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Abstract
The optical stretcher is a dual-beam trap capable of stretching individual cells. Previous studies
have used either ray- or wave-optical models to compute the optical pressure on the surface of a
spherical cell. We have extended the ray-optics model to account for focusing by the spherical
interface and the effects of multiple internal reflections. Simulation results for red-blood cells
(RBCs) show that internal reflections can lead to significant perturbation of the deformation,
leading to a systematic error in the determination of cellular elasticity. Calibration studies show
excellent agreement between the predicted and measured escape force, and RBC stiffness
measurements are consistent with literature values. Measurements of the elasticity of murine
osteogenic cells reveal that these cells are approximately 5.4 times stiffer than RBCs.

1. Introduction
The optical stretcher is a novel, dual-beam optical trap that is capable of trapping and
stretching soft dielectrics, such as living biological cells, along the beam axis [1,2]. Unlike
laser tweezers, which use a single focused beam to produce a pointlike trap, the optical
stretcher uses diverging light that is spread across the surface of the trapped object. This has
two immediate consequences: higher laser powers, but lower intensities, are required for
optical trapping, and the optical stress acts at all points along the surface, rather than at the
center of mass. While other techniques like microplate manipulation, micropipette
aspiration, and atomic force microscopy can be used to measure single-cell elasticity, the
optical stretcher has a unique advantage in that it is able to exert pico-Newton scale surface
forces on the living cell without making mechanical contact [3].

Since its inception, the original developers of the optical stretcher have made extensive use
of it to characterize the elasticity of red blood cells (RBCs) and a variety of eukaryotic cells
and have demonstrated the optical stretcher’s potential to be used as a high throughput
screening device that can use elasticity as a fundamental marker of cell transformations, for
example, with the progression of disease [4,5]. With the successful integration of the optical
stretcher, microfluidics, and computer controlled cell delivery, the potential utility as an
automated cell screening device cannot be underestimated.
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Since the invention of the optical stretcher in 2001, to the best of our knowledge, no direct
method capable of measuring the spatially-resolved optical stress distribution on the cell
surface has been developed. Hence, mathematical and computational models have been used
to calculate the optical stress distribution and net stretching force. The theory first presented
by Guck et al. [1,2] was based approximately on the ray-optics model. By assuming a broad
cosine-squared angular dependence for the stress distribution, the equations of deformation
could be solved exactly, making the determination of cell elasticity from observed strain
straightforward. Ananthakrishnan et al. have extended the model to include a thick actin
cortex, using fluorescence microscopy to estimate the cortex thickness [6]. In this case, the
surface stress distribution obtained from ray-optics (RO) modeling was fit to functions of the
form σ = σ0cosn(θ), where n is an even integer, to find the best match for an analytical
solution for a given ratio of the beam to cell radius. In practice, depending on the type of
cell, the best values of n ranged from 4 to 24, indicating a more localized stress distribution.

To determine the impact of these assumptions on the derived cellular elasticity, we employ a
ray-tracing algorithm that uses the actual experimental configuration to compute the optical
stress distribution without approximation. The algorithm also includes the effects of multiple
internal reflections that must occur for the case of dielectric spheres but have to this point
been ignored. The exact optical stress distribution can then be used to determine the
expected deformation assuming a thin-shell model of cellular elasticity, which is expected to
be valid for cells lacking a cortical cytoskeleton, such as red blood cells. This allows for a
direct test of the effect of the cosine-squared approximation on the determination of cell
elasticity. The computed optical stress distribution can also be used to interpret cellular
deformation data and provide an estimate of cellular elasticity. For a specific example, we
compare the stiffness of RBCs, 2T3 osteoblast-like cells, and MLO-Y4 osteocyte-like cells,
assuming either a cosine-squared stress distribution or employing the full ray-tracing
algorithm. We find that the results obtained using the cosine-squared approximation can
deviate substantially from those obtained with the exact ray-optics solution, potentially
leading to systematic error in the determination of cell stiffness.

2. Optical Pressure and Force Generation by the Optical Stretcher
The optical forces exerted on the surface of a spherical dielectric by a dual-beam optical trap
was first considered by Roosen et al. [7] for the case of collimated light beams and
Constable et al. [8] for light diverging from optical fibers. While these studies considered
only the net optical force, Guck et al. were the first to consider the stress distribution acting
on the surface of the sphere [1,2], demonstrating that a dual, diverging beam trap can be
used to stretch cells along the beam axis.

When a ray of intensity I is incident on a spherical dielectric, the force, resulting from both
reflection and refraction, is directed normally outward and with a surface pressure given by
[9]

(1)

In Eq. (1), T and R are the Fresnel transmission and reflection coefficients, nt is the index of
refraction of the spherical dielectric, ni is the index of refraction of the surrounding fluid, θ
is the angular position on the sphere, θi is the incident angle with respect to the surface
normal, θt is the refracted angle, and c is the speed of light in vacuum. The intensity profile,
I(θ), is calculated by using the net optical power delivered by each fiber and standard
Gaussian beam propagation techniques [10]. To properly calculate the net optical pressure
distribution, including focusing by the spherical cell and multiple internal reflections within
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the cell, a ray-tracing approach can be taken, as described by Stephenson [9,11]. Briefly, the
cell is represented as a discrete, spherical grid of area elements dA = ρ2 sin θdθdϕ, where θ
and ϕ are the azimuthal and axial angles, respectively. Photon packets are initially weighted
according to the number of incident photons arriving at each grid element on the side of the
sphere facing the fiber. The optical pressure on each grid element is computed according to
Eq. (1). Each packet is then reduced in weight according to the Fresnel transmission
coefficient and the propagation direction recomputed according to the refraction angle. The
photon packet then traverses the cell until it encounters the surface. Once again the photon
packet contributes optical pressure according to Eq. (1) at the surface element it encounters,
and the packet is reduced in weight according to the Fresnel reflection coefficient. For each
photon packet, this process is repeated for multiple internal reflections until the packet drops
below a threshold weight (<10−10 the initial photon weight). At this point, the packet is
terminated stochastically with a probability based on the packet’s weight.

The pressure distribution computed through this ray-tracing procedure is shown in Fig. 1 for
a 10 µm diameter sphere and a fiber separation (distance separating the two optical fibers) of
200 µm, allowing for one [Fig. 1(a)] or multiple [Fig. 1(b)] internal reflections. The stress
distributions clearly show well-defined pressure spikes at specific angles. One internal
reflection leads to symmetrical pressure spikes near 64° and 116° due to the focusing by the
spherical dielectric. Additional pressure spikes become apparent with multiple internal
reflections. These are expected and have been well understood since Descartes’s ray-tracing
solution of the rainbow [12]. In comparison with the ray-tracing solution of the RO models,
the dashed lines show an approximate, analytic function of the form

(2)

which has been used by Guck et al. [2]. In Eq. (2), σ0 is the peak stress and the polar angle is
measured relative to the beam axis. As first observed by Stephenson [9,11] and more
recently by Bareil et al. [13], this approximation neglects many features of the actual RO
solution and systematically deviates from the exact RO solution. While all RO solutions
neglect the effects of diffraction (which would have the effect of smoothing and reducing
the magnitude of the pressure spikes), they are practically very useful solutions because of
the simplicity of the model and the fact that they afford reasonable accuracy for cell
biomechanical studies. In particular, Eq. (2) is advantageous because it permits analytical
solution of the equations of deformation. Nevertheless, since the optical deformation of the
cell will directly depend on the choice of the optical stress profile, we next consider the
effect that ray focusing and multiple internal reflections could have on the optical
deformation and evaluate the systematic deviations in the analysis of cellular stiffness data
using Eq. (2).

3. Numerical Solution of the Equations of Deformation for Spherical Shells
The deformation of a thin, spherical dielectric shell of radius ρ, thickness h, Young’s
modulus E, and Poisson’s ratio ν has previously been considered for the special case of a
cosine-squared stress distribution [Eq. (2)] [2]. We have recently considered the more
general case of deformation resulting from an arbitrary, axially symmetric stress
distribution, σ(θ) [14]. Following the work of Guck et al. [2], the conformational energy of a
stretched thin spherical cell is due to the work done by the optical stress and membrane
elasticity. In response to an optical stress, the shape of the dielectric will be that which
minimizes the conformational energy. Using the Euler–Lagrange equations to determine the
equations of deformation, Guck et al. obtained the following expressions for the radial (ur)
and polar (uθ) deformations of the membrane:

Ekpenyong et al. Page 3

Appl Opt. Author manuscript; available in PMC 2011 March 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

(4)

In lieu of this analytical approximation, the Euler–Lagrange equations can be solved
numerically for any function σr(θ). The details of the calculations are provided in [14]. The
resulting differential equations are

(5)

(6)

Equations (5) and (6) can be rewritten as a pair of coupled differential equations:

(7)

(8)

Discretizing Eq. (7) on a linear grid results in a series of algebraic equations that reduces to
a tridiagonal matrix equation. This can be readily solved by matrix inversion to obtain the
deformation of the major- and minor-axes resulting from optical stretching [15]. The
deformation can then be directly compared to the approximate solution expressed by Eqs.
(3) and (4).

A. Comparison with the Cosine-Squared Approximation
It is instructive to compare cellular elasticity estimates obtained from either major- or minor-
axis deformation measurements using either the exact ray-tracing model or the cosine-
squared approximation. Simulations were carried out using the exact ray-tracing model with
a specific value for the stiffness parameter, Eh, to obtain major- and minor-axis cellular
deformations as a function of the average optical stress. These simulated data sets were then
fit by Eq. (3) (using θ = 0° for the major axis and θ = 90° for the minor axis) to extract the
value of Eh, as would be done in a typical cell stretching experiment when employing the
cosine-squared approximation. The percentage difference between the extracted value and
the input value was used as the deviation from the exact ray-tracing solution for fiber
separations ranging from 110 to 300 µm and for cell radii ranging from 2.5 to 10 µm.
Negative deviations indicated the calculated value of Eh was less than the true value and
positive deviations indicated that the calculated value exceeded the true value. Results of the

Ekpenyong et al. Page 4

Appl Opt. Author manuscript; available in PMC 2011 March 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



comparison are summarized in Fig. 2 for two cases that were considered. In Figs. 2(a) and
2(b), multiple internal reflections were ignored by artificially setting the photon packet
weight to zero after two interactions (one entering the cell, and one leaving), while in Figs.
2(c) and 2(d), multiple internal reflections were included.

Agreement between the exact ray-tracing solution and the cosine-squared approximation
was found only for a narrow range of cell radius and fiber separation. In Fig. 2, exact
agreement is shown by the 0% deviation line, while the configuration space between the
±10% deviation lines provide reasonably good agreement. In general, the cosine-squared
approximation works better when analyzing major-axis deformations than it does for minor-
axis deformations. This is expected since the stress distributions differ the most at right
angles to the beam axis. The comparison also reveals that the cosine-squared approximation
is best used when fiber separation can be specifically chosen for a given cell radius. This is
also in agreement with observations initially made by Guck [2].

Allowing for multiple internal reflections [Figs. 2(c) and 2(d)] within the cell further
complicates analysis using the cosine-squared approximation. Nevertheless, it is still
possible to identify a range of fiber separations that provide good agreement between the
exact ray-optics model and the cosine-squared approximation. When analyzing major-axis
deformations of cells with radii ranging from 3–6 µm, the cosine-squared stress distribution
is a good approximation to the RO model when fiber separations are appropriately selected
in the range of 150 to 300 µm. But for larger cells, the cosine-squared approximation
systematically underestimates cellular elasticity by 10–40% when the optical stress is given
by the RO model. Similar systematic errors are obtained when analyzing minor-axis
deviations. But for this data the cosine-squared approximation does better for larger cells.
Overall, it is clear that use of the cosine-squared stress distribution is a reasonable
approximation to the RO model provided the optical stretcher configuration is carefully
selected considering the cell size. In practice, using the cosine-squared approximation with
inappropriate fiber separations may lead to deviations of −40% to +20% in the assessment
of cellular stiffness from major-axis deformation measurements, and from −40% to +200%
for minor-axis measurements.

B. Scaling Laws for Cellular Deformation
To facilitate the use of the numerical solution of the deformation equations, we have
conducted simulations systematically varying all experimental parameters to characterize the
relationship between these parameters and cellular deformation. We began with general
scaling expressions for the major- and minor-axis deformations:

(9)

(10)

where σavg is the average optical stress determined from RO simulations, and the parameters
A, B, a, b, c, d, e, and f are constants to be determined from numerical simulations. As a
point of comparison, the cosine-squared approximation of the stress profile [Eq. (3)] is
obtained by setting A = 2, B = 0.5, a = d = −1, b = 0, c = f = 2, and e = 1. In general, since
the distribution of the optical stress varies with fiber separation, index mismatch between the
cell and surrounding medium, and potentially other experimental factors, the coefficients
and scaling exponents will also depend on these factors. For our experimental system, RO
simulations were conducted using refractive indices of 1.326 and 1.380 for the medium and
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cell, respectively [16]. Since stretching in our apparatus is conducted within a square glass
capillary tube, simulations also accounted for its optical and geometrical properties.

The numerical simulations were well fit by the power-law equations with the smallest R2

linear-regression coefficient of 0.98 when radii were varied from 1–10 µm and for fiber
separations ranging from 110 to 300 µm. The resulting deformation equations are
summarized in Table 1. The most significant departure from the deformation produced by a
cosine-squared stress distribution is seen in the dependence on the cell radius. For major-
axis deformations, there was no apparent trend in the radius exponent over the range of fiber
separations tested. The average value of 2.60 ± 0.05 is significantly greater than the purely
quadratic dependence seen with the cosine-squared approximation. In contrast, for minor-
axis deformations the radius exponent increased systematically with increasing fiber
separation. For all separations the minor-axis exponents are significantly smaller than the
quadratic dependency of the cosine-squared approximation. It is interesting that the
simulations reveal a slight dependence of the major-axis deformation on the Poisson’s ratio.
This occurs whether or not multiple internal reflections are allowed to contribute to the
stress distribution and can modify the major-axis deformation by ±10%, depending on the
optical fiber separation. Therefore, remaining consistent with Guck et al. [1,2], we have
assumed a Poisson’s ratio of 0.5 throughout. It is not possible to directly compare the values
of the A and B coefficients, since these have different units due to the variation in the
exponents. The deformation equations of Table 1, in conjunction with appropriate ray-
tracing simulations needed to obtain σavg, now provide a means of extracting the cellular
stiffness from measurements of cellular deformation.

4. Materials and Methods
A. Polystyrene Sphere Suspensions

A suspension of 7.8 µm diameter polystyrene spheres (Bangs Labs, Fishers, Indiana) was
prepared at ~2 × 105 spheres per mL in deionized (DI) water. The number density was
verified with a hemocytometer. We found it helpful to add a small amount of Triton X100
and 25% D2O to better match the density of the sphere (1.05 g/ml) and to more evenly
distribute the spheres throughout the microcapillary tube.

B. RBC Suspensions
An osmotic shock buffer (100 mM NaCl, 5 mM KCl, 3 mM CaCl2, 2 mM MgCl2, 20 mM
HEPES acid, 25 mM dextrose, 0.1 mM adenine, and 0.01 mM inosine in 500 mL DI water)
was used to swell RBCs to a spherical shape. Approximately 3 µL of blood was suspended
in 400 µL nanopure water, 600 µL osmotic shock buffer, 50 µL BSA, and 5 µL heparin.
RBCs were used and discarded within 3 h of preparation.

C. Osteogenic Cell Culture
The 2T3 osteoblast-like and MLO-Y4 osteocyte-like cell lines were provided by Jack Yee of
the osteoporosis research group at Creighton University [17,18]. 2T3 cells were propagated
in α-MEM medium supplemented with 10% fetal bovine serum (FBS), 5000 units/mL
penicillin-streptomycin (Invitrogen, Carlsbad, California), and incubated at 37 °C and 5%
CO2. MLO-Y4 cells were similarly propagated, except the growth medium contained 5%
FBS and 5% fetal calf serum (FCS), and the cells were grown on collagen-coated dishes.
Two to three days before the experiment, the cells were plated on 60 mm plastic dishes and
allowed to reach confluency. On the day of the experiment, the cells were trypsinized and
suspended in Tyrodes imaging buffer supplemented with 0.5% bovine serum albumin (BSA)
and 5 mM glucose at a density of 105 cells/mL. The cells were used and discarded within 3 h
of preparation.
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D. Optical Stretcher Configuration
A diagram of the apparatus is shown in Fig. 3. Light from a Nd–YAG laser (IPG Photonics,
Oxford, Massachusetts) emitting at 1064 nm was coupled into two optical fibers with a
mode field diameter of 4.8 µm. These laser fibers were aligned end to end, collinear, and
separated by a distance ranging from 150 to 300 µm. A square microcapillary tube (50 µm
ID, VitroCom Inc., Mountain Lakes, New Jersey) was centered between the optical fibers,
and placed at the focus of a Zeiss Axiovert 25CFL microscope with a Basler A201 CCD
camera. A 10X Ph1 A-plan Zeiss objective was used for alignment and measurement with a
resolution of 780 nm/pixel. For observation of optical stretching, the magnification was
increased by using either a 40X U PLAN S-APO Olympus objective, resulting in a
resolution of 216 nm/pixel or a 63X Ph2 Achroplan Zeiss objective and 4× magnification
adjuster, resulting in a resolution of 47.9 nm/pixel. Control of all equipment was
orchestrated using LabView, which also stored images with all acquisition parameters, such
as time of acquisition and laser power.

E. Escape Force Calibration
A sphere suspension was injected into a polyethylene delivery tube attached to the
microcapillary chamber. The spheres were guided to the trapping region by gravity flow.
Once a sphere was trapped, the flow speed was gradually increased while imaging at 20
frames per s until the sphere escaped from the trap and left the field of view.

Acquired image frames were analyzed using a Lab-View analysis program developed with
the IMAQ libraries. The position of the sphere was manually identified in each frame, and
the escape speed was determined by the slope of the best-fit line to the position data. This
speed was used to calculate the viscous drag force on the sphere using Stokes’ law,

(11)

where ρ is the radius of the sphere, η is the viscosity of the medium, υ is the escape speed.
For this study, ρ = 7.8 µm and η = 1 cP (for water at 20 °C). These escape forces were
determined for several fiber separations. The experimental conditions for each trial were
used as the basis for a RO simulation to determine the theoretical radial escape force.
Briefly, several calculations were done to determine the optical pressure distribution [Eq.
(1)] on a sphere displaced up to 10 µm radially from equilibrium at a fixed interval. For each
calculation, the net radial force acting on the sphere was calculated by numerically
integrating the optical pressure over the surface of the sphere:

(12)

The axial restoring force was similarly calculated by integrating the component of the force
directed along the fiber axis. An example of the computed restoring forces for 7.8 µm
diameter polystyrene spheres in stretchers with varying fiber separation is shown in Fig. 4.
The slope of the lines near equilibrium provides the effective trap stiffness, and the
maximum radial trapping force is the expected escape force. The experimentally measured
values were plotted against the theoretical values to determine the degree of correlation.

F. Optical Manipulation and Calculation of Cellular Stiffness
Prepared cell suspensions were injected into the capillary tube as described for polystyrene
spheres and similarly guided into the stretching region. Once trapped, images were taken
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over a sequence of laser powers (typically 50 to 750 mW per fiber) to induce stretching. At
least 15 images were taken at each laser power, allowing 1 s between images to permit cell
deformation to approach equilibrium while minimizing time in the stretching region to avoid
unnecessary laser heating.

Images of stretched cells were analyzed using LabView. The intensity profile along a line
drawn through the center of the cell on the beam axis (major axis, 0°), as well as
perpendicular to this axis (minor axis, 90°), showed characteristic minima. The location of
the first minimum was taken to be the edge of the cell. These measurements were calibrated
for each objective by performing the same analysis on polystyrene spheres with known
diameters similar to that of the cells. The length of the cell was plotted against laser power
and a best-fit line was used to estimate the radius of the untrapped cell. This radius was used
along with other system parameters to calculate the pressure exerted on the cell surface
using the RO model for each data point.

The index of refraction of 2T3 or MLO-Y4 cells has not been measured, but was assumed to
be the same as RBCs and other eukaryotic cells that have been described in the literature,
ranging from 1.36–1.40 [4,5,19–22]. Simulations, conducted for cells 6–14 µm in diameter,
indicate that the average pressure exerted on the cell increases linearly with increasing index
mismatch between the cell and the surrounding medium. The average pressure increased
2.3-fold as the index of the cell, n, was varied from 1.36 to 1.40. For the simulations used in
this study, we assumed n = 1.38. Therefore, the actual pressure may differ from the true
value by as much as 40%, depending on the exact index of refraction of the cell.

Cell deformation was plotted against the average pressure for the major and minor axes. The
slope of the best-fit line to the major-axis deformation was used to calculate Eh, as described
in Section 3.

5. Results
A. Escape Force Calibration

When a trapped dielectric sphere is displaced from its equilibrium position in the stretcher, it
experiences a restoring force. For axial displacements, the RO model reveals that the
magnitude of the restoring force increases linearly with displacement, similar to a Hookean
spring [Fig. 4(a)]. The slopes of the force-displacement curves near equilibrium indicate that
the effective axial spring constant for the stretcher decreases as the separation of the optical
fibers increases. For a 7.8 µm diameter polystyrene sphere, the optical stiffness of the trap
decreases from 4.0 to 0.5 × 10−6 N/m · W as the fiber separation is increased from 110 to
310 µm. For radial displacements, the restoring force is stronger due to the increased
intensity gradient along the axis perpendicular to the optical fibers [Fig. 4(b)]. While the
force-displacement curves are clearly not Hookean along this axis, the slope of the force-
displacement curves near equilibrium can still be used to estimate the radial spring constant
of the stretcher. For these simulations, the optical stiffness decreases from 73 × 10−6 N/m ·
W with increasing fiber separation. Since the radial restoring force exhibits a local
maximum, it is possible to determine this value by trapping polystyrene spheres and
measuring the drag force needed to remove the sphere from the stretcher. By doing this for
several fiber separations, we were able to directly test the predictive capabilities of the RO
model.

A typical capture-escape data set is shown in Fig. 5(a). After the polystyrene sphere was
captured, the flow velocity was gradually increased until the drag force was sufficient to
remove the sphere from the stretcher. There was little displacement of the sphere
perpendicular to the flow axis, so the slope of the sphere position versus time along the flow
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axis was used to calculate the escape speed. For each experiment, numerical simulations
such as those shown in Fig. 4(b) were performed to determine the predicted escape force. A
comparison of experimental measurements and RO simulations for several fiber separations
and a variety of laser powers is shown in Fig. 5(b). The best-fit line to all of the data has a
slope of 1.08 ± .12, demonstrating that the RO model correctly predicts the integrated force
profile on spheres trapped in the stretcher. While it is not possible to accurately measure the
angular pressure distribution, this nevertheless provides sufficient validation of the model
for application to cellular elasticity measurements.

B. Cell Stiffness Measurements
Typical examples of RBC, 2T3, and MLO-Y4 deformations are shown in Fig. 6. These
individual cells were analyzed using the technique described in Section 4, and the
deformation versus stress curves are shown in Fig. 7. The fiber separation varied from 150–
175 µm for these examples. While both 2T3 and RBC cells stretch at a similar rate as the
optical pressure is increased, the RBC is more elastic since it has a substantially smaller
radius. Analysis of the RBC data shown in Figs. 6(a) and 7(a) with the RO model revealed
Eh = 5.0 ± 0.1 × 10−5 N/m for this 6.2 µm diameter cell. The same analysis conducted with
the cosine-squared approximation [Eq. (3)] gave a significantly smaller value of Eh = 2.95±
0.07 × 10−5 N/m, as expected from Fig. 2 for these values of cell radius and fiber separation.
In contrast, the MLO-Y4 and 2T3 osteogenic cells were substantially stiffer. Figures 6(b)
and 7(b) show a more significant deformation with optical pressure for the osteocyte-like
cell. But the 14.3 µm diameter MLO-Y4 is also significantly larger than the RBC.
Consequently, its measured stiffness of 26 ± 3 × 10−5 N/m (using the RO model) exceeds
that of the RBC by more than a factor of 5.2. Once again the cosine-squared approximation
led to a significantly smaller value of 17 ± 2 × 10−5 N/m. Finally, the 2T3 cell shown in
Figs. 6(c) and 7(c) is the stiffest of the three. The RO model led to a value of 46 ± 4 × 10−5

N/m for Eh for this 15.1 µm diameter cell, while the cosine-squared approximation resulted
in a lower estimate of 27 ± 3 × 10−5 N/m. A similar analysis was repeated for many cells.
Figure 8 shows a histogram of single-cell stiffness values obtained from optical stretcher
measurements for each cell type. There was no significant difference in the elasticity of the
two osteogenic cell lines. Taken together, the mean stiffness of the osteogenic cells was 29 ×
10−5 N/m, approximately 5.4 times greater than the RBC value of 5.4 × 10−5 N/m. The
same data yield smaller stiffnesses of 22 × 10−5 N/m and 3.0 × 10−5 N/m for 2T3 and RBC
cells, respectively, if the cosine-squared approximation is used.

6. Discussion
The optical stretcher is a novel optical force tool that can measure the elasticity of
individual, living cells. We have used a hybrid ray-optics and continuum mechanics
approach to evaluate the assumptions made in previous work and to attempt to account for
the increased optical stress due to internal reflections that occur within the cell. Initially,
Guck et al. [1,2] assumed that the optical stress had a cosine-squared angular dependence on
the surface of a spherical cell. Our analysis indicates that this can be a valid approximation
to the RO stress distribution if the fiber separation is carefully chosen according to the cell
radius (Fig. 2). But this approximation also does not account for beam focusing and internal
reflections that will occur within the cell. As first described by Stephenson [9] and most
recently pointed out by Bareil et al. [13], internal reflections lead to regions of high optical
pressure in the same way that water vapor produces a rainbow at characteristic angular
positions in the sky. The inclusion of internal reflections significantly alters and reduces the
range of fiber separations that would need to be selected. To avoid systematic errors
incurred by the use of this approximation, we have shown that the exact RO stress
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distribution can be used in the numerical solution of Euler–Lagrange equations to determine
the equations of deformation.

While it is not yet possible to measure the spatial distribution of optical stress on the surface
of a cell with high spatial resolution, the excellent agreement between the predicted and
measured average forces lends support to the exact RO model. Nevertheless, it is also
important to recognize that the living cell is not a uniform isotropic sphere, as our modeling
has assumed. In particular, the localized pressure spikes shown in Fig. 1 will be more
distributed because of diffraction and scattering by organelles. Still, localization of the
optical pressure should be properly considered.

Ananthakrishnan et al. [6] developed a finite-element model of the eukaryotic cell consisting
of an actin cortex, an interior network of microtubule and intermediate filaments, and an
elastic nucleus. Applying the model to cellular deformation data, they found that the outer
actin cortical shell was the principal determinant of the cellular response to optical
stretching. The stress distribution that was employed in that analysis was much more
localized than that originally described by Guck et al. [1,2]. They found that data obtained
from NIH 3T3 and BALB-3T3 fibroblasts required analytical expressions of the stress
distribution of σ(θ) = σ0 cosn θ, with n in the range of 14–24, while smaller, transformed
fibroblasts were best described with n in the range of 4–14. The RO model with multiple
internal reflections similarly produces a stress distribution that is less broad and more
localized than the cosine-squared approximation.

Recently, Xu et al. [23] compared the optical stress distribution on a homogeneous sphere as
calculated by the rigorous Generalized Lorenz–Mie Theory (GLMT) and Geometrical
Optics (GO). Their GO calculation is similar to the RO model employed here, and the
comparison is particularly relevant since they considered the case of a 20 µm diameter cell,
similar to that of the osteogenic cells that we have measured. While the GLMT is clearly the
more rigorous electromagnetic solution, GO well-approximates both the magnitude and
angular dependence of the optical stress distribution for this biologically relevant case. The
most notable differences in the optical stress distributions occur in the rapidly varying
interference structure predicted by the GMLT, the underestimation of the stress by GO in the
shadow region (near θ = 90°), and the improved angular distribution and reduction in
magnitude of the pressure spikes seen in the GO solution. While it would be interesting to
see if the improvements realized in the GLMT theory would translate to improved elasticity
measurements in biological cells, again, these improvements may be offset by the added
complexity of the numerical GLMT solution and the fact that biological cells are not perfect,
homogeneous, isotropic spheres.

It is interesting to consider the distribution of values for the single-cell elasticity
measurements summarized in Fig. 8. All three cell types show similar distributions, though
osteogenic cells are, on average, 5.4 times stiffer than RBCs. Most cells are tightly clustered
about a mean value, but the distribution has a tail with some cells several times stiffer than
the mean. Given the small number of outlier cells, it is not clear whether these may be
measurement artifacts, or if some cells are truly much stiffer than average. At this point, we
have not attempted to filter the data according to the viscoelastic response as has been
described recently by Lincoln et al. [5], but it is encouraging that RBC elasticity
measurements presented here are similar to other reports [2,6].

While the optical stretcher has several advantages relative to alternative techniques, laser-
induced heating during optical stretching can present a significant problem for relatively
stiff cells. Considering only the absorption of the 1064 nm laser light by water, we found
laser-induced heating can cause temperature increases of 8–15 °C/W for fiber separations
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ranging from 310–110 µm, respectively [24]. This is in good agreement with measurements
of optical heating by ourselves and others [25]. Given the stiffness of cells with an actin
cortex, it is difficult to avoid transiently heating the cell by less than 10 °C when using 1064
nm light. While it is possible for cellular elasticity to change during the measurement
process because of this temperature increase, by minimizing the trapping time and stretching
at the lowest possible laser powers we have attempted to avoid artifacts of laser-induced
heating. For the measurements summarized in Fig. 8, the cell was in the optical stretcher for
approximately 30 s, long enough to trap and acquire images while holding the cell at a series
of increasing laser powers for a 1 s duration. Cellular deformation also appeared to increase
linearly with applied laser power, as expected. In future studies, laser heating could be
further minimized by using laser light sources with wavelengths near 800 nm that are
minimally absorbed by water [24].

Another limitation of the optical stretcher method is the fact that the optical modeling
requires knowledge of the index of refraction of the cell, a quantity that is not easily
measured and can change with the health of the cell [21]. Cell index of refraction has a
strong effect on the optical pressure produced by the beam. For this initial study, a literature-
supported value of 1.38 was used for comparing RBC and osteogenic cells. In the future,
phase sensitive techniques such as quantitative phase microscopy, holographic microscopy,
or tomographic phase microscopy should be used to verify the index of refraction of
individual cells [22,26].

Despite these limitations, biomechanical measurements with the optical stretcher have been
successfully used to distinguish different cell types [27] and promise to offer insight into
disease progression at the level of the single cell [28,29]. Here, for the first time to the best
of our knowledge, we have measured the stiffness of the 2T3 osteoblast-like and the MLO-
Y4 osteocyte-like cells. Future studies combining confocal imaging and optical stretching
will examine other osteogenic cells (including osteoclasts) to determine the extent to which
cellular biomechanics contributes to the ability of a single cell to produce a biochemical
response with changes in mechanical load. This is of critical importance in elucidating the
mechanisms underlying bone diseases such as osteoporosis.
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Fig. 1.
(Color online) Calculated stress distributions on a 10 µm diameter sphere trapped in an
optical stretcher with a fiber separation of 200 µm. The cosine-squared approximation
(dotted line) is compared to the RO model (solid line) (a) ignoring or (b) allowing for
multiple internal reflections.
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Fig. 2.
Percent deviation of the calculated cellular elasticity (Eh) from the true value, using major-
or minor-axis deformations and the cosine-squared approximation [Eq. (3)] to calculate the
stiffness. (a) and (b) show the case when internal reflections are suppressed, while (c) and
(d) include multiple internal reflections. Regions bounded by ±10% deviation lines indicate
stretcher configurations where a cosine-squared stress distribution is a good approximation
to the RO model. Use of this approximation for other combinations of fiber separation and
cell radius will introduce a significant systematic error in the calculation of Eh.
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Fig. 3.
(Color online) Layout of the near-infrared optical stretcher. Nd-YAG laser light is fiber-
optic coupled into two single mode fibers by a 50:50 beam splitter (BS). The image shows
an osteoblast-like cell that is trapped in the stretcher. The fiber separation is 150 µm, and the
scale bar is 20 µm.
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Fig. 4.
(Color online) (a) Axial and (b) radial trapping forces exerted on a 7.8 µm diameter
polystyrene sphere calculated for fiber separations ranging from 110–310 µm. For these
simulations, the center of the stretcher is held fixed (at an axial position of 25 µm and a
radial position of 0 µm) in the center of a glass capillary tube.
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Fig. 5.
(Color online) Measurement of the escape force for polystyrene spheres trapped in the
optical stretcher. (a) Plot of the sphere position versus time as the sphere is trapped, held,
and then pulled out by the viscous drag of fluid flow. The slopes of the lines give the speed
of the sphere. (b) Comparison of the theoretical and experimentally determined escape
forces required to pull a 7.8 µm polystyrene sphere from the optical stretcher. Fiber
separations of 200 and 250 µm and several laser powers were used. Error bars represent the
standard error for experiments conducted under similar conditions. The equation of the best-
fit line is shown.

Ekpenyong et al. Page 18

Appl Opt. Author manuscript; available in PMC 2011 March 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Examples of (a) RBC, (b) MLO-Y4, and (c) 2T3 deformation during optical stretching. The
laser stretcher is oriented vertically relative to these images, and the laser power is shown
below each image. The 10 µm scalebar applies to all image panels.
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Fig. 7.
(Color online) Sample (a) RBC, (b) MLO-Y4, and (c) 2T3 major-axis (closed symbols) and
minor-axis (open symbols) deformations measured in response to optical stretching. The
data-points and errorbars report the average and standard deviation of at least 15 single-cell
measurements made at each laser power. The stress was calculated from the RO model
simulation of the experiment. The cell stiffness is inversely proportional to the slopes of the
best-fit lines.
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Fig. 8.
Summary of single-cell RBC, MLO-Y4, and 2T3 elasticity measurements. While there is
variance in each population, osteogenic cells appear to be about 5.4 times stiffer than RBCs.
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Table 1

Summary of Empirical Deformation Equations for Major, ur(0), and Minor, ur(90), Axes, Determined for
Several Fiber Separationsa

Fiber Separation (µm) ur(0) = ur(90) =

110 3100σavg(Eh)−1(1 + ν)0.20ρ2.61 −1.0 × 10−4σavg(Eh)−1(1 + ν)1ρ1.32

150 1900σavg(Eh)−1(1 + ν)−0.29ρ2.58 −1.3 × 10−3σavg(Eh)−1(1 + ν)1ρ1.52

200 2600σavg(Eh)−1(1 + ν)−0.03ρ2.65 −3.4 × 10−3σavg(Eh)−1(1 + ν)1ρ1.62

250 1700σavg(Eh)−1(1 + ν)−0.27ρ2.62 −4.8 × 10−3σavg(Eh)−1(1 + ν)1ρ1.65

300 400σavg(Eh)−1(1 + ν)−0.30ρ2.50 −6.0 × 10−3σavg(Eh)−1(1 + ν)1ρ1.67

a
In all cases quantities are provided in MKS units.
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