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Cortical circuits perform the computations underlying rapid per-
ceptual decisions within a few dozen milliseconds with each
neuron emitting only a few spikes. Under these conditions, the
theoretical analysis of neural population codes is challenging, as
the most commonly used theoretical tool—Fisher information—
can lead to erroneous conclusions about the optimality of differ-
ent coding schemes. Here we revisit the effect of tuning function
width and correlation structure on neural population codes based
on ideal observer analysis in both a discrimination and a recon-
struction task. We show that the optimal tuning function width
and the optimal correlation structure in both paradigms strongly
depend on the available decoding time in a very similar way. In
contrast, population codes optimized for Fisher information do not
depend on decoding time and are severely suboptimal when only
few spikes are available. In addition, we use the neurometric func-
tions of the ideal observer in the classification task to investigate
the differential coding properties of these Fisher-optimal codes for
fine and coarse discrimination. We find that the discrimination
error for these codes does not decrease to zero with increasing
population size, even in simple coarse discrimination tasks. Our
results suggest that quite different population codes may be op-
timal for rapid decoding in cortical computations than those
inferred from the optimization of Fisher information.

tuning curve | noise correlations | mean squared error | minimum
discrimination error | Cramér-Rao bound

Neuronal ensembles transmit information through their
joint firing patterns (1). This fact raises challenging the-

oretical questions on how the encoding accuracy of such
population codes is affected by properties of individual neu-
rons and correlations among them. Any answer to these
questions necessarily depends on the measure used to compare
the performance of different population codes. A principled
approach to define such a measure is to use the concept of a
Bayesian ideal observer (2, 3). This concept requires choosing
a specific task: In a stimulus reconstruction task, we ask how
well a Bayes-optimal decoder can estimate the true value of
the presented stimulus on the basis of the noisy neural re-
sponse (Fig. 1A). In a stimulus discrimination task, we ask how
well it is able to decide which of two stimuli was presented on
the basis of the response pattern (Fig. 1B).
Most theoretical studies of neural coding (4–12) have chosen

the stimulus reconstruction paradigm. For the sake of simplicity
and analytical tractability, these studies have evaluated population
codes almost exclusively with regard to Fisher information, as-
suming its inverse approximates the average reconstruction error
of an ideal observer, the minimum mean squared error. Others
have chosen the stimulus discrimination paradigm, linking Fisher
information to the discriminability between two stimuli, given the
neural responses (4, 13, 14). In addition to this large body of
theoretical work, many experimental studies have used Fisher
information to interpret their results (15–17).
The relationship between Fisher information and the error of

an ideal observer in a reconstruction task has mostly been jus-

tified using the Cramér–Rao bound, which states that the con-
ditional mean squared error of an unbiased estimator bθ of
a stimulus θ is bounded from below by the inverse of the Fisher
information Jθ:

E
h� bθ− θ

�2jθi ≥
1
Jθ
: [1]

More precisely, this argument is based on the fact that under
certain assumptions the maximum a posteriori estimator is as-
ymptotically normally distributed around the true stimulus with
variance equal to the Cramér–Rao bound (4, 18, 19). Alterna-
tively, using Fisher information to approximate the error of an
ideal observer in a stimulus discrimination task has been justified
by noting that the just noticeable distance is approximately
proportional to the inverse square root of the Fisher information
(4). The proof of this relationship similarly relies on a Gaussian
approximation of the posterior distribution.
Whereas it is usually taken for granted that Fisher information

is an accurate tool for the evaluation and comparison of pop-
ulation codes, the examples studied by Bethge et al. (18) suggest
that the assumptions necessary to relate Fisher information to
the error in the reconstruction or the discrimination task may be
violated in interesting population coding scenarios. This risk is
particularly severe when the codes are optimized for Fisher in-
formation and the signal-to-noise ratio for individual neurons is
low—that is, exactly in the regime in which neural circuits fre-
quently operate. Perceptual decisions are computed in <100 ms
(20, 21) and firing rates in cortex are often low (15, 22), such that
neural circuits compute with a few spikes at best. In this regime,
Fisher information may yield an incorrect assessment of optimal
reconstruction and discrimination performance. Although it is
known in principle that this failure of Fisher information results
from its locality, the precise factors that determine when the
validity of Fisher information breaks down are often complex.
To achieve a more precise understanding of this problem we

investigate neural population codes by computing the full neuro-
metric function of an ideal observer in the stimulus discrimination
paradigm (23). A neurometric function shows how the discrimi-
nation error achieved by a population code depends on the dif-
ference between the two stimuli. We use it to revisit the question
of optimal population coding with two goals: First, we show that
optimal discrimination and optimal reconstruction lead to quali-
tatively similar results regarding the effect of tuning function width
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and of different noise correlation structures on coding accuracy; in
contrast, Fisher information favors coding schemes that are se-
verely suboptimal for both reconstruction and discrimination at
low signal-to-noise ratio. Second, we use the diagnostic insights
provided by neurometric functions in a discrimination task to
obtain an analytical understanding of the poor performance of
Fisher-optimal population codes. In particular, we show that the
tuning functions and correlation structures favored by Fisher in-
formation show strikingly bad performance in simple coarse dis-
crimination tasks.

Results
Studying Neural Population Codes Using Neurometric Functions. We
obtain neurometric functions by fixing one reference stimulus at
orientation θ, varying the second stimulus, and then plotting the
error of the ideal observer trying to discriminate the two on the
basis of their neural representation as a function of the differ-
ence Δθ (illustrated in Fig. 1C). This graph contains information
about the performance of the population code both in fine and in
coarse discrimination tasks.
The ideal observer in such a discrimination task is the Bayes

classifier (24)

bθ ¼ argmax
s

pðr j sÞ pðsÞ; [2]

where r is the population response, s ∈ {θ, θ + Δθ} is the
stimulus, and pðsÞ ¼ 1

2: This equation means that the classifier
chooses the class that was more likely to have caused the ob-
served response pattern on the basis of the stimulus conditional
response distributions. Consider a single neuron with a Gaussian
response distribution, for which the mean response increases
from stimulus 1 to stimulus 2 (Fig. 1D). The response will be
classified as being caused by stimulus 2 whenever the neuron
responds with a firing rate larger than a certain threshold (Fig.
1D, dashed line) even if it was caused by stimulus 1. Therefore,
the error of the ideal observer, the minimum discrimination er-
ror (MDE), corresponds to the gray area under the lower of the
two probability densities. In general, the classifier achieving the
MDE can have a complex shape, reflecting the equal probability
contours of the response distributions. The MDE is given by (24)

MDE ðθ; θþ ΔθÞ ¼ 1
2

ð
min ð pðr j θÞ; pðrjθþ ΔθÞÞ dr: [3]

For a population with Gaussian response distributions, the op-
timal classifier is linear if the covariance matrix is the same for
both stimuli (Fig. 1E) and quadratic if the covariance matrices
are different (Fig. 1F). We evaluate Eq. 3 for populations with
several hundred neurons using Monte Carlo techniques (SI
Methods 2 and ref. 23). As a measure of the overall performance
of a population code we compute the integrated minimum dis-

crimination error (IMDE), the average performance over all
possible discrimination angles (Methods, Eq. 8).
In addition to the MDE, we compute the minimum mean

squared error (MMSE) and the Fisher information Jθ (Methods,
Eqs. 9 and 10). The latter yields the minimum asymptotic error
(MASE), the approximation of the MMSE obtained from aver-
aging over the Cramér–Rao bound (18):

MASE ¼h1
Jθ
iθ: [4]

In the case of asymptotic normality, the MASE yields a good
approximation for the MMSE. For a summary of the acronyms
we use to refer to the different measures, see Table 1.

Optimal Tuning Function Width for Individual Neurons. For all three
measures (MASE, MMSE, and IMDE), we investigate how the
coding quality of a population with 100 independent neurons
with bell-shaped tuning functions depends on the tuning width of
individual neurons at different time intervals available for
decoding (10, 100, 500, and 1,000 ms). The population activity is
assumed to follow a multivariate Gaussian distribution with
Poisson-like noise, where variances are identical to mean spike
counts (Methods). In this model, the signal-to-noise ratio per
neuron increases with the expected spike count, which depends
on both the average firing rates as specified by the tuning func-
tions and the observation time. Here, we vary only the obser-
vation time, which is linearly related to the single neuron signal-
to-noise ratio (SI Methods 1).
We first study the effect of tuning width on the coding accu-

racy in the reconstruction task. We compute the MASE on the
basis of Fisher information as an approximation to the MMSE.
According to this measure, narrow tuning functions are advan-
tageous over broad tuning functions independent of the length of
the time interval used for decoding (Fig. 2A and Fig. S1 A and B)
as has been reported before (e.g., refs. 9–11). For the reason for
the slight time dependence of the Fisher-optimal tuning width,
see Fig. S2. In striking contrast, numerical evaluation of the
MMSE reveals that the optimal tuning width critically depends
on the available decoding time, confirming results of earlier
studies (18, 25): For short times, broad tuning functions were
advantageous over narrow ones (Fig. 2B and Fig. S1 C and D).
We next evaluate the effect of tuning width in the discrimi-

nation paradigm by computing the average error of an ideal
observer, the IMDE. We find that the optimal tuning width in
terms of IMDE depends on decoding time as well (Fig. 2C):
Wide tuning functions are preferable for short integration times,
whereas narrow ones for long integration times (Fig. S1 E and
F). Despite the fact that the IMDE and the MMSE measure
different quantities (discrimination error vs. reconstruction er-
ror), their dependence on tuning width is very similar (compare
Fig. 2B with 2C). For short integration times, Fisher information

A B C D E F

Fig. 1. (A) The stimulus reconstruction framework. Orientation is represented in the noisy firing rates of a population of neurons. The error of estimating this
stimulus orientation optimally from the firing rates serves as a measure of coding accuracy. (B) The stimulus discrimination framework. The error of an
optimal classifier deciding whether a noisy rate profile was elicited by stimulus 1 or 2 is taken as a measure of coding accuracy. (C) A neurometric function is
a graph of the minimum discrimination error (MDE) as a function of the difference between a fixed reference orientation (upper right) and a second varied
stimulus orientation (x axis). (D) The MDE for two Gaussian firing rate distributions with different mean rates corresponds to the gray area. The optimal
classifier selects the stimulus more likely to have caused the observed firing rate. (E) The optimal discrimination function in the case of two neurons, whose
firing rates are described by a bivariate Gaussian distribution, is a straight line if the stimulus change causes only a change in the mean. (F) If it also changes
the covariance matrix, the optimal discrimination function is quadratic.
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thus failed to reflect the effect of tuning width on coding per-
formance both in the reconstruction and in the discrimination
task. These results also hold in the case of discrete Poisson noise
and for Fano factors different from 1 (Fig. S3).
Neurometric functions allow us to analyze the difference be-

tween the results based on Fisher information and the ideal
observer analysis (MMSE and IMDE) in more detail. To do so,
we compute the neurometric functions for populations with
Fisher-, MMSE-, and IMDE-optimal tuning functions when
decoding time is short (T = 10 ms; Fig. 2D). We find that Fisher-
optimal tuning functions are advantageous in fine discrimination
over the tuning functions optimal for the ideal observers. How-
ever, the performance of Fisher-optimal codes levels off for larger
Δθ at a nonzero error. The neurometric functions computed for
populations withMMSE- and IMDE-optimal tuning width do not
show this saturation behavior.
To explain this striking discrepancy, we investigate the coding

properties of a population with Fisher-optimal tuning functions
systematically. We compute the Fisher-optimal tuning width for
populations of different size at different integration times and
find that the Fisher-optimal tuning width is inversely pro-
portional to the population size (Fig. 3A). Whereas Fisher in-

formation suggests that the error achieved by these populations
should decay like 1/N as a function of the population size for all
time windows considered (Fig. 3B), the ideal observer error
(IMDE) for the same populations saturates with increasing
population size so that adding more neurons does not improve
the quality of the code (Fig. 3C).
The reason for the observed saturation is that the neurometric

functions of populations with different size asymptote at a
“pedestal error” P (Fig. 3D). We can provide a lower bound for
this pedestal error using the MDE of an auxiliary population of
neurons with additive instead of Poisson-like noise. In this way,
we show that the pedestal error is nonzero for finite T (see SI
Text for formal treatment):

P ≥ 1−Ψ
�
aλ2

ffiffiffiffiffi
T
λ1

r �
: [5]

Here, λ1 determines the baseline firing rate, λ2 sets the gain of the
tuning function, and a is a constant independent of N. Ψ is the
cumulative normal distribution function. Thus, the pedestal error
does not decay with increasing population size but is determined
by the available decoding time alone, in agreement with our
numerical results (Fig. 3 E and F). Intuitively, this is because in
Fisher-optimal codes the tuning width is inversely proportional to
N, such that only three cells are active for each stimulus, in-
dependent of N (Fig. 3G). For coarse discrimination, the two
stimuli activate two disjoint groups of neurons (Fig. 3H, red and
green neurons). Thus, the error in discriminating two orientations
far away from each other (the pedestal error) is determined solely
by the ability to determine which of these two groups of three
neurons is active in the presence of background noise. Using this
argument we obtain a linear approximation of the pedestal error,
which has a similar form to Eq. 5 (Fig. 3F and SI Text, Eq. S2). In
contrast, if the two orientations are very close, the sets of acti-
vated neurons overlap and classification is more difficult (Fig. 3H,
red and blue neurons). As can be seen in Fig. 3H, the point Δθs at
which the neurometric function reaches its saturation level is
approximately twice the difference of the preferred orientation of
two adjacent neurons (Δϕ), independent of the population size
(Fig. S4). As the population size increases, Δϕ goes to zero and,
consequently, Δθs as well (Fig. 3I and SI Text).
Together, these results explain why Fisher-optimal tuning

widths lead to saturation of the ideal observer performance in
the large N limit. The IMDE is determined by the area of the
initial region of the neurometric function AIR and the pedestal
error P (Fig. 3J):

IMDE ≈ AIR þ πP:

For fixed T, the pedestal error is independent of N. In contrast,
AIR shrinks toward zero with N, because ΔθS goes to zero. In the
large N limit, the IMDE therefore converges to the pedestal
error. To complete the picture, we note that for fixed N, the
pedestal error converges to zero in the large T limit, such that
eventually P ≪ AIR. Here, Fisher information, which is related to
AIR (23), and the IMDE will lead to similar conclusions.
In summary, the discrepancy at low signal-to-noise ratio be-

tween the optimal tuning width predicted by Fisher information
and that found by evaluating the performance of ideal observer
models can be explained by the fact that Fisher-optimal pop-
ulation codes show poor performance for simple coarse discrimi-
nation tasks. In particular, we find that Fisher information yields
a valid approximation of the ideal observer performance only
when the pedestal error P characteristic for coarse discrimination
tasks is small compared with the area of the initial region.

Table 1. Definition of acronyms

Acronym Definition

MDE Minimum discrimination error, Eq. 3; ideal
observer error in a discrimination task

IMDE Integrated minimum discrimination error,
Eq. 8; average MDE over all Δθ

MMSE Minimum mean squared error, Eq. 9; ideal
observer error in a reconstruction task

MASE Mean asymptotic squared error, Eq. 4;
approximation to the MMSE obtained by
averaging over the inverse of Fisher information

A B

C D

Fig. 2. Optimal tuning function width. (A) Mean asymptotic error (MASE)
of a population of 100 independent neurons as a function of tuning width
for four different integration times (T = 10, 100, 500, and 1,000 ms; light gray
to black). The MASE is the average inverse Fisher information. Dots mark the
optimum. (B) As in A, but MMSE of the same population. For short in-
tegration times, broad tuning functions are optimal in terms of MMSE, in
striking contrast to the predictions based on Fisher information. (C) As in A,
but IMDE of the same population. Results obtained with the IMDE agree
well with those based on the MMSE, although the former corresponds to
the minimal error in a discrimination task and the latter to that in a re-
construction task. (D) Neurometric function of a population with Fisher-
optimal (dashed line), MMSE-optimal (dotted line), and IMDE-optimal tun-
ing width (solid line) for a short time interval (10 ms).
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Optimal Noise Correlation Structure. We next investigate whether
the relative advantages of different noise correlation structures are
accurately captured by Fisher information. Noise correlations are
correlations among the firing rates of pairs of neurons when the
stimulus is constant. Many theoretical studies have investigated
the effect of these shared trial-to-trial fluctuations on the repre-
sentational accuracy of a population code using Fisher in-
formation (5–8). Although their magnitude in cortex is debated
(15, 16, 26), an accurate assessment of the potential impact of
different noise correlation structures on population coding is im-
portant. In our model, the correlation structure can be one of
the following (Fig. 4A and SI Methods 1): All pairs can have the
same correlation (“uniform correlations”), correlations can be
increasing with firing rates (“stimulus-dependent correlations”),
pairs with similar orientation preference can have stronger cor-
relations than pairs with dissimilar preference (“limited-range cor-
relations”), or the latter two can be combined.
We evaluate how the correlation structure affects the perfor-

mance of the population code in populations of 100 neurons with
varying noise correlation structure for a range of time intervals
(T = 10–1,000 ms) and intermediate correlation strength
(�ρ ¼ 0:15). We compute the MASE (Fig. 4B) as well as the ideal
observer errors, MMSE (Fig. 4C) and IMDE (Fig. 4D).
We find that all three measures agree that noise correlations

with limited-range structure are harmful compared with un-
correlated noise. Similarly, uniform noise correlations lead to a
better code than uncorrelated noise with regard to all three
measures (although the advantage with regard to the ideal ob-
server errors is less pronounced). Surprisingly, however, they
disagree on the effect of stimulus-dependent correlations: Fisher
information suggests that a population with such correlations
shows even better coding accuracy than one with uniform noise
correlations, in line with previous results (7). In remarkable
contrast, MMSE and IMDE suggest that stimulus-dependent
correlations are advantageous over uniform correlations only for
time intervals >100–200 ms and perform worse at shorter ones
(Fig. 4 C and D). For time windows <50–100 ms, they are even
harmful compared with uncorrelated noise. In addition, Fisher
information falsely indicates an increasingly superior performance
of stimulus-dependent correlations over uniform correlations with
increasing correlation strength for all time intervals (Fig. 4 E and
F). The ideal observer shows this behavior only for long time
intervals (Fig. 4E). For short time intervals the dependency is re-
versed: The higher the average correlation is, the worse stimulus-
dependent correlations perform (Fig. 4F). The results for short
times obtained here for the Gaussian noise distribution also hold
for a discrete binary noise distribution (tested for n ≤ 15), where
each neuron emits either one spike or none (23).
Neurometric functions again allow us to gain additional insights

into this behavior (Fig. 4 G and H): For sufficiently coarse dis-
crimination uniform correlations always lead to a superior pop-
ulation code over stimulus-dependent correlations. In contrast,
stimulus-dependent correlations are always superior for suffi-
ciently fine discrimination. With decreasing decoding time, how-
ever, the critical Δθc, where the neurometric functions cross, shifts
more and more toward zero (Fig. S5). Therefore, uniform corre-
lations lead to superior performance over stimulus-dependent
correlations for almost all Δθ when decoding time is short (Fig.
4H). Whereas Fisher information predicts that relative perfor-
mance of the correlation structures is independent of time, the
IMDE reveals that stimulus-dependent correlation may be bene-
ficial for long decoding intervals, but detrimental for short ones.

A B

C D

E F

G H

I J

Fig. 3. Performance of Fisher-optimal codes. (A) Optimal tuning width as a
function of population size for T = 1,000 ms. (B) MASE of a neural popula-
tion with independent noise and Fisher-optimal width for 10 different in-
tegration times T (values logarithmically spaced between 10 and 1,000; light
to dark gray). The width of the tuning functions is optimized for each N
separately and chosen such that it minimizes the MASE. (C) IMDE for the
same Fisher-optimal populations as in B. (D) Family of neurometric functions
for Fisher-optimal population codes at T = 10 ms for n = 10 to n = 190 (right
to left). ΔθS is the point of saturation, and P is the pedestal error, also
marked by the gray dashed line. (E) The pedestal error P is independent of
the population size N (T = 1,000 ms not shown for clarity). (F) The pedestal
error P depends on the integration time (black; independent of N) and
analytical approximation for P (gray). (G) For each population size, approx-
imately three neurons are activated by each stimulus (red), independent of
the population size. (H) For coarse discrimination (red vs. green), the two
stimuli activate disjoint sets of neurons determining the pedestal error (red
vs. green; error bars show 2 SD). For fine discrimination, the activated
populations overlap, determining the initial region (red vs. blue). (I) De-
pendence of the point of saturation ΔθS on the population size N. (J) Two
parts of the neurometric function of Fisher-optimal population codes: the
pedestal error P (light gray) and the initial region (dark gray). Together they
determine the IMDE. The neurometric function is shown in units of differ-
ence in preferred orientation; therefore it does not depend on N. The

pedestal error is reached at ΔθS ∼ 2Δϕ (Fig. S4). As N → ∞, the x axis is
rescaled and the area of the initial region AIR goes to zero (SI Text) and the
IMDE converges to πP.
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Discussion
In the present study, we revisited optimal population coding
using Bayesian ideal observer analysis in both the reconstruction
and the discrimination paradigm. Both lead to very similar con-
clusions with regard to the optimal tuning width (Fig. 2 B and C)
and the optimal noise correlation structure (Fig. 4 C and D).
Importantly, the signal-to-noise ratio—which is critically limited by
the available decoding time—plays a crucial role for the relative
performance of different coding schemes: Population codes well
suited for long intervals may be severely suboptimal for short ones.
In contrast, Fisher information is largely ignorant of the limitations
imposed by the available decoding time—codes that are favorable
for long integration intervals seem favorable for short ones as well.

Whereas Fisher information yields an accurate approximation
of the ideal observer performance in the limit of long decoding
time windows, this is not necessarily true in the limit of large
populations. We showed analytically that the ideal observer error
for a population with Fisher-optimal tuning functions does not
decay to zero in the limit of a large number of neurons but
saturates at a value determined solely by the available decoding
time (Fig. 3C). In contrast, Fisher information predicts that the
error scales like the inverse of the population size, independent
of time (Fig. 3B). Thus, the “folk theorem” that Fisher in-
formation provides an accurate assessment of coding quality in
the limit of large population size is correct only if the width of
the tuning functions is not optimized as the population grows.
In the discrimination task, we explained this behavior by

showing that the coarse discrimination error is independent of the
population size for ensembles with Fisher-optimal tuning curves.
In the reconstruction task, large estimation errors play a similar
role to the coarse discrimination error. The convergence of the
reconstruction error to a normal distribution with variance equal
to the inverse Fisher information relies on a linear approximation
of the derivative of the log-likelihood (19). If the tuning function
width scales with population size—as it does if the tuning functions
are optimized for Fisher information—the quality of this linear
approximation does not improve with increasing population size
because the curvature of the tuning functions is directly coupled to
the tuning width. As a consequence, the Cramér–Rao bound from
Eq. 1 is not tight even asymptotically leading to the observed
discrepancies between Fisher information and the MMSE.
Similarly, Fisher information also fails to evaluate the ideal

observer performance for different noise correlation structures
correctly when the time available for decoding is short. The
reason is that the link between Fisher information and the op-
timal reconstruction or discrimination error also relies on the
central limit theorem (4, 18, 19). Therefore, in the presence of
noise correlations, the approximation of the ideal observer error
obtained from Fisher information can converge very slowly or
not at all to the true error for increasing population size, because
the observations gathered from different neurons are no longer
independent. In fact, our results show that it is crucial not to rely
on the asymptotic approach of Fisher information alone to de-
termine the relative quality of different correlation structures.
In contrast to our study, earlier studies using the discrimination

framework mostly measured the minimal linear discrimination
error or computed the fine discrimination error only (4, 13, 27–29).
Two other studies used upper bounds on the MDE, which are
tighter than the minimal linear discrimination error (13, 30), but
no study has so far computed the exact MDE for the full range of
the neurometric function. For a detailed discussion of these
studies see SI Discussion. Information theoretic approaches pro-
vide a third framework for evaluating neural population codes in
addition to the reconstruction and discrimination framework
studied here. For example, stimulus-specific information (SSI) has
been used to assess the role of the noise level for population coding
in small populations (31) and in the asymptotic regime, SSI and
Fisher information seem to yield qualitatively similar results (32).
In contrast to neurometric function analysis, information theoretic
approaches are not directly linked to a behavioral task.
In conclusion, neurometric function analysis offers a tractable

and intuitive framework for the analysis of neural population
coding with an exact ideal observer model. It is particularly well
suited for a comparison of theoretical assessment of different
population codes with results from psychophysical or neuro-
physiological measurements, as the two-alternative forced choice
orientation discrimination task is much studied in many neuro-
physiological and psychophysical investigations in humans and
monkeys (33, 34). In contrast to Fisher information, neurometric
functions are informative not only about fine, but also about
coarse discrimination performance. For example, two codes with

A B

C D

E F

G H

Fig. 4. Effect of noise correlations. (A) Correlation coefficient matrices. Dark
values indicate high correlations. Neurons are arranged according to their
preferred orientation, so correlations between cells with similar tuning
properties are close to the main diagonal. Diagonal entries have been re-
moved for visualization. (B–D) MASE, MMSE, and IMDE for a population of
n = 100 neurons for the four different noise correlation structures shown
relative to the independent population in logarithmic units. Colors are as
shown in A. (E and F) MASE (dashed lines) and IMDE (solid lines) for a pop-
ulation of 100 neurons with stimulus-dependent (red) or uniform correlations
(blue) at 500ms (E) and 10ms (F) as a function of average correlation strength.
Data are shown relative to the independent population in logarithmic units. (G
and H) Neurometric functions for the four correlation structures at 500 ms (G)
and at 10 ms (H). The square marks Δθc; from there on stimulus-dependent
correlations performworse than uniform correlations. In H, the crossing point
lies effectively at Δθ = 0. Data are also shown relative to the independent
population, smoothed and in logarithmic units on the y axis in the Insets.
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the same Fisher information may even yield different neuro-
metric functions (Fig. S6). Our results suggest that the validity of
the conclusions based on Fisher information depends on the
coding scenario being investigated: If the parameter of interest
induces changes that either impair or improve both fine and
coarse discrimination performance (e.g., when studying the ef-
fect of population size for fixed, wide tuning functions), Fisher
information is a valuable tool for assessing different coding
schemes. If, however, fine discrimination performance can be
improved at the cost of coarse discrimination performance (as is
the case with tuning width), optimization of Fisher information
will impair the average performance of the population codes. In
this case, quite different population codes are optimal than those
inferred from Fisher information.

Methods
Population Model.We study orientation coding in an idealized, homogenous
population of N neurons with bell-shaped tuning functions,

fiðθÞ ¼ λ1 þ λ2
�
1
2
þ 1
2
cosðθ−ϕiÞ

�k

�riðθÞ ¼ TfiðθÞ;
[6]

where θ is the stimulus orientation, ϕi is the preferred orientation of neuron i,
and T is the observation time. The parameter k controls the width of the tuning
curves. Large k corresponds to steep tuning curves with small width. The
parameters λ1 and λ2 set the baseline rate to 5Hzand themaximal rate to 50Hz.

The stimulus-conditional response distribution ismodeled as amultivariate
Gaussian so that

pðrjθÞ ¼ N ð�r ðθÞ;ΣðθÞÞ; [7]

where �r ðθÞ ¼ ð�r1ðθÞ; . . . ;  �rNðθÞÞ is a vector of average spike counts. We use
a flexible model for the covariance matrix Σ(θ), allowing for different noise
correlation structures (SI Methods 1 and Fig. 4A). Noise is Poisson-like; i.e., the
variance is equal to the mean firing rate. In this model, the signal-to-noise
ratio per neuron is proportional to the observation time T (SI Methods 1).

Neurometric Function Analysis. The minimal discrimination error MDE(θ, θ +
Δθ) is given by Eq. 3. We compute it numerically using Monte Carlo in-
tegration (SI Methods 2). The necessary software is available online at http://

www.kyb.tuebingen.mpg.de/bethge/reproducibility/BerensEtAl2011/index.
php. MDEθ (Δθ) = MDE(θ, θ + Δθ) is the neurometric function relative to the
reference direction. The IMDE quantifies the average performance of a code
independent of Δθ:

IMDEθ ¼
ðπ
0
MDEθðΔθÞdΔθ: [8]

It is equal to the area under the neurometric function. A modified version of
the IMDE could have variable weights for the error at different Δθ to rep-
resent the relative importance of different discriminations; this would not
change the conclusions of Fig. 3. We average the neurometric function
MDEθ(Δθ) and the integrated MDE over θ to make them independent of the
reference direction.

MinimumMean Squared Error and Fisher Information. TheMMSE is the error of
an ideal observer in the reconstruction task and minimizes

MSE ¼ h�θ−bθðrÞ�2i
r;θ
: [9]

We compute it numerically usingMonte Carlo integration (SI Methods 3). The
necessary software is available online at http://www.kyb.tuebingen.mpg.de/
bethge/reproducibility/BerensEtAl2011/index.php. In the Gaussian case, the
Fisher information is given by

Jθ ¼ �r′TΣ− 1�r′þ 1
2
Tr
�
Σ′Σ− 1Σ′Σ− 1�; [10]

where the dependence on θ of the right-hand side is omitted for clarity.
�r′ and Σ′ are the derivatives of �r and Σ with respect to θ. The inverse of Jθ can
be used to bound the conditional error variance of an unbiased estimator
according to Eq. 1. By averaging over θ, we obtain a lower bound on theMMSE,
the MASE (Eq. 4). For long decoding time windows (T→ ∞), the MMSE and the
MASE coincide (18, 19). Fisher-optimal codes were computed by numerically
minimizing the MASE for the tuning width parameter for each N and T.
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