transplantation problem, in which the
acceptance/rejection decisions are made for various cadaveric liver offers and MELD scores.
One would expect to have a threshold-type policy in patient MELD score to be optimal as in
the living-donor liver transplantation. However, as demonstrated in Alagoz et al.,15 the
optimal policies may not have a threshold in the MELD score; that is, there are some cases
where it is optimal to decline a particular liver type at a higher MELD score, whereas it is
optimal to accept the same liver offer at a lower MELD score. This is because patients on
the waiting list receive higher quality organ offers as their MELD scores rise and therefore
may be more selective in accepting lower quality organ offers when they are at higher
MELD scores.
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Markov decision processes are able to model sequential decision problems in which there is
an embedded decision node at each stage. There are some other advantages of using MDPs
over standard Markov methodology. The computational time required for solving MDP
models is much smaller than that for solving Markov models by simulation. This is critical
particularly when the problem under consideration is very complex, that is, has large state
and action spaces. For instance, Sandikci et al.4 consider an extension of the living-donor
liver transplantation problem, in which the state space consists of over 7500 states. The
solution of such a problem would be computationally impractical using standard Markov
processes, whereas the optimal solution can be found in a very short time using the MDP
framework.

Markov decision processes can also be used to obtain insights about a particular decision
problem through structural analysis. Examples for how the structural analysis of MDPs
provides insights can be found elsewhere.14–16,30 In addition, MDPs are able to solve
problems without making any assumptions about the form of the optimal policy such as the
existence of threshold-type optimal policies in the living-donor liver transplant problem,
whereas Markov models often need to make such assumptions for computational
tractability. Furthermore, MDPs can model problems with complex horizon structures. For
instance, MDPs can handle infinite horizons when parameters are stationary from a certain
point T in time, a weak restriction. Then, infinite-horizon MDP methodology could be used
to analyze the stationary part, followed by finite-horizon MDP methodology to analyze the
preceding nonstationary part.

Markov decision processes also have some limitations. First, they have extensive data
requirements because data are needed to estimate a transition probability function and a
reward function for each possible action. Unlike Markov-based simulation methods, infinite-
horizon MDPs assume that the rewards and the transition probabilities are stationary. In
cases where rewards and transition probabilities are not stationary, we recommend the use of
finite-horizon MDPs in solving problems. Furthermore, because there is no available easy-
to-use software for solving MDPs, some extra programming effort (i.e., the use of general
programming language such as C/C++ for coding MDP solution algorithms) is needed. On
the other hand, there are many easy-to-use software programs that can be used to solve
Markov models such as TreeAge Pro,31 which also makes the development of a standard
Markov model easier than that of an MDP model. As the problem size increases, it becomes
computationally difficult to optimally solve MDPs, which is often referred to as the “curse
of dimensionality.” There is a growing area of research in approximate dynamic
programming, which develops algorithms to solve MDPs faster and hence overcomes these
limitations to some extent.32
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Figure 1.
State transition diagram for a Markov model. The circles labeled state 1 (Model for End-
stage Liver Disease [MELD] 6–7) through state 18 (MELD 40) represent possible health
states for the patient (i.e., the patient can be at one of the 18 states at any time period). Note
that each state actually represents 2 adjacent MELD scores; for instance, 1 represents MELD
scores 6 and 7, 2 represents MELD scores 8 and 9, and so on. Each time period, the patient
may transit to one of the other MELD states or die. At each state, there is a Boolean node
that will direct the patient to accept the living donor organ if the MELD score is greater than
some value (h*): the optimal transplant MELD is found by solving the model over all
possible values of h*. Note that the transition probabilities between pretrans-plant states in
the figure depend on the policy; however, this dependency is suppressed for the clarity of
presentation. As a result, the transition probabilities between pretransplant states in the
figure represent only the transition probabilities when h* = 41.
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Figure 2.
State transition diagram of the Markov decision process model. The state space is identical
to Figure 1. At each health state, the patient can take 2 actions: he or she can either choose to
have the transplant at the current time period, which is represented by “T”, or wait for one
more time period, which is represented by “W”. When the patient chooses the transplant
option, he or she moves to the “Transplant” state, which is an absorbing state with
probability 1 and gets a reward of r(h) that represents the expected posttransplant life days of
the patient when his or her current health state is h. If the patient chooses to wait for one
more decision period, he or she can stay at his or her current health state with probability
p(h|h), he or she can move to some other health state h’ with probability p(h’|h), or he or she
can die at the beginning of the next decision epoch with probability p(D|h). In all cases, the
patient will receive a reward of 1 that corresponds to the additional day the patient will live
without transplantation. The transitions occur randomly once the patient takes the action
“Wait”. These “Transplant”/“Wait” decisions exist for each health state of the patient.
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Table 1

Components of a Markov Decision Process (MDP) and the Comparable Structure in a Markov Process

MDP Component Analogous Markov Model Component

Decision epoch Time at which decisions are made Cycle time

State space Set of mutually exclusive, collectively exhaustive conditions that
describe the state of the model

States

Action space Set of possible decisions that can be made Decision nodes

Transition probabilities Probability of each possible state of the system in the next time
period

Transition probabilities

Reward function Immediate value of taking an action at each state Incremental utility and tail utility

Decision rule A specified action given each possible state No specific analogy; for a single decision
node, it is a specific action

Policy A sequence of decision rules at each time period No specific analogy
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